REPRESENTATION OF NATURAL NUMBERS BY SUMS OF FOUR SQUARES OF ALMOST-PRIME HAVING A SPECIAL FORM

ZHIVKO H. PETROV AND TATYANA. L. TODOROVA

Abstract

In this paper we consider the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N$, where N is a sufficiently large integer and prove that if η is quadratic irrational number and $0<\lambda<\frac{1}{10}$, then it has a solution in almost-prime numbers x_{1}, \ldots, x_{4}, such that $\left\{\eta x_{i}\right\}<N^{-\lambda}$ for $i=1, \ldots, 4$.

Keywords: Lagrange's equation, almost-primes, quadratic irrational numbers. 2020 Math. Subject Classification: Primary 11P05; Secondary 11N36.

1. INTRODUCTION AND STATEMENT OF THE RESULT

In 1770 Lagrange proved that for any positive integer N the equation

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N \tag{1.1}
\end{equation*}
$$

has a solution in integer numbers x_{1}, \ldots, x_{4}. Later Jacobi found an exact formula for the number of the solutions (see [8, Ch. 20]). A lot of researchers studied the equation (1.1) for solvability in integers satisfying additional conditions. There is a hypothesis stating that if N is sufficiently large and $N \equiv 4(\bmod 24)$ then (1.1) has a solution in primes. This hypothesis has not been proved so far, but several approximations to it have been established.

In 1994 J . Brüdern and E. Fouvry [1] proved that for any large $N \equiv 4(\bmod 24)$, the equation (1.1) has a solution in $x_{1}, \ldots, x_{4} \in \mathcal{P}_{34}$. (We say that integer n is an almost-prime of order r if n has at most r prime factors, counted with their multiplicities. We denote by \mathcal{P}_{r} the set of all almost-primes of order r.) This result was improved by D. R. Heath-Brown and D. I. Tolev [9]. They showed that, under the same restrictions for N, the equation (1.1) has a solution in prime x_{1} and almost-prime $x_{2}, x_{3}, x_{4} \in \mathcal{P}_{101}$. In their paper they also proved that the equation has a solution in $x_{1}, \ldots, x_{4} \in \mathcal{P}_{25}$. In 2020 Tak Wing Ching [2] improved this result with three of them being in \mathcal{P}_{3} and the other in \mathcal{P}_{4}.

On the other hand, let us consider a subset of the set of integers having the form

$$
\mathcal{A}=\{n \mid a<\{\eta n\}<b\}
$$

where η is a fixed quadratic irrational number, and $a, b \in[0,1]$.
Denote by $I(N)$ the number of solutions of (1.1) in arbitrary integers and by $J(N)$ the number of solutions of (1.1) in integers from the set \mathcal{A}.

In 2011 S. A. Gritsenko and N. N. Motkina [6] proved that for any positive small ε, the following formula holds

$$
J(N)=(b-a)^{4} I(N)+O\left(N^{0,9+3 \varepsilon}\right)
$$

S. A. Gritsenko and N. N. Motkina consider many others additive problem in witch variables are in special set of numbers similar to \mathcal{A}. (See [4] - [5] and [7].) In 2013 A. V. Shutov [12] considered solvability of diophantine equation in integer numbers from \mathcal{A}. Further research in this area was made by A. V. Shutov and A. A. Zhukova [13].

We consider the equation (1.1), where x_{i} are almost-prime numbers and belong to a set similar to \mathcal{A}. Our result is

Theorem 1.1. Let η be a quadratic irrational number, $0<\lambda<\frac{1}{10}$ and $k=\left[\frac{54}{1-10 \lambda}\right]$. Then for every sufficiently large integer N, the equation (1.1) has a solution in almost-prime numbers $x_{1}, \ldots, x_{4} \in \mathcal{P}_{k}$, such that $\left\{\eta x_{i}\right\}<N^{-\lambda}, i=$ $1,2,3,4$.

In the present paper we use the following notations.
We denote by N a sufficiently large odd integer and $P=N^{\frac{1}{2}}$. Letters a, b, k, l, m, n, q, p always stand for integers. By $\left(n_{1}, \ldots, n_{k}\right)$ we denote the greatest common divisor of n_{1}, \ldots, n_{k}. Let $\|t\|$ denote the distance from t to the nearest integer. We denote by \vec{n} four dimensional vectors and let

$$
\begin{equation*}
|\vec{n}|=\max \left(\left|n_{1}\right|, \ldots,\left|n_{4}\right|\right) \tag{1.2}
\end{equation*}
$$

As usual, $\mu(q)$ is the Möbius function and $\tau(q)$ is the number of positive divisors of q. Sometimes we write $a \equiv b(q)$ as an abbreviation of $a \equiv b(\bmod q)$.

We write $\sum_{x(q)}$ for a sum over a complete system of residues modulo q and respectively $\sum_{x(q)}^{*}$ is a sum over a reduced system of residues modulo q. We also denote $e(t)=e^{2 \pi i t}$.

We use Vinogradov's notation $A \ll B$, which is equivalent to $A=O(B)$. By ε we denote an arbitrarily small positive number, which is not the same in different occurrences. The constants in the O-terms and \ll-symbols are absolute or depend on ε.

2. AUXILIARY RESULTS

Now we introduce some lemmas, which shall be used later.
Lemma 2.1. Suppose that $D \in \mathbb{R}, D>4$. There exist arithmetical functions $\lambda^{ \pm}(d)$ (called Rosser's functions of level D) with the following properties:

1. For any positive integer d we have

$$
\left|\lambda^{ \pm}(d)\right| \leq 1, \quad \quad \lambda^{ \pm}(d)=0 \quad \text { if } \quad d>D \quad \text { or } \quad \mu(d)=0
$$

2. If $n \in \mathbb{N}$ then

$$
\sum_{d \mid n} \lambda^{-}(d) \leq \sum_{d \mid n} \mu(d) \leq \sum_{d \mid n} \lambda^{+}(d)
$$

3. If $z \in \mathbb{R}$ is such that $z^{2} \leq D$ and if

$$
\begin{equation*}
P(z)=\prod_{2<p<z} p, \mathcal{B}=\prod_{2<p<z}\left(1-\frac{1}{p-1}\right), \mathcal{N}^{ \pm}=\sum_{d \mid P(z)} \frac{\lambda^{ \pm}(d)}{\varphi(d)}, s_{0}=\frac{\log D}{\log z} \tag{2.1}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \mathcal{B} \leq \mathcal{N}^{+} \leq \mathcal{B}\left(F\left(s_{0}\right)+O\left((\log D)^{-\frac{1}{3}}\right)\right) \tag{2.2}\\
& \mathcal{B} \geq \mathcal{N}^{-} \geq \mathcal{B}\left(f\left(s_{0}\right)+O\left((\log D)^{-\frac{1}{3}}\right)\right) \tag{2.3}
\end{align*}
$$

where $F(s)$ and $f(s)$ satisfy

$$
\begin{aligned}
& F(s)=2 e^{\gamma} s^{-1}, \quad \text { if } \quad 2 \leq s \leq 3 \\
& f(s)=2 e^{\gamma} s^{-1} \log (s-1), \quad \text { if } \quad 2 \leq s \leq 3, \\
& (s F(s))^{\prime}=f(s-1), \quad \text { if } s>3 \\
& (s f(s))^{\prime}=F(s-1), \quad \text { if } s>2
\end{aligned}
$$

Here γ is Euler's constant.

Proof. See Greaves [3, Chapter 4].

Lemma 2.2. Suppose that $\Lambda_{i}, \Lambda_{i}^{ \pm}$are real numbers satisfying $\Lambda_{i}=0$ or 1 , $\Lambda_{i}^{-} \leq \Lambda_{i} \leq \Lambda_{i}^{+}, i=1,2,3,4$. Then

$$
\begin{align*}
\Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \geq & \Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{-} \Lambda_{3}^{+} \Lambda_{4}^{+}+\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{-} \Lambda_{4}^{+}+ \\
& +\Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{-}-3 \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \tag{2.4}
\end{align*}
$$

Proof. The proof is similar to the proof of [1, Lemma 13].

Let

$$
w_{0}(t)= \begin{cases}e^{\frac{1}{t^{2}-\frac{16}{25}}} & \text { if } t \in\left(-\frac{4}{5}, \frac{4}{5}\right) \\ 0 & \text { if } t \notin\left(-\frac{4}{5}, \frac{4}{5}\right)\end{cases}
$$

and

$$
\begin{equation*}
w(x)=w_{0}\left(\frac{x}{P}-\frac{1}{2}\right) \tag{2.5}
\end{equation*}
$$

Lemma 2.3. Let $u, \beta \in \mathbb{R}$ and

$$
\begin{equation*}
J(\beta, u)=\int_{-\infty}^{+\infty} w_{0}\left(x-\frac{1}{2}\right) e\left(\beta x^{2}+u x\right) d x \tag{2.6}
\end{equation*}
$$

Then:

1. For every $k \in \mathbb{N}$ and $u \neq 0$ we have

$$
J(\beta, u)<_{k} \frac{1+|\beta|^{k}}{|u|^{k}}
$$

2. The following inequality hold

$$
J(\beta, u) \ll \min \left(1,|\beta|^{-\frac{1}{2}}\right)
$$

Proof. See [9, Lemma 9].

Lemma 2.4. Suppose that $\vec{u} \in \mathbb{Z}^{4}$ and

$$
J(\beta, \vec{u})=\prod_{i=1}^{4} J\left(\beta, u_{i}\right)
$$

Then we have

$$
\int_{-\infty}^{+\infty}|J(\beta, \vec{u})| d \gamma \ll|\vec{u}|^{-1+\varepsilon}
$$

Proof. Proof can be find in [9, Lemma 10].

Lemma 2.5. There exists a function $\sigma(v, q, \gamma)$ defined for $-\frac{q}{2}<v \leq \frac{q}{2}, q \leq P$, $|\gamma| \leq \frac{P}{q}$, integrable with respect to γ, satisfying

$$
|\sigma(v, q, \gamma)| \leq \frac{1}{1+|v|}
$$

and also for every $a \in \mathbb{Z},(a, q)=1$ we have

$$
\sum_{-\frac{q}{2}<v \leq \frac{q}{2}} e\left(\frac{\bar{a} v}{q}\right) \sigma(v, q, \gamma)= \begin{cases}1 & \text { if } \gamma \in \mathcal{N}(a, q) \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\mathcal{N}(a, q)=\left(-\frac{P^{2}}{q\left(q+q^{\prime}\right)}, \frac{P^{2}}{q\left(q+q^{\prime \prime}\right)}\right]
$$

and

$$
\begin{equation*}
P<q+q^{\prime}, q+q^{\prime \prime} \leq P+q, \quad a q^{\prime} \equiv 1(\bmod q), \quad a q^{\prime \prime} \equiv-1(\bmod q) \tag{2.7}
\end{equation*}
$$

Proof. See [15, Lemma 45].

For $q \in \mathbb{N}$ and $m, n \in \mathbb{Z}$, the Gauss sum is defined by

$$
\begin{equation*}
G(q, m, n)=\sum_{x(q)} e\left(\frac{m x^{2}+n x}{q}\right) \tag{2.8}
\end{equation*}
$$

For $\vec{d}=\left\langle d_{1}, \ldots, d_{4}\right\rangle \in \mathbb{Z}^{4}$ and $\vec{n}=\left\langle n_{1}, \ldots, n_{4}\right\rangle \in \mathbb{Z}^{4}$ we denote

$$
G\left(q, a \overrightarrow{d^{2}}, \vec{n}\right)=\prod_{i=1}^{4} G\left(q, a d_{i}^{2}, n_{i}\right)
$$

We need to estimate an exponential sum of the form

$$
\begin{equation*}
V_{q}=V_{q}(N, \vec{d}, v, \vec{n})=\sum_{a(q)}^{*} e\left(\frac{\bar{a} v-N a}{q}\right) G\left(q, a \overrightarrow{d^{2}}, \vec{n}\right) \tag{2.9}
\end{equation*}
$$

To estimate V_{q} we use the properties of the Gauss sum and the Kloosterman sum.
Lemma 2.6. Suppose that $N, q \in \mathbb{N}, v \in \mathbb{Z}$ and $\vec{d}, \vec{n} \in \mathbb{Z}^{4}$. Then we have

$$
V_{q}(N, \vec{d}, v, \vec{n}) \ll q^{\frac{5}{2}} \tau(q)(q, N)^{\frac{1}{2}}\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)
$$

Moreover, if some of the conditions

$$
\left(q, d_{i}\right) \mid n_{i}, \quad i=1, \ldots, 4
$$

do not hold, then $V_{q}(N, \vec{d}, v, \vec{n})=0$.

Proof. This result is analogous to this one in [1, Lemma 1].

Lemma 2.7. (Liouville) If η is an irrational number which is the root of a polynomial f of degree 2 with integer coefficients, then there exists a real number $A>0$ such that, for all integers p, q, with $q>0$,

$$
\left|\eta-\frac{p}{q}\right| \geq \frac{A}{q^{2}}
$$

Proof. See [11, Theorem 1A].

3. PROOF OF THE THEOREM

3.1. BEGINNING OF THE PROOF

Let N be a sufficiently large integer. We denote

$$
z=N^{\alpha}, \quad P(z)=\prod_{p<z} p, \quad \delta=N^{-\lambda}
$$

We apply the well-known Vinogradov's "little cups" lemma (see [10, Chapter 1, Lemma A]) with parameters

$$
\alpha_{1}=\frac{\delta}{4}, \quad \beta_{1}=\frac{3 \delta}{4}, \quad \Delta=\frac{\delta}{2}, \quad r=[\log N]
$$

and construct a function $\theta(t)$ which is periodic with period 1 and has the following properties:

$$
\begin{gathered}
\theta\left(\frac{\delta}{2}\right)=1 ; \quad 0<\theta(t)<1 \quad \text { for } \quad 0<t<\frac{\delta}{2} \quad \text { or } \quad \frac{\delta}{2}<t<\delta ; \\
\theta(t)=0 \quad \text { for } \quad \delta \leq t \leq 1
\end{gathered}
$$

Furthermore, from the Fourier series of $\theta(t)$ we find

$$
\begin{equation*}
\theta(t)=\frac{\delta}{2}+\sum_{\substack{0<|m| \leq H \\ m \neq 0}} c(m) e(m t)+O\left(P^{-A}\right) \tag{3.1}
\end{equation*}
$$

with

$$
|c(m)| \leq \min \left(\frac{\delta}{2}, \frac{1}{|m|}\left(\frac{[\log N]}{\delta \pi|m|}\right)^{[\log N]}\right)
$$

where A is arbitrary large constant and

$$
\begin{equation*}
H=\frac{[\log N]^{2}}{\delta} \tag{3.2}
\end{equation*}
$$

Let us denote

$$
\theta(\eta \vec{x})=\theta\left(\eta x_{1}\right) \theta\left(\eta x_{2}\right) \theta\left(\eta x_{3}\right) \theta\left(\eta x_{4}\right)
$$

and

$$
w(\vec{x})=w\left(x_{1}\right) w\left(x_{2}\right) w\left(x_{3}\right) w\left(x_{4}\right)
$$

We consider the sum

$$
\Gamma=\sum_{\substack{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N \\\left(x_{i}, P(z)\right)=1, i=1,2,3,4}} \theta(\eta \vec{x}) w(\vec{x}) .
$$

From the condition $\left(x_{i}, P(z)\right)=1$ it follows that any prime factor of x_{i} is greater than or equal to z. Suppose that x_{i} has l prime factors, counted with their multiplicities. Then we have

$$
N^{\frac{1}{2}} \geq x_{i} \geq z^{l}=N^{\alpha l}
$$

and hence $l \leq \frac{1}{2 \alpha}$. This implies that if $\Gamma>0$ then equation (1.1) has a solution in almost-prime numbers x_{1}, \ldots, x_{4} with at most $\left[\frac{1}{2 \alpha}\right]$ prime factors, such that $\left\{\eta x_{i}\right\}<N^{-\lambda}, i=1, \ldots, 4$.

For $i=1,2,3,4$ we define

$$
\Lambda_{i}=\sum_{d \mid\left(x_{i}, P(z)\right)} \mu(d)= \begin{cases}1 & \text { if }\left(x_{i}, P(z)\right)=1 \tag{3.3}\\ 0 & \text { otherwise }\end{cases}
$$

Then we find that

$$
\Gamma=\sum_{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N} \Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \theta(\eta \vec{x}) w(\vec{x}) .
$$

We can write Γ as

$$
\Gamma=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \theta(\eta \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha
$$

Suppose that $\lambda^{ \pm}(d)$ are the Rosser functions of level D (see Lemma 2.1). Let also denote

$$
\begin{equation*}
\Lambda_{i}^{ \pm}=\sum_{d \mid\left(x_{i}, P(z)\right)} \lambda^{ \pm}(d), \quad i=1,2,3,4 \tag{3.4}
\end{equation*}
$$

Then from Lemma 2.1, (3.3) and (3.4) we find that

$$
\Lambda_{i}^{-} \leq \Lambda_{i} \leq \Lambda_{i}^{+}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 15-29.

We use Lemma 2.2 and find that

$$
\Gamma \geq \Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}-3 \Gamma_{5}
$$

where $\Gamma_{1}, \ldots, \Gamma_{5}$ are the contributions coming from the consecutive terms of the right side of (2.4). We have $\Gamma_{1}=\Gamma_{2}=\Gamma_{3}=\Gamma_{4}$ and

$$
\begin{aligned}
& \Gamma_{1}=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1}^{-} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \theta(\eta \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha \\
& \Gamma_{5}=\sum_{x_{i} \in \mathbb{Z}} \Lambda_{1}^{+} \Lambda_{2}^{+} \Lambda_{3}^{+} \Lambda_{4}^{+} \theta(\eta \vec{x}) w(\vec{x}) \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-N\right)\right) d \alpha
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\Gamma \geq 4 \Gamma_{1}-3 \Gamma_{5} \tag{3.5}
\end{equation*}
$$

3.2. ASYMPTOTIC FORMULA FOR Γ_{1}

We shall find an asymptotic formula for the integral Γ_{1}. We have

$$
\begin{aligned}
& \Gamma_{1}=\sum_{d_{i} \mid P(z)} \lambda^{-}\left(d_{1}\right) \lambda^{+}\left(d_{2}\right) \lambda^{+}\left(d_{3}\right) \lambda^{+}\left(d_{4}\right) \sum_{x_{i} \equiv 0\left(d_{i}\right)} \theta(\eta \vec{x}) w(\vec{x}) \times \\
& \times \int_{0}^{1} e\left(\alpha\left(x_{1}^{2}+\cdots+x_{4}^{2}-N\right)\right) d \alpha \\
&=\sum_{d_{i} \mid P(z)} \lambda^{-}\left(d_{1}\right) \lambda^{+}\left(d_{2}\right) \lambda^{+}\left(d_{3}\right) \lambda^{+}\left(d_{4}\right) \times \\
& \times \int_{0}^{1} \prod_{1 \leq i \leq 4}\left(\sum_{x \equiv 0\left(d_{i}\right)} \theta(\eta x) w(x) e\left(\alpha x^{2}\right)\right) e(-N \alpha) d \alpha
\end{aligned}
$$

Let

$$
\begin{equation*}
S(\alpha, d, m)=\sum_{\substack{x \in \mathbb{Z} \\ x \equiv 0(d)}} w(x) e\left(\alpha x^{2}+m \eta x\right) \tag{3.6}
\end{equation*}
$$

Then using the Fourier series of $\theta(t)$ (see (3.1)), we find

$$
\sum_{x \equiv 0(d)} \theta(\eta x) w(x) e\left(\alpha\left(x^{2}\right)=\sum_{|m| \leq H} c(m) \sum_{x \equiv 0(d)} w(x) e\left(\alpha x^{2}+m \eta x\right)+O\left(P^{-A}\right) .\right.
$$

Denoting

$$
\begin{equation*}
S(\alpha, \vec{d}, \vec{m})=S\left(\alpha, d_{1}, m_{1}\right) S\left(\alpha, d_{2}, m_{2}\right) S\left(\alpha, d_{3}, m_{3}\right) S\left(\alpha, d_{4}, m_{4}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(\vec{d})=\lambda^{-}\left(d_{1}\right) \lambda^{+}\left(d_{2}\right) \lambda^{+}\left(d_{3}\right) \lambda^{+}\left(d_{4}\right) \tag{3.8}
\end{equation*}
$$

we find that

$$
\Gamma_{1}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{\mid m_{i} \leq \leq H \\ i=1,2,3,4}} c\left(m_{i}\right) \int_{0}^{1} S(\alpha, \vec{d}, \vec{m}) e(-N \alpha) d \alpha+O(1)
$$

We divide Γ_{1} into two parts:

$$
\Gamma_{1}=\Gamma_{1}^{0}+\Gamma_{1}^{*}+O(1)
$$

where

$$
\Gamma_{1}^{0}=c^{4}(0) \sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{x_{i} \equiv 0\left(d_{i}\right) \\ x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N}} w(\vec{x})
$$

and

$$
\begin{equation*}
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{0<m_{i} \leq \leq H \\ i=1,2,3,4}} c\left(m_{i}\right) \int_{0}^{1} S(\alpha, \vec{d}, \vec{m}) e(-N \alpha) d \alpha \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Gamma \geq 4 \Gamma_{1}^{0}-3 \Gamma_{5}^{0}+O\left(\Gamma_{1}^{*}\right)+O\left(\Gamma_{5}^{*}\right)+O(1) \tag{3.10}
\end{equation*}
$$

According to [1] and [9], for $D \leq P^{1 / 8-\varepsilon}, s=\frac{\log D}{\log z}=3.13$ the estimate

$$
\begin{equation*}
4 \Gamma_{1}^{0}-3 \Gamma_{5}^{0} \gg \frac{C \delta N}{(\log N)^{4}}+O\left(\delta P^{3 / 2+\varepsilon} D^{4}\right) \tag{3.11}
\end{equation*}
$$

with some constant C is obtained. Thus it suffices to evaluate Γ_{1}^{*} and Γ_{5}^{*}.

3.3. ESTIMATION OF Γ_{1}^{*}

In this subsection we find the upper bound for Γ_{1}^{*} defined in (3.9). The function in the integral in Γ_{1}^{*} is periodic with period 1 , so we can integrate over the interval \mathcal{I} defined as

$$
\mathcal{I}=\left(\frac{1}{1+[P]}, 1+\frac{1}{1+[P]}\right)
$$

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide the interval only into large arcs. Using the properties of the Farey fractions, we represent \mathcal{I} as an union of disjoint intervals in the following way:

$$
\mathcal{I}=\bigcup_{q \leq P} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathcal{L}(a, q)
$$

where

$$
\mathcal{L}(a, q)=\left(\frac{a}{q}-\frac{1}{q\left(q+q^{\prime}\right)}, \frac{a}{q}+\frac{1}{q\left(q+q^{\prime \prime}\right)}\right]
$$

and where the integers $q^{\prime}, q^{\prime \prime}$ are specified in (2.7). Then

$$
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{0<\left|m_{i}\right| \leq H \\ i=1,2,3,4}} c\left(m_{i}\right) \sum_{q \leq P} \sum_{\substack{a=1 \\(a, q)=1}}^{q} \int_{\mathcal{L}(a, q)} S(\alpha, \vec{d}, \vec{m}) e(-N \alpha) d \alpha
$$

We change variable of integration $\alpha=\frac{a}{q}+\beta$ to get

$$
\begin{aligned}
& \Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) \sum_{\substack{0<\left|m_{i}\right| \leq H \\
i=1,2,3,4}} c\left(m_{i}\right) \sum_{q \leq P} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} \times \\
& \times \int_{\mathcal{M}(a, q)} S\left(\frac{a}{q}+\beta, \vec{d}, \vec{m}\right) e\left(-N\left(\frac{a}{q}+\beta\right)\right) d \beta
\end{aligned}
$$

where

$$
\mathcal{M}(a, q)=\left(-\frac{1}{q\left(q+q^{\prime}\right)}, \frac{1}{q\left(q+q^{\prime \prime}\right)}\right]
$$

From (2.7) we find that

$$
\left[-\frac{1}{2 q P}, \frac{1}{2 q P}\right] \subset \mathcal{M}(a, q) \subset\left[-\frac{1}{q P}, \frac{1}{q P}\right]
$$

and hence

$$
\begin{equation*}
|\beta| \leq \frac{1}{q P} \quad \text { for } \quad \beta \in \mathcal{M}(a, q) \tag{3.12}
\end{equation*}
$$

Now we consider the sum $S\left(\alpha, d_{i}, m_{i}\right)$ defined in (3.6). As η is irrational number, $\|s \eta\| \neq 0$ for all $s \in \mathbb{Z}$. Using that fact and working as in the proof of $[9$, Lemma 12], we find that for $\beta \in \mathcal{M}(a, q)$ we have

$$
\begin{align*}
S\left(\frac{a}{q}+\beta, d_{i}, m_{i}\right)= & \frac{P}{d_{i} q} \sum_{\left|n-m_{i} d_{i} q \eta\right|<M_{i}} J\left(\beta P^{2},\left(m_{i} \eta-\frac{n}{d_{i} q}\right) P\right) G\left(q, a d_{i}^{2}, n\right)+ \\
& +O\left(P^{-B}\right) \tag{3.13}
\end{align*}
$$

where $G(q, m, n)$ and $J(\gamma, u)$ are defined respectively by (2.8) and (2.6), B is an arbitrarily large constant, $M_{i}=d_{i} P^{\varepsilon}, \varepsilon>0$ is arbitrarily small and the constant in the O-term depends only on B and ε. We leave the verification of the last formula to the reader.

Let

$$
F(P, \vec{d})=\sum_{\substack{0<\left|m_{i}\right| \leq H \\ i=1,2,3,4}} c\left(m_{i}\right) \sum_{q \leq P} \sum_{a(q)}^{*} e\left(-\frac{a N}{q}\right) \int_{\mathcal{M}(a, q)} S\left(\frac{a}{q}+\beta, \vec{d}, \vec{m}\right) e(-\beta N) d \beta
$$

It is obvious that

$$
\begin{equation*}
\Gamma_{1}^{*}=\sum_{d_{i} \mid P(z)} \lambda(\vec{d}) F(P, \vec{d}) \tag{3.14}
\end{equation*}
$$

Using (3.13) and Lemma 2.3 we get

$$
\begin{equation*}
F(P, \vec{d})=F^{*}(P, \vec{d})+O(1) \tag{3.15}
\end{equation*}
$$

where

$$
\begin{aligned}
F^{*}(P, \vec{d}) & =\frac{P^{4}}{d_{1} d_{2} d_{3} d_{4}} \sum_{\substack{0<\left|m_{i}\right| \leq H \\
1,2,3,4}} c\left(m_{i}\right) \sum_{q \leq P} \frac{1}{q^{4}} \sum_{a(q)}^{*} e\left(-\frac{a N}{q}\right) \times \\
& \times \sum_{\left|n_{i}-m_{i} d_{i} q \eta\right|<M_{i}} G\left(q, a d_{i}^{2}, \vec{n}\right) \int_{\mathcal{N}(a, q)} J\left(\beta P^{2},\left(\vec{m} \eta-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right) e(-\gamma) d \gamma
\end{aligned}
$$

Using Lemma 2.5 and working as in the proof of [14, Lemma 2] we find that

$$
\begin{equation*}
F^{*}(P, \vec{d})=F^{\prime}(P, \vec{d})+O\left(P^{3 / 2+\varepsilon}\right) \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& F^{\prime}(P, \vec{d})=\frac{P^{2}}{d_{1} d_{2} d_{3} d_{4}} \sum_{\substack{0<\left|m_{i}\right| \leq H \\
i=1,2,3,4}} c\left(m_{i}\right) \sum_{q \leq P} \frac{1}{q^{4}} \sum_{\substack{\left|n_{i}-m_{i} d_{i} q \eta\right|<M_{i} \\
\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} V_{q}(N, \vec{d}, 0, \vec{n}) \times \\
& \times \int_{|\gamma| \leq \frac{P}{2 q}} J\left(\gamma,\left(\vec{m} \eta-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right) e(-\gamma) d \gamma,
\end{aligned}
$$

and $V_{q}(N, \vec{d}, 0, \vec{n})$ is defined by (2.9). We represent the $\operatorname{sum} F^{\prime}(P, \vec{d})$ as

$$
\begin{equation*}
F^{\prime}(P, \vec{d})=F_{1}+F_{2} \tag{3.17}
\end{equation*}
$$

where F_{1} is the contribution of these addends with $q \leq Q$ and F_{2} for addends with $Q<q \leq P$. Here Q is parameter, which we choose later. Using Lemma 2.3 (2), Lemma 2.6 and (3.1), we get

$$
\begin{align*}
& F_{2} \ll \frac{P^{2} \delta^{4}}{d_{1} d_{2} d_{3} d_{4}} \sum_{\substack{0<\left|m_{i}\right| \leq H \\
i=1,2,3,4}} \sum_{Q<q \leq P} \frac{q^{5 / 2} \tau(q)(q, N)^{1 / 2}\left(q, d_{1}\right) \ldots\left(q, d_{4}\right)}{q^{4}} \times \tag{3.18}\\
& \times \sum_{\substack{n_{i}-m_{i} d_{i} q \eta\left|<M_{i} \\
\left(q, d_{i}\right)\right| n_{i}, i=1, \ldots, 4}} 1 .
\end{align*}
$$

It is clear that the sum over \vec{n} in the expression above is

$$
\begin{aligned}
& \ll \prod_{1 \leq i \leq 4} \sum_{\frac{-M_{i}+m_{i} d_{i} q \eta}{\left(q, i_{i}\right)}<t_{i}<\frac{M_{i}+m_{i} d_{i} q \eta}{\left(q, d_{i}\right)}} 1 \ll \frac{M_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)} \\
& \ll \frac{P^{\varepsilon} d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)},
\end{aligned}
$$

which, together with (3.18) and (3.2), gives

$$
F_{2} \ll P^{2+\varepsilon} \sum_{Q<q \leq P} \frac{\tau(q)(q, N)^{1 / 2}}{q^{3 / 2}}
$$

Now we apply Cauchy's inequality to get

$$
\begin{align*}
F_{2} & \ll P^{2+\varepsilon}\left(\sum_{Q<q \leq P} \frac{\tau^{2}(q)}{q}\right)^{\frac{1}{2}}\left(\sum_{Q<q \leq P} \frac{(q, N)}{q^{2}}\right)^{\frac{1}{2}} \\
& \ll P^{2+\varepsilon}\left(\sum_{\substack{t \mid N \\
t \leq P}} t \sum_{\substack{Q \\
t} q_{1} \leq \frac{P}{t}} \frac{1}{t^{2} q_{1}^{2}}\right)^{\frac{1}{2}} \ll \frac{P^{2+\varepsilon}}{Q^{1 / 2}} . \tag{3.19}
\end{align*}
$$

To evaluate F_{1} we firstly apply Lemma 2.4 to get

$$
\int_{|\gamma| \leq \frac{P}{2 q}}\left|J\left(\gamma,\left(m \vec{\eta}-\frac{\vec{n}}{\vec{d} q}\right) P\right)\right| d \gamma \ll\left(\left|\left(m \vec{\eta}-\frac{\vec{n}}{\vec{d} q}\right) P\right|\right)^{-1+\varepsilon} .
$$

Then using Lemma 2.6 and (3.2) we obtain

$$
\begin{align*}
F_{1} \ll \frac{P^{2}}{d_{1} d_{2} d_{3} d_{4}} & \sum_{q \leq Q} \frac{q^{5 / 2} \tau(q)(q, N)^{1 / 2}\left(q, d_{1}\right) \ldots\left(q, d_{4}\right)}{q^{4}} \times \\
& \times \sum_{\substack{\left|n_{i}-m_{i} d_{i} q \eta\right|<M_{i} \\
\left(q, d_{i}\right) \mid n_{i}, i=1, \ldots, 4}} \frac{1}{\left|\left(\vec{m} \eta-\frac{\vec{n}}{\overrightarrow{d q}}\right) P\right|} . \tag{3.20}
\end{align*}
$$

It is clear that if $n_{i}=\left(q, d_{i}\right) t_{i}, d_{i}=\left(q, d_{i}\right) d_{i}^{\prime}$ and

$$
\left|\left(m_{i} \eta-\frac{n_{i}}{d_{i} q}\right) P\right|=\frac{P\left(q, d_{i}\right)}{q d_{i}}\left|t_{i}-m_{i} d_{i}^{\prime} \eta q\right|
$$

then the sum over $\left(\vec{m} \eta-\frac{\vec{n}}{\overrightarrow{d q}}\right) P$ in the expression above is

$$
\begin{equation*}
\ll \frac{q}{P} \sum_{\left|t_{i}-m_{i} d_{i}^{\prime} q \eta\right|<\frac{M_{i}}{\left(q, d_{i}\right)}} \frac{1}{\max _{1 \leq i \leq 4}\left(q, d_{i}\right)\left|t_{i}-m_{i} d_{i}^{\prime} \eta q\right| / d_{i}} . \tag{3.21}
\end{equation*}
$$

Let t_{1}^{o} is such that

$$
\left|t_{1}^{o}-m_{1} d_{1}^{\prime} \eta q\right|=\left\|-m_{1} d_{1}^{\prime} \eta q\right\|=\left\|m_{1} d_{1}^{\prime} \eta q\right\|
$$

As η is quadratic irrational number, then $\left\|m_{1} d_{1}^{\prime} \eta q\right\| \neq 0$ and for $t_{1} \neq t_{1}^{o}$ we have $\left|t_{1}-m_{1} d_{1}^{\prime} \eta q\right| \geq 1 / 2$. Hence

$$
\max _{1 \leq i \leq 4} \frac{\left(q, d_{i}\right)\left|t_{i}-m_{i} d_{i}^{\prime} \eta q\right|}{d_{1}} \gg \frac{\left(q, d_{1}\right)}{d_{1}}
$$

which, together with (3.21), gives

$$
\begin{align*}
& \frac{q}{P} \sum_{\left|t_{i}-m_{i} d_{i}^{\prime} q \eta\right|<\frac{M_{i}}{\left(q, d_{i}\right)}} \frac{1}{\max _{1 \leq i \leq 4}\left(q, d_{i}\right)\left|t_{i}-m_{i} d_{i}^{\prime} \eta q\right| / d_{i}} \\
& \\
& \ll \frac{q}{P}\left(\frac{d_{1} M_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)}+\frac{d_{1} M_{2} M_{3} M_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right) \| m_{1} d_{1}^{\prime} \eta q| |}\right) \tag{3.22}\\
& \\
& \ll \frac{q P^{\varepsilon-1} D d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)}+\frac{q P^{\varepsilon-1} d_{1} d_{2} d_{3} d_{4}}{\left(q, d_{1}\right)\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)\left\|m_{1} d_{1}^{\prime} \eta q\right\|} .
\end{align*}
$$

As η is quadratic irrationality, it has periodic continued fraction and if $\frac{a_{n}}{b_{n}}, n \in \mathbb{N}$ is the n-th convergent, then $b_{n} \leq c^{n}$ for some constant $c>0$. Using that $\left\|m_{1} d_{1}^{\prime} q\right\| \leq \frac{H D Q}{\left(d_{1}, q\right)}$ and Liouville's inequality for quadratic numbers (see Lemma 2.7), we can find convergent $\frac{a}{b}$ to η with denominator such that

$$
\begin{equation*}
\frac{3 H D Q}{\left(d_{1}, q\right)}<b<_{c} \frac{H D Q}{\left(d_{1}, q\right)} \tag{3.23}
\end{equation*}
$$

Since $(a, b)=1$ we have that $m_{1} d_{1}^{\prime} q \frac{a}{b} \notin \mathbb{Z}$. As $\left|\eta-\frac{a}{b}\right|<\frac{1}{b^{2}}$ and (3.23) we get

$$
\begin{aligned}
\left\|m_{1} d_{1}^{\prime} q \eta\right\| & \geq\left\|m_{1} d_{1}^{\prime} q \frac{a}{b}\right\|-\left\|m_{1} d_{1}^{\prime} q\left(\eta-\frac{a}{b}\right)\right\| \geq\left\|m_{1} d_{1}^{\prime} q \frac{a}{b}\right\|-\frac{\left|m_{1}\right| d_{1}^{\prime} q}{b^{2}} \\
& >\frac{1}{b}-\frac{\left|m_{1}\right| d_{1}^{\prime} q\left(d_{1}, q\right)}{3 b H D Q} \geq \frac{1}{b}-\frac{\left|m_{1}\right| d_{1} q}{3 b H D Q} \\
& >\frac{1}{b}-\frac{\left|m_{1}\right|}{3 b H} \geq \frac{1}{b}-\frac{1}{3 b}=\frac{2}{3 b} \\
& \gg \frac{\left(d_{1}, q\right)}{H D Q} .
\end{aligned}
$$

From (3.21) and (3.22) it follows that

$$
\sum_{\substack{n_{i}-m_{i} d_{i} q \eta\left|<M_{i} \\\left(q, d_{i}\right)\right| n_{i}, i=1, \ldots, 4}} \frac{1}{\left|\left(\vec{m} \eta-\frac{\vec{n}}{\vec{d} q}\right) P\right|} \ll \frac{q P^{\varepsilon-1} d_{1} d_{2} d_{3} d_{4} H D Q}{\left(q, d_{1}\right)^{2}\left(q, d_{2}\right)\left(q, d_{3}\right)\left(q, d_{4}\right)} .
$$

Then for $F_{1}($ see $(3.20))$ we obtain

$$
\begin{equation*}
F_{1} \ll \frac{P^{1+\varepsilon} D Q}{\delta} \sum_{q \leq Q} \frac{\tau(q)(q, N)^{1 / 2}}{q^{1 / 2}} \tag{3.24}
\end{equation*}
$$

Applying Cauchy's inequality we get

$$
\begin{align*}
F_{1} & \ll \frac{P^{1+\varepsilon} D Q}{\delta}\left(\sum_{q \leq Q} \tau^{2}(q)\right)^{\frac{1}{2}}\left(\sum_{q \leq Q} \frac{(q, N)}{q}\right)^{\frac{1}{2}} \\
& \ll \frac{P^{1+\varepsilon} D Q}{\delta} \cdot Q^{1 / 2}(\log Q)^{3 / 2}\left(\sum_{\substack{t \mid N \\
t \leq Q}} \sum_{q_{1} \leq \frac{Q}{t}} \frac{1}{q_{1}}\right)^{\frac{1}{2}} \\
& \ll \frac{P^{1+\varepsilon} D Q^{3 / 2}}{\delta} \tag{3.25}
\end{align*}
$$

We choose $Q=\delta^{1 / 2} P^{1 / 2} D^{-1 / 2}$. Then

$$
F_{1}, F_{2} \ll P^{7 / 4+\varepsilon} \delta^{-1 / 4} D^{1 / 4}
$$

From (3.14), (3.15), (3.16), (3.17) it follows that

$$
\Gamma_{1}^{*} \ll D^{17 / 4} P^{7 / 4+\varepsilon} \delta^{-1 / 4}
$$

The estimate of Γ_{5}^{*} goes along the same lines.

3.4. END OF THE PROOF OF THEOREM 1.1

From (3.10) and (3.11) we get

$$
\Gamma \gg \frac{\delta N}{(\log N)^{4}}+D^{17 / 4} P^{7 / 4+\varepsilon} \delta^{-1 / 4}
$$

Then for a fixed small $\varepsilon>0, \lambda<\frac{1-8 \varepsilon}{10}, D<N^{\frac{1-10 \lambda-8 \varepsilon}{34}}$ and $z=D^{1 / 3,13}$ we get $\Gamma \gg \frac{\delta N}{(\log N)^{4}}$. So the equation (1.1) have solutions in almost-prime numbers $x_{1}, \ldots, x_{4} \in \mathcal{P}_{k}, k=\left[\frac{53,21}{1-10 \lambda-8 \varepsilon}\right]$ such that $\left\{\eta x_{i}\right\}<N^{-\lambda}, i=1,2,3,4$.

ACKNOWLEDGEMENTS. The authors thank Professor Doychin Tolev for his helpful comments and suggestions. Zhivko Petrov was partially supported by the Sofia University Research Fund through Grant 80-10-43/2020. Tatiana Todorova was partially supported by the Sofia University Research Fund through Grant 80-10-151/2020.
[1] Brüdern, J. and Fouvry, E.: Lagrange's Four Squares Theorem with almost prime variables. J. Reine Angew. Math. 454 (1994), 59-96.
[2] Ching, Tak Wing: Lagrange's equation with almost-prime variables. J. Number Theory 212 (2020), 233-264.
[3] Greaves, G.: Sieves in number theory, Springer, 2001.
[4] Gritsenko, S. A. and Mot'kina, N. N.: Hua Loo Keng's problem involving primes of a special type. IAP Tajikistan 52(7) (2009), 497-500.
[5] Gritsenko, S. A. and Mot'kina, N. N.: On the solvability of Waring's equation involving natural numbers of a special type. Chebyshevskii Sb. 17(1), (2016), 37-51.
[6] Gritsenko, S. A. and Mot'kina, N. N.: Representation of natural numbers by sums of four squares of integers having a special form. J. Math. Sci. 173(2) (2011), 194-200.
[7] Gritsenko, S. A. and Mot'kina, N. N.: Waring's problem involving natural numbers of a special type. Chebyshevskii Sb. 15 (3), (2014), 31-47.
[8] Hardy, G. H. and Wright, E. M.: An introduction to the theory of numbers, 5-th ed., Oxford Univ. Press, 1979.
[9] Heath-Brown, D. R. and Tolev, D. I.: Lagrange's four squares theorem with one prime and three almost-prime variables. J. Reine Angew. Math. 558 (2003), 159-224.
[10] Karatsuba, A. A.: Basic analytic number theory, Springer, 1993.
[11] Schidt, M. W.: Diophantine approximation, Springer, 1980.
[12] Shutov, A. V.: On the additive problem with fractional numbers. BSUSB Series "Mathematics. Physics" 305 (148) (2013), 11-120.
[13] Shutov, A. V. and Zhukova, A. A.: Binary additive problem with numbers of a special type. Chebyshevskii Sb. 16 (3) (2015), 246-275.
[14] Todorova, T. L. and Tolev, D. I.: On the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N$ with variables such that $x_{1} x_{2} x_{3} x_{4}+1$ is an almost-prime. Tatra Mountains Math. Publications 59. I (2014), 1-26.
[15] Tolev, D. I.: Additive problems in number theory. Doctoral Dissertation, Moscow University "M. Lomonosov", Moscow, 2001, (in Russian).

[^0]
[^0]: Zhivko H. Petrov and Tatyana L. Todorova
 Faculty of Mathematics and Informatics
 Sofia University "St. Kliment Ohridski"
 5 James Bourchier Blvd.
 1164 Sofia
 BULGARIA
 E-mails: $\begin{aligned} & \text { zhpetrov@fmi.uni-sofia.bg } \\ & \text { tlt@fmi.uni-sofia.bg }\end{aligned}$

