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1. INTRODUCTION AND STATEMENT OF THE RESULT

In 1770 Lagrange proved that for any positive integer N the equation

x21 + x22 + x23 + x24 = N (1.1)

has a solution in integer numbers x1, . . . , x4. Later Jacobi found an exact formula
for the number of the solutions (see [8, Ch. 20]). A lot of researchers studied the
equation (1.1) for solvability in integers satisfying additional conditions. There is
a hypothesis stating that if N is sufficiently large and N ≡ 4 (mod 24) then (1.1)
has a solution in primes. This hypothesis has not been proved so far, but several
approximations to it have been established.
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In 1994 J. Brüdern and E. Fouvry [1] proved that for any largeN ≡ 4 (mod 24),
the equation (1.1) has a solution in x1, . . . , x4 ∈ P34. (We say that integer n is
an almost-prime of order r if n has at most r prime factors, counted with their
multiplicities. We denote by Pr the set of all almost-primes of order r.) This
result was improved by D. R. Heath-Brown and D. I. Tolev [9]. They showed that,
under the same restrictions for N , the equation (1.1) has a solution in prime x1 and
almost-prime x2, x3, x4 ∈ P101. In their paper they also proved that the equation
has a solution in x1, . . . , x4 ∈ P25. In 2020 Tak Wing Ching [2] improved this result
with three of them being in P3 and the other in P4.

On the other hand, let us consider a subset of the set of integers having the
form

A = {n | a < {ηn} < b},

where η is a fixed quadratic irrational number, and a, b ∈ [0, 1].

Denote by I(N) the number of solutions of (1.1) in arbitrary integers and by
J(N) the number of solutions of (1.1) in integers from the set A.

In 2011 S. A. Gritsenko and N. N. Motkina [6] proved that for any positive
small ε, the following formula holds

J(N) = (b− a)4I(N) +O
(
N0,9+3ε

)
.

S. A. Gritsenko and N. N. Motkina consider many others additive problem in
witch variables are in special set of numbers similar to A. (See [4] – [5] and [7].)
In 2013 A. V. Shutov [12] considered solvability of diophantine equation in integer
numbers from A. Further research in this area was made by A. V. Shutov and A.
A. Zhukova [13].

We consider the equation (1.1), where xi are almost-prime numbers and belong
to a set similar to A. Our result is

Theorem 1.1. Let η be a quadratic irrational number, 0 < λ < 1
10 and

k =
[

54
1−10λ

]
. Then for every sufficiently large integer N , the equation (1.1) has

a solution in almost-prime numbers x1, . . . , x4 ∈ Pk, such that {ηxi} < N−λ, i =
1, 2, 3, 4.

In the present paper we use the following notations.

We denote by N a sufficiently large odd integer and P = N
1
2 . Letters a, b,

k, l, m, n, q, p always stand for integers. By (n1, . . . , nk) we denote the greatest
common divisor of n1, . . . , nk. Let ||t|| denote the distance from t to the nearest
integer. We denote by ~n four dimensional vectors and let

|~n| = max(|n1|, . . . , |n4|). (1.2)

As usual, µ(q) is the Möbius function and τ(q) is the number of positive divisors
of q. Sometimes we write a ≡ b (q) as an abbreviation of a ≡ b (mod q).
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We write
∑
x (q)

for a sum over a complete system of residues modulo q and

respectively
∑
x (q)

∗
is a sum over a reduced system of residues modulo q. We also

denote e(t) = e2πit.

We use Vinogradov’s notation A� B, which is equivalent to A = O(B). By ε
we denote an arbitrarily small positive number, which is not the same in different
occurrences. The constants in the O-terms and �-symbols are absolute or depend
on ε.

2. AUXILIARY RESULTS

Now we introduce some lemmas, which shall be used later.

Lemma 2.1. Suppose that D ∈ R, D > 4. There exist arithmetical functions
λ±(d) (called Rosser’s functions of level D) with the following properties:

1. For any positive integer d we have

|λ±(d)| ≤ 1, λ±(d) = 0 if d > D or µ(d) = 0.

2. If n ∈ N then ∑
d|n

λ−(d) ≤
∑
d|n

µ(d) ≤
∑
d|n

λ+(d).

3. If z ∈ R is such that z2 ≤ D and if

P (z)=
∏

2<p<z

p, B=
∏

2<p<z

(
1− 1

p− 1

)
, N±=

∑
d|P (z)

λ±(d)

ϕ(d)
, s0 =

logD

log z
, (2.1)

then we have

B ≤ N+ ≤ B
(
F (s0) +O

(
(logD)−

1
3

))
, (2.2)

B ≥ N− ≥ B
(
f(s0) +O

(
(logD)−

1
3

))
, (2.3)

where F (s) and f(s) satisfy

F (s) = 2eγs−1, if 2 ≤ s ≤ 3,

f(s) = 2eγs−1 log(s− 1), if 2 ≤ s ≤ 3,

(sF (s))′ = f(s− 1), if s > 3,

(sf(s))′ = F (s− 1), if s > 2.

Here γ is Euler’s constant.
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Proof. See Greaves [3, Chapter 4]. �

Lemma 2.2. Suppose that Λi,Λ
±
i are real numbers satisfying Λi = 0 or 1,

Λ−i ≤ Λi ≤ Λ+
i , i = 1, 2, 3, 4. Then

Λ1Λ2Λ3Λ4 ≥Λ−1 Λ+
2 Λ+

3 Λ+
4 + Λ+

1 Λ−2 Λ+
3 Λ+

4 + Λ+
1 Λ+

2 Λ−3 Λ+
4 +

+ Λ+
1 Λ+

2 Λ+
3 Λ−4 − 3Λ+

1 Λ+
2 Λ+

3 Λ+
4 . (2.4)

Proof. The proof is similar to the proof of [1, Lemma 13]. �

Let

w0(t) =

{
e

1

t2− 16
25 if t ∈

(
− 4

5 ,
4
5

)
,

0 if t 6∈
(
− 4

5 ,
4
5

)
and

w(x) = w0

(
x

P
− 1

2

)
. (2.5)

Lemma 2.3. Let u, β ∈ R and

J(β, u) =

∫ +∞

−∞
w0

(
x− 1

2

)
e(βx2 + ux)dx. (2.6)

Then:

1. For every k ∈ N and u 6= 0 we have

J(β, u)�k
1 + |β|k

|u|k
.

2. The following inequality hold

J(β, u)� min
(

1, |β|− 1
2

)
.

Proof. See [9, Lemma 9]. �

Lemma 2.4. Suppose that ~u ∈ Z4 and

J (β, ~u) =

4∏
i=1

J(β, ui).

Then we have ∫ +∞

−∞
|J (β, ~u)| dγ � |~u|−1+ε .
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Proof. Proof can be find in [9, Lemma 10]. �

Lemma 2.5. There exists a function σ(υ, q, γ) defined for − q2 < υ ≤ q
2 , q ≤ P ,

|γ| ≤ P
q , integrable with respect to γ, satisfying

|σ(υ, q, γ)| ≤ 1

1 + |υ|

and also for every a ∈ Z, (a, q) = 1 we have

∑
− q2<υ≤

q
2

e

(
aυ

q

)
σ(υ, q, γ) =

{
1 if γ ∈ N (a, q),

0 otherwise,

where

N (a, q) =

(
− P 2

q(q + q′)
,

P 2

q(q + q′′)

]
and

P < q + q′, q + q′′ ≤ P + q, aq′ ≡ 1(modq), aq′′ ≡ −1(modq). (2.7)

Proof. See [15, Lemma 45]. �

For q ∈ N and m,n ∈ Z, the Gauss sum is defined by

G(q,m, n) =
∑
x(q)

e

(
mx2 + nx

q

)
. (2.8)

For ~d = 〈d1, . . . , d4〉 ∈ Z4 and ~n = 〈n1, . . . , n4〉 ∈ Z4 we denote

G(q, a ~d2, ~n) =

4∏
i=1

G(q, ad2i , ni).

We need to estimate an exponential sum of the form

Vq = Vq(N, ~d, υ, ~n) =
∑
a(q)

∗
e

(
aυ −Na

q

)
G(q, a ~d2, ~n). (2.9)

To estimate Vq we use the properties of the Gauss sum and the Kloosterman sum.

Lemma 2.6. Suppose that N, q ∈ N, v ∈ Z and ~d, ~n ∈ Z4. Then we have

Vq(N, ~d, υ, ~n)� q
5
2 τ(q)(q,N)

1
2 (q, d1)(q, d2)(q, d3)(q, d4).

Moreover, if some of the conditions

(q, di)|ni, i = 1, . . . , 4

do not hold, then Vq(N, ~d, υ, ~n) = 0.
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Proof. This result is analogous to this one in [1, Lemma 1]. �

Lemma 2.7. (Liouville) If η is an irrational number which is the root of a
polynomial f of degree 2 with integer coefficients, then there exists a real number
A > 0 such that, for all integers p, q, with q > 0,∣∣∣∣η − p

q

∣∣∣∣ ≥ A

q2
.

Proof. See [11, Theorem 1A]. �

3. PROOF OF THE THEOREM

3.1. BEGINNING OF THE PROOF

Let N be a sufficiently large integer. We denote

z = Nα, P (z) =
∏
p<z

p, δ = N−λ.

We apply the well-known Vinogradov’s “little cups” lemma (see [10, Chapter 1,
Lemma A]) with parameters

α1 =
δ

4
, β1 =

3δ

4
, ∆ =

δ

2
, r = [logN ]

and construct a function θ(t) which is periodic with period 1 and has the following
properties:

θ

(
δ

2

)
= 1; 0 < θ(t) < 1 for 0 < t <

δ

2
or

δ

2
< t < δ;

θ(t) = 0 for δ ≤ t ≤ 1.

Furthermore, from the Fourier series of θ(t) we find

θ(t) =
δ

2
+

∑
0<|m|≤H
m6=0

c(m) e(mt) +O(P−A), (3.1)

with

|c(m)| ≤ min

(
δ

2
,

1

|m|

(
[logN ]

δπ|m|

)[logN ]
)
,
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where A is arbitrary large constant and

H =
[logN ]2

δ
. (3.2)

Let us denote
θ(η~x) = θ(ηx1)θ(ηx2)θ(ηx3)θ(ηx4)

and
w(~x) = w(x1)w(x2)w(x3)w(x4).

We consider the sum

Γ =
∑

x2
1+x

2
2+x

2
3+x

2
4=N

(xi,P (z))=1, i=1,2,3,4

θ(η~x)w(~x).

From the condition (xi, P (z)) = 1 it follows that any prime factor of xi is
greater than or equal to z. Suppose that xi has l prime factors, counted with their
multiplicities. Then we have

N
1
2 ≥ xi ≥ zl = Nαl

and hence l ≤ 1
2α . This implies that if Γ > 0 then equation (1.1) has a solution

in almost-prime numbers x1, . . . , x4 with at most
[

1
2α

]
prime factors, such that

{ηxi} < N−λ, i = 1, . . . , 4.

For i = 1, 2, 3, 4 we define

Λi =
∑

d|(xi,P (z))

µ(d) =

{
1 if (xi, P (z)) = 1,

0 otherwise.
(3.3)

Then we find that

Γ =
∑

x2
1+x

2
2+x

2
3+x

2
4=N

Λ1Λ2Λ3Λ4θ(η~x)w(~x).

We can write Γ as

Γ =
∑
xi∈Z

Λ1Λ2Λ3Λ4θ(η~x)w(~x)

∫ 1

0

e(α(x21 + x22 + x23 + x24 −N)) dα.

Suppose that λ±(d) are the Rosser functions of level D (see Lemma 2.1). Let
also denote

Λ±i =
∑

d|(xi,P (z))

λ±(d), i = 1, 2, 3, 4. (3.4)

Then from Lemma 2.1, (3.3) and (3.4) we find that

Λ−i ≤ Λi ≤ Λ+
i .
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We use Lemma 2.2 and find that

Γ ≥ Γ1 + Γ2 + Γ3 + Γ4 − 3Γ5,

where Γ1, . . . ,Γ5 are the contributions coming from the consecutive terms of the
right side of (2.4). We have Γ1 = Γ2 = Γ3 = Γ4 and

Γ1 =
∑
xi∈Z

Λ−1 Λ+
2 Λ+

3 Λ+
4 θ(η~x)w(~x)

∫ 1

0

e(α(x21 + x22 + x23 + x24 −N))dα,

Γ5 =
∑
xi∈Z

Λ+
1 Λ+

2 Λ+
3 Λ+

4 θ(η~x)w(~x)

∫ 1

0

e(α(x21 + x22 + x23 + x24 −N))dα.

Hence, we get
Γ ≥ 4Γ1 − 3Γ5. (3.5)

3.2. ASYMPTOTIC FORMULA FOR Γ1

We shall find an asymptotic formula for the integral Γ1. We have

Γ1 =
∑

di|P (z)

λ−(d1)λ+(d2)λ+(d3)λ+(d4)
∑

xi≡0(di)

θ(η~x)w(~x)×

×
∫ 1

0

e(α(x21 + · · ·+ x24 −N))dα

=
∑

di|P (z)

λ−(d1)λ+(d2)λ+(d3)λ+(d4)×

×
∫ 1

0

∏
1≤i≤4

( ∑
x≡0(di)

θ(ηx)w(x)e(αx2)

)
e(−Nα)dα.

Let
S(α, d,m) =

∑
x∈Z

x≡0(d)

w(x)e(αx2 +mηx) . (3.6)

Then using the Fourier series of θ(t) (see (3.1)), we find∑
x≡0(d)

θ(ηx)w(x)e(α(x2) =
∑
|m|≤H

c(m)
∑

x≡0(d)

w(x)e(αx2 +mηx) +O
(
P−A

)
.

Denoting

S(α, ~d, ~m) = S(α, d1,m1)S(α, d2,m2)S(α, d3,m3)S(α, d4,m4) (3.7)

and
λ(~d) = λ−(d1)λ+(d2)λ+(d3)λ+(d4) , (3.8)
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we find that

Γ1 =
∑

di|P (z)

λ(~d)
∑
|mi|≤H
i=1,2,3,4

c(mi)

∫ 1

0

S(α, ~d, ~m)e(−Nα)dα+O(1).

We divide Γ1 into two parts:

Γ1 = Γ0
1 + Γ∗1 +O(1),

where
Γ0
1 = c4(0)

∑
di|P (z)

λ(~d)
∑

xi≡0(di)
x2
1+x

2
2+x

2
3+x

2
4=N

w(~x)

and

Γ∗1 =
∑

di|P (z)

λ(~d)
∑

0<|mi|≤H
i=1,2,3,4

c(mi)

∫ 1

0

S(α, ~d, ~m)e(−Nα) dα . (3.9)

Hence
Γ ≥ 4Γ0

1 − 3Γ0
5 +O

(
Γ∗1
)

+O
(
Γ∗5
)

+O(1). (3.10)

According to [1] and [9], for D ≤ P 1/8−ε, s =
logD

log z
= 3.13 the estimate

4Γ0
1 − 3Γ0

5 �
CδN

(logN)4
+O

(
δP 3/2+εD4

)
(3.11)

with some constant C is obtained. Thus it suffices to evaluate Γ∗1 and Γ∗5.

3.3. ESTIMATION OF Γ∗1

In this subsection we find the upper bound for Γ∗1 defined in (3.9). The function
in the integral in Γ∗1 is periodic with period 1, so we can integrate over the interval
I defined as

I =

(
1

1 + [P ]
, 1 +

1

1 + [P ]

)
.

We apply the Kloosterman form of the Hardy-Littlewood circle method. We divide
the interval only into large arcs. Using the properties of the Farey fractions, we
represent I as an union of disjoint intervals in the following way:

I =
⋃
q≤P

q⋃
a=1

(a,q)=1

L(a, q),

where

L(a, q) =

(
a

q
− 1

q(q + q′)
,
a

q
+

1

q(q + q′′)

]

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 15–29. 23



and where the integers q′, q′′ are specified in (2.7). Then

Γ∗1 =
∑

di|P (z)

λ(~d)
∑

0<|mi|≤H
i=1,2,3,4

c(mi)
∑
q≤P

q∑
a=1

(a,q)=1

∫
L(a,q)

S(α, ~d, ~m)e(−Nα) dα.

We change variable of integration α =
a

q
+ β to get

Γ∗1 =
∑

di|P (z)

λ(~d)
∑

0<|mi|≤H
i=1,2,3,4

c(mi)
∑
q≤P

q∑
a=1

(a,q)=1

×

×
∫
M(a,q)

S

(
a

q
+ β, ~d, ~m

)
e

(
−N

(
a

q
+ β

))
dβ,

where

M(a, q) =

(
− 1

q(q + q′)
,

1

q(q + q′′)

]
.

From (2.7) we find that[
− 1

2qP
,

1

2qP

]
⊂M(a, q) ⊂

[
− 1

qP
,

1

qP

]
and hence

|β| ≤ 1

qP
for β ∈M(a, q). (3.12)

Now we consider the sum S(α, di, mi) defined in (3.6). As η is irrational
number, ||sη|| 6= 0 for all s ∈ Z. Using that fact and working as in the proof of [9,
Lemma 12], we find that for β ∈M(a, q) we have

S

(
a

q
+ β, di,mi

)
=

P

diq

∑
|n−midiqη|<Mi

J

(
βP 2,

(
miη −

n

diq

)
P

)
G(q, ad2i , n)+

+O(P−B), (3.13)

where G(q,m, n) and J(γ, u) are defined respectively by (2.8) and (2.6), B is an
arbitrarily large constant, Mi = diP

ε, ε > 0 is arbitrarily small and the constant in
the O-term depends only on B and ε. We leave the verification of the last formula
to the reader.

Let

F (P, ~d) =
∑

0<|mi|≤H
i=1,2,3,4

c(mi)
∑
q≤P

∑
a (q)

∗
e

(
− aN

q

)∫
M(a,q)

S

(
a

q
+ β, ~d, ~m

)
e(−βN)dβ.

It is obvious that
Γ∗1 =

∑
di|P (z)

λ(~d)F (P, ~d) . (3.14)
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Using (3.13) and Lemma 2.3 we get

F (P, ~d) = F ∗(P, ~d) +O(1) , (3.15)

where

F ∗(P, ~d) =
P 4

d1d2d3d4

∑
0<|mi|≤H

1,2,3,4

c(mi)
∑
q≤P

1

q4

∑
a (q)

∗
e

(
− aN

q

)
×

×
∑

|ni−midiqη|<Mi

G(q, ad2i , ~n)

∫
N (a,q)

J

(
βP 2,

(
~mη − ~n

~dq

)
P

)
e(−γ)dγ.

Using Lemma 2.5 and working as in the proof of [14, Lemma 2] we find that

F ∗(P, ~d) = F
′
(P, ~d) +O

(
P 3/2+ε

)
, (3.16)

where

F
′
(P, ~d) =

P 2

d1d2d3d4

∑
0<|mi|≤H
i=1,2,3,4

c(mi)
∑
q≤P

1

q4

∑
|ni−midiqη|<Mi
(q, di)|ni, i=1,...,4

Vq(N, ~d, 0, ~n)×

×
∫
|γ|≤ P

2q

J

(
γ,
(
~mη − ~n

~dq

)
P

)
e(−γ)dγ,

and Vq(N, ~d, 0, ~n) is defined by (2.9). We represent the sum F
′
(P, ~d) as

F
′
(P, ~d) = F1 + F2 , (3.17)

where F1 is the contribution of these addends with q ≤ Q and F2 for addends with
Q < q ≤ P . Here Q is parameter, which we choose later. Using Lemma 2.3 (2),
Lemma 2.6 and (3.1), we get

F2 �
P 2δ4

d1d2d3d4

∑
0<|mi|≤H
i=1,2,3,4

∑
Q<q≤P

q5/2τ(q)(q, N)1/2(q, d1)...(q, d4)

q4
×

×
∑

|ni−midiqη|<Mi
(q, di)|ni, i=1,...,4

1.
(3.18)

It is clear that the sum over ~n in the expression above is

�
∏

1≤i≤4

∑
−Mi+midiqη

(q, di)
<ti<

Mi+midiqη

(q, di)

1� M1M2M3M4

(q, d1)(q, d2)(q, d3)(q, d4)

� P εd1d2d3d4
(q, d1)(q, d2)(q, d3)(q, d4)

,
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which, together with (3.18) and (3.2), gives

F2 � P 2+ε
∑

Q<q≤P

τ(q)(q, N)1/2

q3/2
.

Now we apply Cauchy’s inequality to get

F2 � P 2+ε

( ∑
Q<q≤P

τ2(q)

q

) 1
2
( ∑
Q<q≤P

(q,N)

q2

) 1
2

� P 2+ε

(∑
t|N
t≤P

t
∑

Q
t <q1≤

P
t

1

t2q21

) 1
2

� P 2+ε

Q1/2
.

(3.19)

To evaluate F1 we firstly apply Lemma 2.4 to get∫
|γ|≤ P

2q

∣∣∣∣J (γ, (m~η − ~n

~dq

)
P

)∣∣∣∣ dγ � (∣∣(m~η − ~n

~dq

)
P
∣∣)−1+ε .

Then using Lemma 2.6 and (3.2) we obtain

F1 �
P 2

d1d2d3d4

∑
q≤Q

q5/2τ(q)(q, N)1/2(q, d1)...(q, d4)

q4
×

×
∑

|ni−midiqη|<Mi
(q, di)|ni, i=1,...,4

1∣∣(~mη − ~n
~dq

)P
∣∣ . (3.20)

It is clear that if ni = (q, di)ti, di = (q, di)d
′
i and

∣∣(miη −
ni
diq

)P
∣∣ =

P (q, di)

qdi
|ti −mid

′
iηq| ,

then the sum over (~mη − ~n
~dq

)P in the expression above is

� q

P

∑
|ti−mid′iqη|<

Mi
(q, di)

1

max
1≤i≤4

(q, di)|ti −mid′iηq|/di
. (3.21)

Let to1 is such that

|to1 −m1d
′
1ηq| = || −m1d

′
1ηq|| = ||m1d

′
1ηq|| .

As η is quadratic irrational number, then ||m1d
′
1ηq|| 6= 0 and for t1 6= to1 we have

|t1 −m1d
′
1ηq| ≥ 1/2. Hence

max
1≤i≤4

(q, di)|ti −mid
′
iηq|

d1
� (q, d1)

d1
,
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which, together with (3.21), gives

q

P

∑
|ti−mid′iqη|<

Mi
(q, di)

1

max
1≤i≤4

(q, di)|ti −mid′iηq|/di

� q

P

(
d1M1M2M3M4

(q, d1)2(q, d2)(q, d3)(q, d4)
+

d1M2M3M4

(q, d1)(q, d2)(q, d3)(q, d4)||m1d′1ηq||

)
� qP ε−1Dd1d2d3d4

(q, d1)2(q, d2)(q, d3)(q, d4)
+

qP ε−1d1d2d3d4
(q, d1)(q, d2)(q, d3)(q, d4)||m1d′1ηq||

. (3.22)

As η is quadratic irrationality, it has periodic continued fraction and if
an
bn
, n ∈ N

is the n-th convergent, then bn ≤ cn for some constant c > 0. Using that

||m1d
′
1q|| ≤

HDQ

(d1, q)
and Liouville’s inequality for quadratic numbers (see Lemma 2.7),

we can find convergent
a

b
to η with denominator such that

3HDQ

(d1, q)
< b�c

HDQ

(d1, q)
. (3.23)

Since (a, b) = 1 we have that m1d
′
1q
a

b
6∈ Z. As

∣∣∣∣η − a

b

∣∣∣∣ < 1

b2
and (3.23) we get

||m1d
′
1qη|| ≥

∣∣∣∣∣∣∣∣m1d
′
1q
a

b

∣∣∣∣∣∣∣∣− ∣∣∣∣∣∣∣∣m1d
′
1q

(
η − a

b

)∣∣∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣m1d
′
1q
a

b

∣∣∣∣∣∣∣∣− |m1|d′1q
b2

>
1

b
− |m1|d′1q(d1, q)

3bHDQ
≥ 1

b
− |m1|d1q

3bHDQ

>
1

b
− |m1|

3bH
≥ 1

b
− 1

3b
=

2

3b

� (d1, q)

HDQ
.

From (3.21) and (3.22) it follows that

∑
|ni−midiqη|<Mi
(q, di)|ni, i=1,...,4

1∣∣(~mη − ~n
~dq

)P
∣∣ � qP ε−1d1d2d3d4HDQ

(q, d1)2(q, d2)(q, d3)(q, d4)
.

Then for F1 (see (3.20)) we obtain

F1 �
P 1+εDQ

δ

∑
q≤Q

τ(q)(q, N)1/2

q1/2
. (3.24)
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Applying Cauchy’s inequality we get

F1 �
P 1+εDQ

δ

∑
q≤Q

τ2(q)

 1
2
∑
q≤Q

(q,N)

q

 1
2

� P 1+εDQ

δ
·Q1/2(logQ)3/2

∑
t|N
t≤Q

∑
q1≤Qt

1

q1


1
2

� P 1+εDQ3/2

δ
. (3.25)

We choose Q = δ1/2P 1/2D−1/2. Then

F1, F2 � P 7/4+εδ−1/4D1/4 .

From (3.14), (3.15), (3.16), (3.17) it follows that

Γ∗1 � D17/4P 7/4+εδ−1/4 .

The estimate of Γ∗5 goes along the same lines.

3.4. END OF THE PROOF OF THEOREM 1.1

From (3.10) and (3.11) we get

Γ� δN

(logN)4
+D17/4P 7/4+εδ−1/4 .

Then for a fixed small ε > 0, λ < 1−8ε
10 , D < N

1−10λ−8ε
34 and z = D1/3,13 we

get Γ � δN
(logN)4 . So the equation (1.1) have solutions in almost-prime numbers

x1, . . . , x4 ∈ Pk, k =
[

53,21
1−10λ−8ε

]
such that {ηxi} < N−λ, i = 1, 2, 3, 4.
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