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This is a review of continuum mechanics and its history, citing its original sources.
It �bridges� the contributions of Bernoulli, Euler, Lagrange, Cauchy, Helmholtz, St.
Venant, Stokes, Fresnel, Cesaro, and others, written in a period of two centuries in
5 languages, in a coherent and historically accurate presentation in the contemporary
notation. The only prerequisite knowledge to understand the paper is advanced calculus
and elementary di�erential equations. Some valuable, but little known, results are
reviewed in detail, like the exact solution of Cesaro to the system of di�erential equations
which every continuous medium obeys, as well as his derivation of the conditions
of St. Venant for compatibility of the deformations. The last section presents the
contemporary applications of continuum mechanics. The review continues with Part II.
The Mechanics of Thermoelastic Media. Perfect Fluids, reference [45]. It discusses the
consequences of Navier's system of linear elasticity and approaches for its solution. It
also gives a perspective of how waves propagate in continuous media. Reviewed are
perfect �uids and linearly viscous �uids. At the end, Part II discusses the conditions
for compatibility of the stresses.
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1. INTRODUCTION

Mechanics of continuous media is one of the classical branches of applied
mathematics, which was built by several of the most prominent mathematicians
of the 18th, 19th and the early 20th centuries. In addition to being a discipline
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of its own, it is the heart of several modern branches of applied mathematics:
�uid mechanics, gas dynamics, theory of elasticity, theory of deformable solids and
others. It's applications penetrate almost every aspect of contemporary applied
mathematics and mathematical physics. Over the centuries so much material
accumulated in this subject, that at present only a few mathematicians know what
is a fundamental notion in it and what is an application or a consequence of its
core results. It is important that the mathematicians of today do know continuum
mechanics not only for this knowledge itself, but also for the correct vision and
proper sight of Mathematics and Science that it gives. It will help them size their
own gauge to the contemporary needs of their profession. In addition to its powerful
applications, continuum mechanics is precious for its esthetics - it is a part of the
most elegant and sophisticated classical mathematics and reading it gives a pleasure
and a professional growth.

The �rst attempt to discuss local features of the motion of a continuous medium
in more than one dimension occurs in an isolated passage by D. Bernoulli from 1738
([1], �11, paragraph 4). We are surrounded by matter in the form of continuous
media � deformable solids, liquids and gasses. Let us begin at the moment of time
t = 0 with a continuous medium, like a gallon of water, which we can easily imagine
�lls the volume V , with a shape speci�ed by our imagination. Atomic structure is
not considered. If the water is not held in a vessel, when we �unfreeze� time, it will
move under the law of gravity and the laws of conservation of mass, momentum and
energy, in a perfectly deterministic manner, continuously changing its shape, and
eventually splash on the �oor. This is a simple example of a motion of a continuous
medium and is suitable to demonstrate what is meant by �material coordinates�
and by �spatial coordinates�. Material coordinates, also called Lagrangian
coordinates, are denoted by (X1, X2, X3) and are the coordinates of the material
points of the continuous medium at time t = 0. Lagrange introduced them in
1788 in [54], part II, section II. Spatial coordinates, also known as Eulerian
coordinates, are denoted by (x1, x2, x3) and are the coordinates of the points of
3-dimensional space (in which we observe the medium) occupied by the medium
at time t > 0. Since the material coordinates are the coordinates of the material
points at an arbitrary initial time t = 0, they can serve for all time as names for
the particles of the material. The spatial coordinates, on the other hand, we think
of as assigned once and for all to a point in the Euclidean space. They are the
names of places. The motion x = x(X, t) chronicles the places x occupied by the
particle X in the course of time. Under external in�uences - forces and heating - the
continuous body deforms. The goal of Mechanics of Continua is to �nd the family

of transformations

xi = xi(X1, X2, X3, t) , i = 1, 2, 3, (1)

giving the Eulerian coordinates as functions of the Lagrangian coordinates for t ≥ 0.

This motion is perfectly deterministic, obeying only the natural laws, that we
will present. We will arrive at a system of 20 partial di�erential equations for 20
unknown functions. This system is one of the �nest triumphs of the symbiosis
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between mathematics and physics. We sketch the solution to this system and
present the conditions for its existence and uniqueness. We give credit to the
mathematicians and physicists who built this discipline by citing the date, name
and the historical reference where the result was published for the �rst time.

The general theory of the motion of a continuous medium, which is understood
of as a family of deformations continuously varying in time, is almost exclusively due
to Euler, published in the period 1745 � 1766 in [25] � [41], and Cauchy, published
in the period 1815 � 1841 in [3] � [18]. Important special results were added by
D'Alembert in 1749 in [22], Green in 1839 in [46], Stokes in 1845 in [61], Helmholtz
in 1858 in [48] and Cesaro in 1906 in [19].

2. STRAIN

The change in length and relative direction occasioned by the transformation
is called strain. The term is due to Rankine [56] in 1851. Let us begin its study
by de�ning the displacement vector u, with components ui = xi − Xi, where
xi = xi(X1, X2, X3, t) i = 1, 2, 3. The components ui can be expressed in Lagrangian
or in Eulerian coordinates, depending on need. Let P0 be an arbitrary point of the
continuous medium at time t = 0 and let Q0 be a neighboring point, such that in
a �xed Cartesian coordinate system Oe1e2e3 P0 has coordinates (X1, X2, X3), i.e.
the radius vectors to P0 is X and to the point Q0 is X + dX. At time t > 0 the
material point P0 occupies new geometric point P with coordinates (x1, x2, x3), i.e.
P has radius vector x and hence the new geometric location of the material point
Q0 is Q with a radius vector x + dx. To study the deformation that has occurred,
we need to see how much has the distance between the two neighboring points P0

and Q0 changed. For that we calculate

(dx)2 − (dX)2 =
( ∂xk
∂Xi

∂xk
∂Xj

− δij
)
dXi dXj =

(
δij −

∂Xk

∂xi

∂Xk

∂xj

)
dxi dxj . (2)

Here and throughout the paper each index takes the values 1, 2 and 3 and the
summation convention on repeated indexes is assumed. We see that all the
information about the deformation is contained in the coe�cients of dXi dXj and
respectively of dxi dxj in (2). These sets of coe�cients

Eij ≡
1

2

( ∂xk
∂Xi

∂xk
∂Xj

− δij
)

and eij ≡
1

2

(
δij −

∂Xk

∂xi

∂Xk

∂xj

)
satisfy the transformation laws for tensors of rang 2 and are called the Lagrangian
and the Eulerian tensors of �nite deformations or �nite strain tensors. The
di�erence (dx)2− (dX)2 is a measure for the size of the deformation in the vicinity
of P0. Because dXi and dxi are arbitrary, the necessary and su�cient condition this
di�erence to be 0 is Eij = 0 or equivalently eij = 0. In that case the deformation
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near that point is 0 and the motion is that of a rigid body. Written in terms of the
gradients ∂ui/∂Xj or ∂ui/∂xj of the displacement vector u, Eij and eij are

Eij =
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
and eij =

1

2

( ∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
.

We will now make a crucial assumption � that the deformations which we will study
are small. This means that the gradients ∂ui/∂Xj and ∂ui/∂xj of the displacement
u are small in comparison to 1, and hence the products of these gradients may
be ignored in the presence of the gradients themselves. In this manner we obtain
the tensors Ēij and ēij . A calculation based on the same assumption shows that
they are equal and we give them the common name εij . This is the tensor of
(in�nitesimal) deformations or the (in�nitesimal) strain tensor

εij ≡
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)
.

The strain tensor εij was introduced by Green in 1841 in [47] and by St. Venant
in 1844 in [59]. It is the most popular strain measure even today. The vanishing
of εij is necessary and su�cient for a rigid displacement. The general deformation
dX → dx as well as the displacement gradients ∂ui/∂Xj and ∂ui/∂xj as measures
of local changes of length and angle are due to Lagrange 1762, [53] �XLIV and 1788
[54] Part II, Sect. 11. The fully general spatial description is due to Euler, dates
1752, and was �rst published in 1757 in [31] and then in 1761 in [33]. The theory of
�nite strain is the creation of Cauchy published in 1823 [4], in 1827 [7] and in 1841
[18]. The theory of in�nitesimal strain was �rst developed by Euler. It was fully
elaborated by Cauchy, who obtained it by specialization from his general theory of
�nite strain.

We will now explain the geometry of the process of deformation. The component
ε11 of the strain tensor is the relative elongation of a linear element in the direction
of the unit coordinate vector e1, and similarly for ε22 and ε33. The component ε23
is half of the change (as a result of the deformation) of the angle between two lines,
that initially had the directions of the unit coordinate vectors e2 and e3. Even
more surprising is the fact that, at each point inside the deforming medium, the
deformations can not take an arbitrary shape. Instead, they form quadratic surfaces
only, called surfaces of Cauchy. This is not hard to see and is worth the e�ort.
Let us denote by ε the relative elongation in direction of the vector dX, with length
dX

ε ≡ dx− dX
dX

.

Consider the di�erence

(dx)2 − (dX)2 = (dx− dX)(dx+ dX) = 2εij dXi dXj , (3)

and observe the smallness of the deformations, i.e. that dx ≈ dX. Then by dividing
both sides of (3) by dX dX we see that

ε = εij
dXi

dX

dXj

dX
. (4)
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Hence for any vector with components (ξ1, ξ2, ξ3) and magnitude ξ, the last formula
(4) gives ξ2ε = εij ξi ξj . For each direction we can select ξ in such a way that
ξ2ε = ±k2, where k is a positive constant and the sign is chosen so that the square
of the length of vector ξ to be positive. It follows that at any point of the deforming
medium the strain takes the shape of the quadratic surface

εij ξi ξj = ±k2

called surface of deformations of Cauchy at the point P0. From this geometric
picture it is clear that the elongation ε in the direction of the vector ξ is inversely
proportional to the square of the distance from the center of the surface (the point
P0) to the intersection of the vector ξ with that surface.

Because the vector (ε1j ξj , ε2j ξj , ε3j ξj) is normal to the quadratic surface of
Cauchy, we see that the relative displacement at P0 due to the pure deformation
is in the direction of the normal to that surface at the point of intersection of the
surface with this vector.

After these observations, it is plausible to seek lines through P0 with directions
that do not change under pure deformation. Of course, these are the lines along the
eigenvectors of the strain tensor εij . It is symmetric and hence has 3 real eigenvalues,
called main deformations or Cauchy principal stretches, εI , εII , and εIII .
To each of them corresponds an eigenvector, called main direction or main axis
of the strain tensor. Cauchy published these results �rst in 1823 [4] and again
in 1827 [7]. To di�erent main deformations correspond main directions that are
orthogonal. We can select the axes of the coordinate system to coincide with the
main axes of the tensor of deformations and, as a result, obtain the simplest form
of the quadratic surface of Cauchy

εI ξ
2
1 + εII ξ

2
2 + εIII ξ

2
3 = ± k2.

The invariants of the tensors E and e were �rst published by Cauchy in 1827 in [7].

3. CONDITIONS FOR COMPATABILITY OF THE DEFORMATIONS

Common sense tells us that the deformations that take place in a medium are
not independent of each other. If we stretch an elastic membrane with a rectangular
shape along one of its diagonals, the other diagonal will shrink. St.Venant proved
in 1860 that in order for the six functions εij(x1, x2, x3) to adequately de�ne the
components of the tensor of deformations εij , so that the 6 partial di�erential
equations

ui,j + uj,i = 2εij (5)

have a unique solution u(x1, x2, x3), they must satisfy the system of 6 PDEs

εij,kl + εkl,ij − εik,jl − εjl,ik = 0. (6)
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The notation , j denotes partial di�erentiation with respect to xj . The 6 restrictions
(6) on the components εij of the tensor of deformations are called conditions for
compatability of the deformations and their ful�llment is a necessary and
su�cient condition for the existence of the solution vector u to the system (5),
which of course, has the physical meaning of the displacement vector u ≡ x −X
in the process (1) of the deformation of the continuous medium. The derivation
of the compatability conditions is exceptionally original. On the way of deriving
the compatability conditions, an analytic formula for the displacement u itself is
derived, thus obtaining a result of even greater signi�cance. Due to lack of space,
this derivation is not presented here, but it is sketched. This method of obtaining
the displacement u is due to E. Cesaro [19], who published it in 1906. Volterra
presents it in [62], citing Cesaro. Contemporary references on it are Ivanov [49] and
Sokolniko� [58]. The solution to (5) has components

uj = u0j + ω0
jk(xk − x0k) +

∫ P

P0

(
εjl + (xk − yk)(εjl,k − εkl,j)

)
dyl , j = 1, 2, 3. (7)

Here

ωij =
1

2

( ∂ui
∂xj
− ∂uj
∂xi

)
is the tensor of small rotations, introduced by Euler in 1761, ��46-47. In the
components of the exact solution (7) of Cesaro u0j are the components of the
translation and ω0

jk are those of the tensor of rotation in an arbitrary point P0

of the deforming body, and are assumed known. The �rst term in the solution (7)
for uj represents the translation and the second term represents the rotation of the
continuous medium as a rigid body. The third term in uj represents its deformation.
Because the displacement u is unique, its components uj must not depend on the
path of integration, so the integrands of the 3 integrals must be total di�erentials.
Demanding this, yields the 6 equations (6) of St. Venant for compatability of the
deformations.

The compatability conditions were �rst published by Kirchho� in 1859 in [52],
but without a statement of their meaning, which was �rst explained by St. Venant
in his memoir [60]. St. Venant obtained these conditions in a di�erent way, than the
one presented in this section. Submitted them to Scoci�et�e Philomathique in 1860,
who published them in 1864.

4. STRESS

The notion of stress arose in special case studies of theories of �exible, elastic
and �uid bodies. Galileo (1638), Pardies (1673), James Bernoulli (1691�1704),
Hermann (1716), Coulomb (1776), John Bernoulli (1743), and Euler (1749�1752)
published studies on this notion. The general concept and mathematical theory are
due to Cauchy, published in 1823 [4] and in 1827 [7]. Cauchy achieved the general
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theory of stress by adopting the common features and discarding the special aspects
of the foregoing theories. The term stress was introduced by Rankine in 1856 in
[57].

The �eld of stress vectors is not an ordinary vector �eld. Rather, since the stress
vectors across two di�erent surfaces through the same point are generally di�erent,
at any given time, the stress vectors σ(x, t,n) depend both on the position vector
x and on the direction n of the normal to the surface. We wish to extract all the
information about the stress at a point of the body into a single mathematical
object, and separate it from the information about the direction. This is accompli-
shed by the stress tensor σij .

To derive the components of that tensor we take a tetrahedron having 3 edges
coming out of an arbitrarily �xed point P , parallel to the coordinate axes. The force
acting on the medium occupying the volume V of the tetrahedron is

∫
V
ρ f dV ,

where ρ(x, t) is the mass density and f(x, t) is the mass force acting on ρ dV .
Examples of mass forces are gravity and the centrifugal force in a rotating body.
Surface forces act on every surface inside the medium or on its surface. Those forces
are modeled with the stress vector σ(x, t,n). The force acting on a portion S of
a surface is

∫
S
σ dS. The orientation of S is given by the outward unit normal

n(x, t) = ni(x, t) ei to the surface at that point. (The dimension of the vector σ is
pressure.)

We assume that all forces acting on the tetrahedron ballance out

3∑
j=1

∫
4Sj

σ(x, t,−ej) dS +

∫
4S

σ(x, t,n) dS +

∫
4V

ρ f dV = 0, (8)

where 4Sj is the face perpendicular to ej , 4S is the forth face and 4V is the part
of 3-space occupied by the tetrahedron. We make use of the mean-value theorem
in equation (8). Denote the radius-vector to the point P by x, make use of 4Sj =
4S cos(n, ej) = 4Snj , 4V = h4S/3, and let the altitude h from P approach 0.
We get

σ(x, t,−ej)nj + σ(x, t,n) = 0. (9)

If we now denote by σij(x, t) the components of the stress vector with a normal ej ,
σij(x, t) = σi(x, t, ej), from the last vector equation (9) we get

σi(x, t,n) = σij(x, t)nj .

This important result is Cauchy's fundamental theorem and expresses the
relationship between the components of the stress vector and the components of
the stress tensor. All the information about the stress at a point is �extracted� in
the stress tensor itself, and is �separated� from the orientation n of the surface.
Cauchy published this formula in 1823 [4] and in 1827 [6].

The geometry of the stress at a point of a deforming medium is also that of
quadratic surfaces. Consider the stress vector σ, acting on a surface element with a
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unit normal n at a �xed point P of the body. Its components are σi = σij nj . Let
us denote by σN the magnitude of its projection on n. σN is called normal stress
and can be expressed as

σN = σi ni = σij ni nj .

If ξ is a vector having the direction of the unit normal n and size ξ, then from the
last equation follows that ξ2σN = σij ξi ξj , where ξi are the components of ξ. Select
the size ξ of the vector ξ in such a way that ξ2σN = ± k2, where k is a �xed positive
constant and the sign is chosen so that the length of ξ de�ned with this equation
be positive. Then the �tip� of an arbitrary vector ξ with base at P , and magnitude
ξ satisfying ξ2σN = ± k2, lies on the surface

σij ξi ξj = ± k2

called quadratic surface of the stress tensor or surface of Cauchy of the
stress at the point P . The stress tensor is symmetric and hence has 3 real eigen-
values, called main stresses. The corresponding eigenvectors are called main
directions or main axes. If we choose a coordinate system with coordinate axes
along the main axes of the stress tensor, the quadratic surface of the stress at the
point acquires the form

σI ξ
2
1 + σII ξ

2
2 + σIII ξ

2
3 = ± k2,

where σI , σII , σIII are the main stresses of σij at that point. At a surface element
with a normal n along a main axes of the stress tensor, the stress vector σ has the
direction of the normal.

5. CONSERVATION OF MASS, MOMENTUM AND MOMENT OF
MOMENTUM

In contemporary mathematics and mathematical physics conservation laws
are a main goal of study. Researchers obtain them from variational principles via
the famous �rst theorem of Emmy Noether. In Mechanics of Continua, however,
history went di�erently. All the laws of conservation, namely the conservation of
mass, energy, momentum, and moment of momentum, were discovered by judicious
guessing and veri�cation with the physical experiment. They are all empirical
laws. Much later they were derived from deliberately calculated for this purpose
Lagrangians.

The law of conservation of mass is the statement that the mass, contained in
any portion of the body with volume V , does not change during the deformation

d

dt

∫
V

ρ dV = 0.

This can be rewritten as
∫
V
∂ρ/∂t dV +

∫
S
vn ρ dS = 0, where vn = v · n is the

component of the velocity of the points on the surface S of V along the outward unit
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normal n to S. Thus,
∫
V

(∂ρ∂t + (ρ vi),i) dV = 0 where vi(x, t) are the components of
the velocity. If the integrand is continuous, we obtain the di�erential form of the
law of conservation of mass

∂ρ

∂t
+ (ρ vi),i = 0. (10)

The law of conservation of mass was �rst discovered by Euler in 1757, reference
[31], ��16�17.

In mechanics of continua the so-called equations of motion play the same
role as do the equations of Newton in mechanics of rigid bodies. These equations of
motion of a continuous medium follow from the law of conservation of
momentum, which states that �The total time derivative of the momentum of
an arbitrarily �xed portion of the deforming body is equal to the sum of all forces
(mass forces f(x, t) and surface forces σ(x, t)) that act on it�

d

dt

∫
V

ρ vi dV =

∫
V

ρ fi dV +

∫
S

σi dS, i = 1, 2, 3. (11)

A simple calculation shows that, if mass is conserved, for any continuously
di�erentiable function g(x, t) it is true that

d

dt

∫
V

ρ g(x, t) dV =

∫
V

ρ
dg

dt
dV .

With g = vi this formula simpli�es the law of conservation of momentum (11) to∫
V

ρ
dvi
dt

dV =

∫
V

ρ fi dV +

∫
S

σij nj dS. (12)

Applying Gauss' theorem to the surface integral in (11), combining the resulting
2 integrals, and assuming continuity, we obtain the equations of motion of a
continuous medium

σij,j + ρ fi = ρ
dvi
dt

, i = 1, 2, 3. (13)

These equations were �rst published by Cauchy in 1827 in [9], and also in 1827 in
[11].

The law of conservation of moment of momentum asserts that �the time
rate of change of the moment of momentum is equal to the sum of the moments of
the mass forces and the surface forces that act on the body�, i.e.,

d

dt

∫
V

ρ eijk xj vk dV =

∫
V

ρ eijk xj fk dV +

∫
S

eijk xj σk dS,

where the moments are written with respect to the origin of the coordinate system.

The laws of conservation of momentum and of moment of momentum are both
due to Euler and were introduced by him in 1775, [43], ��26�28. While the memoire
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is about rigid bodies, these two laws are expressly stated to hold for any continuous
medium.

The law of conservation of moment of momentum is fully equivalent to the
symmetry of the stress tensor

σij = σji .

This important result is known as Cauchy's fundamental theorem, and was
published by him in 1827, [6]. It was discovered (but not published) by Fresnel in
1822, who published it in 1868, [44].

6. CONSERVATION OF ENERGY

In mechanics of rigid bodies thermal e�ects and thermal consequences of the
motion are either considered separately from the equations of motion or completely
ignored, if they do not a�ect the motion in consideration. For example, we ignore
the heat generated during the friction between the surface of a cube sliding on
a plane and that plane. In Mechanics of Continua heat generation and thermal
e�ects can not be ignored or even considered separately from the equations of
motion. The reason is that when a deformation takes place, heat is generated/lost
throughout the entire volume where the deformation occurs. This thermal energy
a�ects signi�cantly the motion and the deformation. It becomes a cycle: the
deformation generates heat and that heat in turn a�ects the distance between
the particles of the continuous medium, thus causing deformation. The dynamics
of a continuous medium and the thermal laws are intertwined and must be studies
simultaneously.

That heat is a mode of motion was widely believed in the 18th century. Both
Daniel Bernoulli [1] in 1738 and Euler [35] in 1765 constructed kinetic molecular
models in which temperature may be identi�ed with the kinetic energy of the
molecules. The general and phenomenological principle, independent of molecular
interpretation, was known to Carnot by 1824, as proved by his memoir [2]. The
�rst clear statement of the interconvertibility of heat and mechanical work, that
any equation of energy ballance should contain terms that represent non-mechanical
transfer of energy, are those of Joule [50], [51] from 1843 and 1845 and of Waterston
[64] from 1843.

Let us now consider the law of conservation of energy. It states that �The
total time derivative of the sum of the kinetic energy and the internal energy is
equal to the sum of the power of the external forces and the in-�ow of all other
kinds of energies per unit of time�

dK

dt
+
dE

dt
= W +Q, (14)

where K =
∫
V
ρ vi vi/2 dV is the kinetic energy, W =

∫
V
ρ fi vi dV +

∫
S
σi vi dS

is the power of the external forces, Q = −
∫
S
qi ni dS +

∫
V
ρ r dV is the in-�ow
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of heat per unit of time. Here q = qi(x, t) ei is the vector of heat �ow and r(x, t)
is the speci�c heat source. For simplicity, we assume that there is only in-�ow of
thermal energy. We also assume the existence of a function ε(x, t) called speci�c
internal energy such that ∫

V (t)

ρ ε dV = E,

where E is the total internal energy of the part of the body with volume V at time
t. The general law of conservation of energy (when heat e�ects are included), i.e.
equation (14), is called �the �rst law of thermodynamics�. The �rst one to
formulate this important law was Duchem [24], Chapter III, �3, in 1892 .

In the special case Q = 0 the �rst law of thermodynamics reduces to the law
of conservation of mechanical energy

dK

dt
+

∫
V

σij dij dV = W,

where

dij ≡
1

2
(vi,j + vj,i) = dji

is the tensor of rate of deformations, introduced by Euler [41], �� 9�12, in 1769.
By a simple, but tedious calculation, substituting dK/dt, E and Q into the general
law of conservation of energy (14), transforming the surface integral into a volume
integral, and assuming continuity, we obtain the di�erential form of the general
law of conservation of energy

ρ
dε

dt
= σij dij − qi,i + ρ r . (15)

That use of a di�erential equation expressing balance of energy is necessary, except
in specially simple circumstance, was �rst emphasized by Duhem [23], Vol. I, Livre
II, Chapter III, in 1891. In 1769 Euler [41], �13, showed that the vanishing of all
components of the tensor of rate of deformations is the criterion for a rigid motion.

7. ENTROPY

In the present section we de�ne and explain the concept of entropy and the
second law of thermodynamics.

Let us begin with some history. During the Industrial Revolution in Western
Europe, it was observed that the steam engines of locomotives and other engines
that transform thermal energy into mechanical energy can not achieve e�ciency of
100%. In 1865 Rudolf Clausius [21], �14, introduced the concept of entropy for the
lost thermal energy in steam engines, i.e., the heat which remained unconverted
into mechanical energy. Entropy is de�ned by

dη = c
dθ

θ
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where η(x, t) is the entropy for unit mass, c is the speci�c heat and θ(x, t) is the
absolute temperature of the body.

The inequality of Clausius - Duhem is

d

dt

∫
V

ρ η dV ≥ −
∫
S

qi
θ
ni dS +

∫
V

ρ
r

θ
dV,

where r(x, t) is the speci�c heat source, and q = qi ei is the vector of heat �ow.
It has the direction of motion of heat. The normal n is outward to the surface S.
The �rst integral in the right hand side is the �ow of entropy per unit time through
the surface S of the volume V and the second integral is the creation of entropy
inside V by outside sources per unit time. This inequality is one of the fundamental
empirical laws of thermodynamics � the second law of thermodynamics. It is due
to Clausius [20] (1854). The meaning of the second law of thermodynamics is can
be explained as follows. It is known from experience that a substance at uniform
temperature and free fro sources of heat may consume mechanical work, but can
not give it out. That is, whatever work is not recoverable is lost, not created. Also,
in a body at rest and subject to no sources of heat, the �ow of heat is from the
hotter to the colder parts, not vice versa.

Using the well known formula

d

dt

∫
V

ρ f dV =

∫
V

ρ
df

dt
dV,

where ρ is the mass density, which holds for any continuously di�erentiable function
f(x, t), we obtain the di�erential form of the inequality of Clausius - Duhem:

ρ
dη

dt
+
(qi
θ

)
,i
− ρ r

θ
≥ 0. (16)

8. CONSTITUTIVE EQUATIONS

We consider the di�erential forms of: the law of conservation of mass (10),
the law of conservation of energy (15), the equations of motion of a continuous
medium (13), and the inequality of Clausius-Duhem (16) as a system. These are
5 scalar di�erential equations and 1 inequality for the 16 unknown functions ui,
ρ, σij , ε, η and θ. We take in consideration the symmetry of the stress tensor
σij = σji, the de�nition of dij = (vi,j + vj,i)/2, and assume that f and r are given.
It is remarkable, but not surprising, that physics provides the additional equations
necessary to solve this system. These are the so called constitutive equations and
contain information about the speci�c material of the medium. An elastic is very
di�erent from water, which is very di�erent from an oil or a gas. The constitutive
equations characterize the mechanical and thermal properties of the medium.
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In experiments and observations, the motion of the material particles of the
continuous medium and its temperature can be observed and measured, so from
mathematical stand point the components ui of the displacement vector, the
temperature θ, as well as their derivatives, will be the independent variables in
the constitutive equations, which we are trying to build. All of the rest of the
variables will dependent on these ones and will be dependent variables. These are:
σij , ε, qi and η, a total of 11 such variables. The mass density ρ is also a dependent
variable. For it we already have a di�erential equation, relating it to the rest of the
variables, namely the law of conservation of mass.

Because the constitutive equations characterize the properties of the materials,
they must remain invariant under a rotation or a translation. This requirement
is met if the variables (both independent and dependent), which those equations
relate, are themselves independent of such transformations. It is easy to show that
such variables are:

Σkl = σij
∂xi
∂Xk

∂xj
∂Xl

, Qj = qi
∂xi
∂Xj

as well as the scalar functions ε and η. Thus, in the constitutive equations which
we are trying to construct, it will be reasonable to regard as independent variables
the temperature θ, the coordinates Xi, the gradient δθ/δXi of the temperature and
the tensor of deformations Eij . Hence for a thermoelastic medium the constitutive
equations are :

Σij = Σij(E, θ,G,X) , Qi = Qi(E, θ,G,X) , ε = ε(E, θ,G,X) , η = η(E, θ,G,X) ,

where G denotes the gradient of the temperature with respect to the Lagrangian
coordinates Xi, i = 1, 2, 3. Using

(∂xi/∂Xk)(∂Xk/∂xj) = δij , (∂Xi/∂xk)(∂xk/∂Xj) = δij ,

we invert the equations for Σkl and Qj to obtain

σij = Σkl(E, θ,G,X)Xk,iXl,j , qi = Qj(E, θ,G,X)Xj,i ,

ε = ε(E, θ,G,X) , η = η(E, θ,G,X) .

Using the inequality of Clausius-Duhem we will be able to see the form of the
constitutive equations in more detail. For this, a new function, free energy, is
introduced:

ψ ≡ ε− η θ.

Obviously ψ = ψ(E, θ,G,X) and we assume that it is symmetric with respect to
Eij and Eji. (This is possible, because Eij = Eji and so we can replace Eij and Eji
in ψ with (Eij +Eji)/2.) By elementary mathematical manipulations we eliminate
r from the inequality of Clausius-Duhem (16) to obtain

−ρ dψ
dt
− ρ η dθ

dt
+ σij dij −

qi θ,i
θ
≥ 0. (17)
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Substituting ψ in inequality (17), we get

−ρ ∂ψ

∂Eij

∂Eij
∂t
− ρ ∂ψ

∂θ

dθ

dt
− ρ ∂ψ

∂Gi

dGi
dt
− ρ η dθ

dt
+ σij dij −

qi θ,i
θ
≥ 0. (18)

Let us now do the calculation

∂Eij
∂t

=
1

2

∂

∂t

( ∂xk
∂Xi

∂xk
∂Xj

− δij
)

=
1

2

( ∂vl
∂Xi

∂xl
∂Xj

+
∂xk
∂Xi

∂vk
∂Xj

)
=

1

2

( ∂vl
∂xk

∂xk
∂Xi

∂xl
∂Xj

+
∂xk
∂Xi

∂vk
∂xl

∂xl
∂Xj

)
= dkl

∂xk
∂Xi

∂xl
∂Xj

=
dεkl
dt

∂xk
∂Xi

∂xl
∂Xj

.

We substitute this result in the last inequality (18) to obtain(
σkl − ρ

∂ψ

∂Eij

∂xk
∂Xi

∂xl
∂Xj

) dεkl
dt
− ρ

(
η+

∂ψ

∂θ

) dθ
dt
− ρ ∂ψ

∂Gi

dGi
dt
− qi θ,i

θ
≥ 0. (19)

The inequality (19) is linear with respect to the three variables dεkl/dt, dθ/dt and
dGi/dt with coe�cients which do not depend on them. Because dεkl/dt, dθ/dt and
dGi/dt are independent of each other (since u, θ and their gradients at an arbitrary
point are independent variables), it follows that a necessary and su�cient condition
for inequality (19) to hold is that the coe�cients of these three variables are zeros.
Thus,

σkl = ρ
∂ψ

∂Eij

∂xk
∂Xi

∂xl
∂Xj

, η = −∂ψ
∂θ

,
∂ψ

∂Gi
= 0 , qi θ,i ≤ 0.

Hence ψ does not depend on Gi, i.e. ψ = ψ(E, θ,X). Traditionally, the left hand
side of the inequality qi θ,i ≤ 0 is written as

qi θ,i = Qj Xj,i
∂θ

∂Xk
Xk,i = Qj(E, θ,G,X)GkXj,iXk,i.

Let us summarize what we have accomplished in this section. To the original
system of 5 di�erential equations for the 16 unknown functions, stated in the
beginning of the section, we added 7 new unknowns (Eij and ψ) and their de�ning
equations

Eij ≡
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
, ψ ≡ ε− η θ,

and also added 7 equations � for σij and η. So we have a total of 19 equations for
23 unknowns and the inequality qi θ,i ≤ 0. Thus, we need 4 more equations. These
are the equations that specify the nature of the free energy ψ = ψ(E, θ,X) and
that of the heat �ow q = q(E, θ,G,X).

For historical references on the constitutive equations of continuous media we
refer the reader to Truesdell and Toupin [63].
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9. VISCOELASTIC MEDIUM

We are interested in deriving the equations of motion of a viscoelastic medium.
We use a �dot� above a letter to denote the time derivative of the variable.

Let us assume that the continuous medium we consider has a constant density
ρ, constant temperature θ and constant entropy η. Let us also assume that the
stresses depend not only on the deformations, but also on the time derivatives of
the deformations, namely that

Σij = Σij(E, Ė,X).

The speci�c internal energy ε depends on the same variables.

Assuming that the deformations are small, the formula

σij = ρ
∂ψ

∂Ekl

∂xi
∂Xk

∂xj
∂Xl

derived above, which is valid for any continuous medium even in the case of large
deformations and with no restrictions on the form that the free energy ψ, acquires
the form

σij = ρ
∂ψ

∂εij
.

Let us assume that the free energy ψ is a quadratic function of the deformations
and their time derivatives, namely,

ρψ = a+ αijεij +
1

2
cijklεijεkl + βij ε̇ij +

1

2
βijklεij ε̇kl +

1

2
γijklε̇ij ε̇kl.

Thus we arrive at the system of equations which an elastic medium with viscosity,
a constant density ρ, constant temperature θ and constant entropy η obeys:

2εij = ui,j + uj,i

σij,j + ρ fi = ρüi , i = 1, 2, 3

σij = ρ
∂ψ

∂εij
.

Let us now calculate σij by di�erentiating ψ with respect to the deformations. We
obtain

σij = αij + cijklεkl + βijklε̇kl.

If there are no stresses in a nondeformed state, αij = 0, so

σij = cijklεkl + βijklε̇kl.

Then,

σij,j = cijkl
∂εkl
∂xj

+ βijkl
∂ε̇kl
∂xj
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= cijkl
1

2

∂

∂xj
(uk,l + ul,k) + βijkl

1

2

∂

∂xj
(u̇k,l + u̇l,k)

= cijkl
1

2
(uk,lj + ul,kj) + βijkl

1

2
(u̇k,lj + u̇l,kj).

Thus, the equations of motion of a viscoelastic medium with a constant density,
constant temperature and constant entropy are:

cijkl
1

2
(uk,lj + ul,kj) + βijkl

1

2
(u̇k,lj + u̇l,kj) + ρfi = ρüi i = 1, 2, 3.

In the one-dimensional case these equations become the single equations for the
displacement u = u(x, t)

c uxx + β u̇xx + ρf = ρ ü .

This equation can also be written as

utt −
β

ρ
uxxt −

c

ρ
uxx − f = 0,

where f = f(x, t) is given and ρ, β and c are known constants.

10. LINEAR THERMOELASTIC MEDIUM

In this section we will reach our ultimate goal � to derive the system of 20
PDEs, for 20 unknown functions, that governs the motion of a continuous medium.

Let us get started by rewriting the general law of conservation of energy (15)
in a simpler form. For this, substitute in it ε = ψ + η θ and use ψ = ψ(E, θ,X).
Then the law acquires the form

ρ
( ∂ψ

∂Ekl

∂Ekl
∂t

+
∂ψ

∂θ

dθ

dt
+
dη

dt
θ + η

dθ

dt

)
= σij dij − qi,i + ρ r

and with the help of
∂Eij
∂t

= dkl
∂xk
∂Xi

∂xl
∂Xj

it becomes

ρ
( ∂ψ

∂Ekl

∂xi
∂Xk

∂xj
∂Xl

dij +
∂ψ

∂θ

dθ

dt
+
dη

dt
θ + η

dθ

dt

)
= σij dij − qi,i + ρ r . (20)

Now substitute σij and η with

σij = ρ
∂ψ

∂Ekl

∂xi
∂Xk

∂xj
∂Xl

, η = −∂ψ
∂θ
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and 4 terms in the above law (20) cancel out. The law of conservation of energy
becomes

ρ θ
dη

dt
+ qi,i = ρ r . (21)

A linear thermoelastic homogeneous medium is one for which the following
assumptions hold:

1. The deformations are small, so the product of the gradients of the displace-
ment are ignored. Also we substitute Eij with εij ;

2. The mass density ρ does not change during the deformation process;

3. The free energy ψ is a quadratic function of the components εij and of the
temperature change T = θ−T0. Also |T |/T0 is small with respect to 1, thus θ ≈ T0.

4. The components of the heat �ow q are linear functions of εij , T and T,i.

With these assumptions the gradient of the temperature becomes

Gi =
∂θ

∂Xi
=

∂T

∂Xi
=

∂T

∂xj

∂xj
∂Xi

=
∂T

∂xj

(
δij +

∂uj
∂Xi

)
=
∂T

∂xi
+
∂T

∂xj

∂uj
∂Xi

,

where uj = xj−Xj . We ignore the product of the gradients, and obtainGi=∂T/∂xi .
In the calculations that follow we will substitute Qi with qi, because qi = Qj Xj,i =
(δij − uj,i)Qj = Qi −Qj uj,i and we ignore Qj uj,i in the presence of Qi.

To �nd the form of the functions ψ and qi we develop them in Taylor series
around their undeformed values, which are 0's. In the series for ψ we will keep
terms up to and including second order, and in the series for qi we will keep only
the linear terms:

ρψ = a− ρ η0 T −
cε

2T0
T 2 + αij εij − χij εij T +

1

2
cijkl εij εkl ,

qi = ai + bi T − kij T,j + dijk εjk .

In these Taylor expansions the constants will be determined by the calculations
that follow. Because of the requirement that ψ is symmetric with respect to the
components εij and εji of the strain tensor, we have the following relations among
the constants in its Taylor polynomial: αij = αji, χij = χji, cijkl = cjikl = cijlk =
cklij .

A short calculation shows that in the theory of small deformations

σij = ρ ∂ψ/∂εij . (22)

We also remember from the previous section that η = −∂ψ/∂θ. So

η = −∂ψ/∂θ = −(∂ψ/∂T )(∂T/∂θ) = −∂ψ/∂T . (23)

Substitute the Taylor expansion for ψ in the last formulae for σij and η to get

σij = ρ
∂ψ

∂εij
= αij − χij T + cijkl εkl ,

Ann. So�a Univ., Fac. Math and Inf., 107, 2020, 31�56. 47



ρ η = −∂(ρψ)

∂T
= ρ η0 +

cε
T0

T + χij εij .

We assume that when there is no deformation, i.e. εij = 0, T = 0 , there are
no stresses, so σij = αij = 0. Also, Qj(E, θ,0,X) = 0. Substituting 0 for Qj in
qi = Qi −Qj uj,i, we get qi(εkl, T, T,k)

∣∣
T,1=T,2=T,3=0

= 0 . Thus, when there are no

deformations, T = 0 and qi = 0, and we obtain the following equation which relates
the constants in the Taylor expansion for qi, namely 0 = ai + bi T + dijk εjk . But
1, T and εjk are linearly independent functions, so from this equation we conclude
that the coe�cients of these three linearly independent functions are zeros, i.e.
ai = bi = dijk = 0. Substituting these constants in the Taylor expansion for qi,
we get qi = −kij T,j . With this expression for qi the inequality qi θ,i ≤ 0 becomes
kij T,j T,i ≥ 0 .

Thus, we arrive at the system of partial di�erential equations that every (linear)
continuous medium obeys:

σij,j + ρ fi = ρ üi equations of motion

ρ T0
∂η

∂t
+qi,i = ρ r law of conservation of energy

σij = cijkl εkl − χij T constitutive equations for the stress tensor

ρ η = ρ η0 +
cε
T0

T + χij εij constitutive equation for the entropy

qi = −kij T,j constitutive equation for the heat �ow

εij =
1

2

(
ui,j + uj,i

)
equations of strain.

These are 20 equations for the 20 unknown functions σij , ui, qi, εij , T, η . The
mass density ρ does not change during the deformation process, so ρ coincides with
the initial mass density which we consider known. If we substitute the expressions
for σij , qi, εij , η from the last 4 lines of this system in the �rst two lines - the
equations of motion and the law of conservation of energy, we obtain the equations

cijkl uk,jl−χij T,j +ρ fi = ρ üi , i = 1, 2, 3 equations of motion

kij T,ij − cε
∂T

∂t
−χij T0

∂ui,j
∂t

+ρ r = 0 equation of thermocondactivity

for the unknown functions ui, T . These 4 equations are valid for any thermoelastic
anisotropic medium, that is a medium with di�erent mechanical and thermal
properties in di�erent directions. Some crystals are examples of such media. For
isotropic media the constants in the constitutive equations remain unchanged under
rotation of the body. Hence for such a medium χij = χ δij , kij = k δij ,
cijkl = λ δijδkl+µ δikδjl+ν δilδjk. From the symmetries cijkl = cjikl = cijlk = cklij
it is clear that µ = ν, and consequently cijkl = λ δij δkl + µ(δik δjl + δil δjk) .
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The constants λ and µ are called constants of Lam�e. Thus, the equations of a
thermoelastic isotropic medium are

(λ+ µ)uj,ji + µui,jj − χT,i + ρ fi = ρ üi ,

k T,ii − cε
∂T

∂t
− χT0

∂ui,i
∂t

+ ρ r = 0 .

The system of the general equations of linear elasticity in the case of absence
of thermal e�ects was �rst derived by Navier [55] in 1821.

The system of 20 di�erential equations above or equivalently the system of
4 equations for thermoelastic anisotropic medium can be solved with suitable
initial and boundary conditions. If the system of PDEs in question has a solution
(u1, u2, u3), it is given by the formula (7) of Cesaro. This solution is unique, provided
that cε > 0 and the quadratic form cijkl εij εkl is positive de�nite. The fact that
the solution (7) of Cesaro satis�es the whole system is demonstrated by a direct
substitution in the equations. The proof of uniqueness uses an identity, relating the
variables involved in the system of PDEs. It is delightfully elegant and surprisingly
short, see Ivanov [49] or Sokolniko� [58].

11. TWO PROBLEMS

In this section we consider a couple of concrete problems.

Problem 1. Let us �rst consider an elastic body undergoing spherically
symmetric deformation. Then the displacement vector is of the form

u = u(r)er, r 6= 0

where er is the unit vector along the radial direction. For such a displacement,
compute (i) the corresponding stress components, (ii) the normal stress on a
spherical surface r = constant and (iii) the normal stress on a radial plane. Then
determine u(r) so that Navier's equation of equilibrium with zero body force is
satis�ed.

Solution. (i) The given form of the displacement vector can be rewritten as

u = u(r)
1

r
x = φ(r)x ,

where

φ(r) =
1

r
u(r).

From this we �nd that ui = φ(r)xi, so that

ui,j = φ(r)δij + φ′(r)
(1

r
xj

)
xi = uj,i.
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Hence
uk,k = 3φ(r) + rφ′(r).

Let us now substitute these last two results in the stress�displacement relation

σ = λ(divu)I + µ(∇u +∇uT )

and make use of the fact that φ(r) = (1/r)u(r). We obtain the following expression
for the stresses associated with the given displacement �eld:

σij = 2
(

(λ+ µ)δij − 2µ
1

r
xixj

)1

r
u(r) +

(
λδij + 2µ

1

r2
xixj

)
u′(r).

(ii) For a spherical surface r = constant, we have n = er, so that ni = xi/r.
Hence, by the formula

σN = σiknink ,

enabling us to determine the normal stress σN directly from the stress components
σik, the normal stress σr on this surface is given by σr = σijninj = (σijxixj)/r

2.
Using the expression for σij obtained in part (i) of this problem, we get

σr = 2λ
1

r
u(r) + (λ+ 2µ)u′(r).

This normal stress is the radial stress.

(iii) If n is the unit normal to a radial plane, we have n ·er = 0, and the normal
stress σN on the plane is given by σN = σijninj . Another use of the expression for
σij obtained in part (i), we arrive at the following expression for the normal stress:

σϕ = 2(λ+ µ)
1

r
u(r) + λu′(r).

This normal stress is the peripheral stress.

(iv) Finally, to determine u(r), we return to the expressions for ui,j and uk,k
obtained in part (i) of the problem and calculate that

ui,ij = uk,ki =
(
φ′′(r) +

4

r
φ′(r)

)
xi.

Substituting these into Navier's equation of equilibrium

µ∇2ui + (λ+ µ)uk,ki + fi = 0,

with fi = 0, we see that it is satis�ed if φ(r) obeys the following di�erential equation:

d2φ

dr2
+

4

r

dφ

dr
= 0 .

The general solution of this equation is

φ(r) =
A

r3
+B ,
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where A and B are arbitrary constants. Thus,

u(r) =
A

r2
+Br ,

which is the sought solution of Navier's equation of equilibrium with zero body
force.

The interested reader is invited to apply the ideas demonstrated in the above
problem to solve the following

Problem 2. An elastic body undergoes a deformation, which is symmetric
about the x3 axes. Then the displacement vector is of the form

u = u(R)eR, R 6= 0 ,

where R2 = x21 + x22 and eR is the unit vector along the radial direction in the
cylindrical polar coordinate system with x3 axis as axis. For this displacement
compute (i) the corresponding stress components; (ii) the normal stress on a cylind-
rical surface R = constant; and (iii) the normal stress on a plane containing the
x3 axis. Also, determine u(R) such that the Navier's equation of equilibrium with
zero body force is satis�ed.

12. THE CONTEMPORARY APPLICATIONS

In many applications the analytic solution (7) of Cesaro, to the system which a
continuous medium obeys, can be obtained. Examples of such applications are the
elongation, the twisting and the bending of cylindrical elastic beams; the stretching
of a beam by its own weight; the twisting of a rectangular beam by two pairs
of forces applied at each end of the beam; the twisting of circular cylinder with
one base �xed and the other subjected to a pair of forces creating a torque; the
displacement of a bended beam; and many others. Some 2-dimensional problems,
like the displacement of an elastic membrane, subjected to uniform pressure from
one side, have analytic solutions that use harmonic functions. The solution for the
twisting of hollow, tube-like, beams also uses harmonic functions. The solution for
the twisting of a cylinder by forces applied to its surface, and that for the bending
of a tube with a circular or an elliptical cross-section, uses conformal maps. Most
of these problems, solved in all detail, can be found in Sokolniko� [58].

During the mid-1950s and 1960s the computer started to become a major
tool for solving problems in continuum mechanics. At �rst the �nite di�erence
methods and the Rayleigh-Ritz method (using the theorem of minimal potential
theory), were employed. Both of these methods required the solution of large
numbers of simultaneous equations and faced the danger of the system becoming ill-
conditioned as the number of equations increased. Finite di�erence methods have a
long history, including contributions by Newton, Laplace, Gauss, Bessel and others.
The method of �nite di�erences replaces the de�ning di�erential equation with
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equivalent di�erence equations. The boundary conditions are satis�ed at discrete
points by specifying either the function or its derivatives. The result of this analysis
are numerical values of the function at discrete points throughout the body.

Computer simulations of exploding stars, the expansion of the early Universe,
and the evolution of nebulae are so unbelievably realistic, only because they obey
the equations of continuum mechanics. May be less dramatic, but signi�cant from
an applied point of view, is the fact that the �ow of water or the spilling of oil
can be modeled with the system for the motion of that continuous medium, and be
presented visually in real time.

Modern cosmological simulations following the evolution of large portions of
the Universe use numerical methods from hydrodynamics, more speci�cally the
numerical solutions of the equations of compressible �uids. Simulations of merging
clusters of gallaxes are made this way. More speci�cally, the equations of motion
for a compressible �uid are solved using a Lagrangian formulation in which the
�uid is partitioned into elements, a subset of which is represented by particles of
known mass and speci�c energy. Continuous �elds are represented by interpolating
between particles using a smoothing kernel, which is normally de�ned in terms of a
sphere containing a �xed number of neighbors, centered on the particle in question.
This method uses an arti�cial viscosity.

Continuum mechanics has become a fundamental science in investigations in
tissue biomechanics. Soft tissue constitutive equations have been developed and
the stresses and strains are being calculated for skin, tendon, ligament and bone.
As new materials are being developed, they are being modeled as a continuum.
Continuum mechanics is also being used in nanotechnology even on that small of
a scale.

The most prominent relevant texts in Russian are listed as references [65] �
[68].

Making an exhaustive list of the contemporary applications of Continuum
Mechanics is impossible, as the subject is vast, vibrant, and multidisciplinary and
develops literary every day. New branches of the subject are the nonlinear theory
of elasticity, relativistic continuum mechanics and computational �uid dynamics.
In recent years it has found connections with biomechanics and nanomechanics. A
few of the most recent applications of continuum mechanics are: memory e�ects,
the qualitative studies of the equations of Navier-Stokes, cross-di�usion systems
from biology and physics, the decay of acceleration waves, and the �uid animation
implementing numerical solutions to the 3D Navier-Stokes equations.
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