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This paper is the second of a series of two articles reviewing the contributions of
continuum mechanics and its history. The review is written for the mathematician who
is not a specialist in this �eld, and aims to give an in-depth overview of the mathematics
as well as a historical perspective of this �eld. The �rst of the two papers [10], Part
I. �Deformation and Stress. Conservation Laws. Constitutive Equations�, starts at the
very origins of continuum mechanics and brings the reader up to the 1820's when Navier
publishes the system of the general equations of linear elasticity in 1821. The present
paper continues, discussing the consequences of this system, some of its simpli�cations
and approaches for solution. It also gives a perspective of how waves propagate in
continuous media. Reviewed are also perfect �uids and linearly viscous �uids. At the
end, the paper discusses the conditions for compatibility of the stresses.
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1. INTRODUCTION

The �rst attempt to discuss the motion of a continuous medium in more than
one dimension occurs in an isolated passage by D. Bernoulli from 1738 [2], �11,
paragraph 4.

We are surrounded by matter in the form of continuous media � deformable
solids, liquids and gasses. To study how they move in response to forces, while
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obeying the natural laws, we need two sets of coordinates.Material coordinates,
also called Lagrangian coordinates, are denoted by (X1, X2, X3) and are the
coordinates of the material points of the continuous medium at time t = 0. Lagrange
introduced them in 1788 in [22], part II, section II. Spatial coordinates, also
known asEulerian coordinates, are denoted by (x1, x2, x3) and are the coordinates
of the points of 3-dimensional space (in which we observe the medium) occupied
by the medium at time t > 0. Since the material coordinates are the coordinates
of the material points at an arbitrary initial time t = 0, they can serve for all time
as names for the particles of the material. The spatial coordinates, on the other
hand, we think of as assigned once and for all to a point in the Euclidean space.
They are the names of places. The motion x = x(X, t) chronicles the places x
occupied by the particle X in the course of time. Under external in�uences � forces
and heating � the continuous body deforms. The goal of Continuum Mechanics is
to �nd the family of transformations

xi = xi(X1, X2, X3, t) , i = 1, 2, 3, (1)

giving the Eulerian coordinates as functions of the Lagrangian coordinates for t ≥ 0.
This motion is deterministic, obeying only the natural laws.

The general theory of the motion of a continuous medium, understood as a
family of deformations continuously varying in time, is almost exclusively due to
Euler, published in the period 1745 � 1766, references [25] � [40] in the �rst paper of
this review, and Cauchy, published in the period 1815 � 1841, references [3] � [18] in
the �rst paper of this review. Important special results were added by D'Alembert
in 1749, Green in 1839, Stokes in 1845, Helmholtz in 1858 and Cesaro in 1906, also
cited in the �rst part of this review.

2. LINEAR THERMOELASTIC CONTINUOUS MEDIA

The systems of equations

cijkl uk,jl − χij T,j + ρ fi = ρ üi , i = 1, 2, 3 equations of motion (2)

kij T,ij − cε
∂T

∂t
− χij T0

∂ui,j
∂t

+ ρ r = 0 equation of thermal condactivity (3)

for the unknown functions ui, T , which are valid for any linear thermoelastic

anisotropic medium, were �rst published in 1821 by Navier [30]. Here and in the
rest of the paper a dot above a variable denotes a di�erentiation with respect to time
and two dots denote a double di�erentiation with respect to time. Here ui are the
three components of the vector of displacement u, T is the temperature di�erence,
and are functions of the space coordinates (x1, x2, x3) and the time t. As usually in
the literature, a �rst partial derivative with respect to a space coordinate is denoted
by one lower index after a comma, a second partial derivative with respect to space
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coordinates is denoted by two lower indexes after a comma; ρ is the mass density,
fi are the components of the assigned (mass) force, r is the heat source, and cijkl,
χij , kij , cε, T0 are constants.

The system (2), (3) in the case of an isotropic body acquires the form:

(λ+ µ)uj,ji + µui,jj − χT,i + ρ fi = ρ üi (4)

k T,ii − cε
∂T

∂t
− χT0

∂ui,i
∂t

+ ρ r = 0. (5)

Both these systems simplify signi�cantly if the process is isothermal or adiabatic.
A process is called isothermal if the changes that are taking place are �slow�, so
that the change in temperature is small and can be ignored. In the notation we use,
T = 0. In that case we do not consider at all the equation of thermal conductivity.
So the remaining equations are

cijkl uk,jl + ρ fi = ρ üi , i = 1, 2, 3 (6)

for an anisotropic body and

(λ+ µ)uj,ji + µui,jj + ρ fi = ρ üi (7)

for an isotropic medium. The equations (6) and (7) are known as the isothermal

equations of elasticity for an anisotropic and isotropic medium, respectively. The
constants cijkl, λ, µ are called isothermal constants.

The process is called adiabatic if the changes that take place in the medium
are �fast�, so that the heat exchange that takes place between di�erent parts of the
body, being a �slower� process, can be ignored, that is, qi = 0. Of course, in this
case there are no sources of heat.

It is interesting that an adiabatic process is also isoentropic, that is, has a
constant entropy η = η0 = constant. This can be seen from the equations

ρ T0
∂η

∂t
+ qi,i = ρ r law of conservation of energy

ρ η = ρ η0 +
cε
T0

T + χij εij constitutive equation for the entropy

which were derived in Part I of this review, as a part of the system of 20 equations
which any linear thermoelastic continuous medium obeys. From the constitutive
equation for the entropy, for an anisotropic body, we get

T = −χij T0
cε

εij .

For an isotropic body the relationship between the entropy and the deformations
is

T = −χT0
cε

εii.
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After substituting these last two equations for T in the equations of motion (2)
for an elastic anisotropic medium and in equations (4) for a thermoelastic isotropic
medium, these equations aquire the form:

caijkl uk,jl + ρ fi = ρ üi , i = 1, 2, 3 (8)

and respectively
(λa + µa)uj,ji + µa ui,jj + ρ fi = ρ üi, (9)

where the adiabatic constants caijkl, λ
a and µa are related to their corresponding

isothermal constants via the equations

caijkl = cijkl +
χij χkl T0

cε

λa = λ+
χ2 T0
cε

, µa = µ.

In the remaining of the paper we will drop the upper index of the constants in the
adiabatic equations of elasticity, namely in equations (8) and equations (9), so they
will not di�er in form from their corresponding isothermal equations (6) and (7).
We will call these equations the equations of elasticity.

For an isothermal process, the constitutive equations

σij = cijkl εkl − χij T (10)

for the components of the stress tensor, acquire the form

σij = cijkl εkl. (11)

In the case of adiabatic process the relationship among stresses and deformations
is analogous, if the constants cijkl are the adiabatic constants.

For isotropic bodies from

cijkl = λ δij δkl + µ(δik δjl + δil δjk)

follows that
σij = λ εkkδij + 2µ εij . (12)

The equations (11) or respectively (12), giving the relationship between the stresses
and the deformations, are known as the generalized law of Hooke. Equations
(12) with λ = µ were derived from a molecular model by Navier published in 1821
[28], [29]; more generally by Poisson [32] in 1829 .

The elasticities λ, µ and cijkl in equations (11) and (12) are material constants
or functions of the temperature or entropy. Their physical dimensions are those of
stress, and they bear no physical connection with the mathematically analogous
viscosities appearing in the Navier-Poisson law, discussed in section 8 �Linearly
Viscous Fluids� of this paper.
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The equations (11) or respectively (12) together with the equations of motion

σij,j + ρ fi = ρ üi

of a linear continuous medium and the equations of strain

εij =
1

2

(
ui,j + uj,i

)
form the system of equations of elasticity for an anisotropic and isotropic body
respectively. This system consists of 15 equations for the 15 unknown functions ui,
εij and σij , where εij are the components of the strain tensor and σij are the
components of the stress tensor. Unlike that, the systems (6) and (7) are systems
with 3 equations each for the three unknown displacements ui. These equations are
typically called the equations of elasticity in displacements or equations of
Lam�e, and can be solved with appropriate initial and boundary conditions.

Because of the symmetries cijkl = cjikl = cijlk = cklij , the number of the
independent components of the tensor cijkl is signi�cantly smaller than that of a
general tensor of rank 4. Thus, it is appropriate to replace couples of indexes with a
single index via the following scheme: 11→ 1, 22→ 2, 33→ 3, 23 and 32→ 4, 31
and 13 → 5, 12 and 21 → 6. The following notation is also used to denote the
components of the stress tensor and those of the tensor of deformations:

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ31, σ6 = σ12

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε31, ε6 = 2ε12.

Then the generalized law of Hooke (11) acquires the form

σα = cαβ εβ , (13)

where the Greek indices run from 1 to 6, and repeated indices denote summation
from 1 to 6. Because cαβ = cβα, the number of independent constants in the
generalized law of Hooke (13) for an arbitrary anisotropic body is 21.

The function

U =
1

2
σij εij =

1

2
σα εα =

1

2
cijkl εij εkl =

1

2
cαβ εα εβ (14)

is called the density of the potential energy of the deformation, or the elastic

potential. So the potential energy of the deformation is

U =
1

2
cijkl

∫
V

εijεkldV =

∫
V

U dV

and

σα =
∂U

∂εα
.
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There is a physical reason to require that the elastic potential be a positive
de�nite form, because then, in any given small strain from an unstressed state, the
stress must do positive work. Assuming that the elastic potential is positive de�nite,
it follows that the constants cαβ satisfy the following restrictions:
c11 > 0, . . . ,det|cαβ | > 0. In the case of isotropic body these inequalities acquire
the form λ + 2µ > 0, 4µ(λ + µ) > 0, . . . , 4µ5(3λ + 2µ) > 0. Hence the necessary
and su�cient condition for these inequalities to be satis�ed is:

3λ+ 2µ > 0, µ > 0. (15)

The elastic potential and its resulting potential energy of the deformation are
due to Green, who published them in 1839 [11], and in 1841 [12]. He proposed
that the work done by stress in a deformation depends only upon the strain and is
recoverable work. In his original papers, Green de�nes the stored energy Σ by

Σ(ε) =
1

2
σkmεkm,

(later renamed the elastic potential U, which we de�ned with (14)). Thus, in Green's
theory the number of independent elasticities is 21. He derives that

σkm =
∂Σ

∂εkm
. (16)

By the representation theorem for isotropic scalar functions, it follows that the
stored energy can be expressed in terms of the �rst and second invariants of the
tensor ε as

Σ =
1

2
(λ+ 2µ)I2ε − 2µ IIε.

A body is called hyperelastic if it obeys Green's theory, based upon the use of
Σ as a stress potential according to (16). This theory has some remarkable results,
which we review next.

The fact that det|cαβ | > 0 guarantees that the equations of the generalized law
of Hooke (13) can be solved for the deformations, obtaining

εα = sαβ σβ ,

where the matrix |sαβ | is the inverse of the matrix of elastic constants |cαβ |, and
is called the matrix of sti�nesses. In the isotropic case the deformations εij can
be expressed with the stresses, if we take in consideration that for i = j from the
generalized Hooke's law (12), namely, σij = λ εkkδij + 2µ εij , we obtain

σii = (3λ+ 2µ)εii.

Then

εii =
1

2µ
(σij − λεkkδij)

=
1

2µ
σij −

λ

2µ(3λ+ 2µ)
σkkδij =

1 + ν

E
σij −

ν

E
σkkδij , (17)
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where the constant

E =
µ(3λ+ 2µ)

(λ+ µ)

is always positive and is called the module of Jung. For metals the module of Jung
is of the order of 1011 N/m2. The constant ν is called the coe�cient of Poisson and
is ν = λ/(2λ+ 2µ). It is clear that −1 < ν < 1/2. For all known materials Poisson's
coe�cient is positive. For metals it varies usually in the interval [1/4, 1/3].

Let us now consider a couple of special cases. Let us assume that fi = 0
and that the problem is static, i.e., the components ui of the displacement do not
depend on the time t. In this case the initial conditions of the system of di�erential
equations are no longer present and only the boundary conditions ui(x, t) = gi(x, t)
for x ∈ Su and σij(x, t)nj(x, t) = hi(x, t) for x ∈ Sσ remain, because the medium
is elastic and not thermoelastic.

1. Simple Shear

Simple shear is characterized by the following stresses:

σ23 = constant 6= 0, the rest of σij = 0. (18)

These stresses satisfy the equations of equilibrium σij,j = 0. The deformations
that correspond to them are:

ε23 =
1

2µ
σ23, the rest of εij = 0.

The geometric interpretation of the tensor of deformations, which was explained in
the �rst part of this review, follows that a cube with sides parallel to the coordinate
planes, will deform under a simple shear in such a way that the right angle between
the edges of the cube, that are parallel to the axes x2 and x3 decreases (if σ23 > 0)
or increases (if σ23 < 0) with the angle γ23 = 2ε23. From equations (10) follows
that

µ =
σ23
γ23

.

Thus, µ has the meaning of the ratio between the so called shearing stress σ23 to
the resulting from it change γ23of the right angle. The constant µ is called module

of shearing, it is often denoted in the technical literature by G.

2. Hydrostatic Pressure

We consider an elastic body with an arbitrary shape. Its boundary is subjected
to stresses, that are applied perpendicularly to the surface, toward the body, and
have a constant intensity p > 0. Then

σi = −p ni, (19)

where ni are the components of the outward unit normal to the surface of the body.
The stresses

σ11 = σ22 = σ33 = −p, and σij = 0 if i 6= j
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satisfy the equations of equilibrium with fi = 0 and boundary conditions given by
(19). From equations (17) it follows that

ε11 = ε22 = ε33 = − p

3λ+ 2µ
, and εij = 0 if i 6= j. (20)

Both in this and in the previously considered example, the deformations are constant,
and thus satisfy the conditions for compatibility of St. Venant, discussed in detail
in the �rst paper of this review. Hence from them the displacements ui can be
calculated, that correspond to the stresses in consideration. From equations (12) one
calculates the relative change in the volume (expansion if p < 0) and (contraction
if p > 0). Let ε ≡ εii. Then

ε = −p
k
, (21)

where
k = λ+ 2µ/3 = E/(3− 6ν) (22)

is called the module of contraction. It is the ratio of the hydrostatic pressure to
the relative change of volume. From the inequalities (21) it follows that k > 0.

The elastic material is called noncompressible if under pressure the relative
change ε of the volume remains zero. In that case from (21) and (22) we calculate
that ν = 1/2.

3. THE LAW OF CONSERVATION OF MECHANICAL ENERGY

We considered the law of conservation of mechanical energy in part I of this
review and showed that it has the form

dK

dt
+

∫
V

σij dij dV = W,

where K =
∫
V
ρ vi vi/2 dV is the kinetic energy,

W =

∫
V

ρ fi vi dV +

∫
S

σi vi dS (23)

is the power of the external forces and dij ≡ (vi,j +vj,i)/2 = dji is the tensor of the
rate of deformations, introduced by Euler in 1769 [9], �� 9-12. In the case of small
deformations dij = ∂εij/∂t. The total time-derivative of the potential energy U of
the deformations is

dU

dt
=

1

2
cijkl

∫
V

∂

∂t
(εijεkl)dV = cijkl

∫
V

εij
∂

∂t
εkldV.

Then it follows that in the linear theory of elasticity the law of conservation of
mechanical energy acquires the form

d

dt
(K + U) = W. (24)
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If we denote by

A(τ) =

∫ τ

0

Wdt (25)

the work done by the external forces during the interval of time [0, τ ] and assume
that at t = 0 the body was in an undeformed state and at rest, i.e.K(0) = U(0) = 0,
then from equation (24) it follows that

K(τ) + U(τ) = A(τ), (26)

where the argument of the functions K, U and A determines the moment at
which they are evaluated. Equation (26) shows that the sum of the kinetic and
the potential energies at a given moment equals the work done by the mass forces
and the surface forces upto that moment.

4. THE STATIC PROBLEM

In a static problem we are not interested in the process of deformation, but
only in the �nal state, which we regard as an equilibrium. The static theory is a
linear one: uniformly doubled displacements always result from uniformly doubled
loads, and, more generally, from displacements u1, u2 corresponding to stresses
σ1, σ2, assigned forces f1, f2, and assigned surface loads σ1

N , σ
2
N we construct a

displacement u ≡ u1 − u2 answering to the stress σ = σ1 − σ2, force f = f1 − f2,
and surface load σN = σ1

N − σ2
N .

Let us assume that such an equilibrium state is reached in the moment t = τ .
Then K(τ) = 0 and hence U(τ) = A(τ). Since the potential energy U(τ) does
not depend on the �path� of the deformation, but only on the �nal deformation,
we may choose an arbitrary �path� of deformation. Let us choose the mass force
components fi, the stress components σi and the components ui of the displacement
in the following way:

In the time interval 0 ≤ t ≤ ε: fi(x, t) = 0, σi(x, t) = 0 and ui(x, t) = 0,

in the interval ε ≤ t ≤ τ − ε:

fi(x, t) = fi
t− ε
τ − 2ε

, σi(x, t) = σi
t− ε
τ − 2ε

, and ui(x, t) = ui
t− ε
τ − 2ε

,

in the interval τ − ε ≤ t ≤ τ : fi(x, t) = fi, σi(x, t) = σi and ui(x, t) = ui,

where by fi, σi and ui we denote the values of these functions at the moment t = τ
and depend only on the position x. They satisfy the equations of equilibrium and
so the functions fi(x, t), σi(x, t) and ui(x, t), de�ned above satisfy the equations of
motion. Then from equations (25) and (23) we obtain

U(τ) =

ε∫
0

Wdt+

τ−ε∫
ε

Wdt+

τ∫
τ−ε

Wdt =

τ−ε∫
ε

Wdt =
1

2

∫
V

ρfiui dV +
1

2

∫
S

σiui dS,
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because the velocity ∂ui/∂t = 0 outside the interval [ε, τ − ε], as a consequence
of the choice we made on t in the de�nitions of the functions fi(x, t), σi(x, t) and
ui(x, t) above. In this way we arrive at the formula of Clapeyron [4] from 1834,
asserting that the potential energy of the deformation equals half of the work which
the external forces (mass forces and surface forces) would have done, if they had
from the beginning the values which they acquire at the deformed equilibrium stage.

Solving even equilibrium problems of the linear theory of elasticity often brings
signi�cant di�culties. This is due primarily to the form of the boundary conditions.
The principle of St. Venant is helpful in many such situations. This principle
applies to the di�erence in the stresses and the di�erence in the deformations inside
the body, which result from two di�erent, but statically equivalent systems of surface
forces, applied at some portion of the boundary. According to this principle, in
domains su�ciently far from this part of the boundary, the di�erence in the stresses
and that in the deformations is ignorably small.

In 1859 Kirchho� [19] establishes the uniqueness of the solution to boundary
value problems of equilibrium where the stress vector and the displacement are
prescribed upon disjoint surfaces S 1 and S2, respectively, such that the closure
of S1 + S2 is the complete boundary of a �nite body V. The displacement u is
determined uniquely to within an in�nitesimal rigid displacement. He published
these results also in 1876 in [20].

There is a remarkable variational principle enabling us, in the case of equilibrium
subject to given surface displacements and vanishing assigned force in the interior,
to select among all kinematically possible deformations that one which satis�es the
equations of the theory of elasticity, when a positive de�nite elastic potential is
given. The �rst to recognize its signi�cance was Kelvin, who in 1863 expressed
it as �the elementary condition of stable equilibrium�. As a proved theorem of
linear three-dimensional elasticity, it was �rst given by Love [26] in 1906: �The
displacement that satis�es the equations of equilibrium as well as the conditions at
the boundary surface yields a smaller value for the total stored energy that does any
other displacement satisfying the same conditions at the bounding surface�.

For a review of the two-dimensional linear elastic problem and that for cylindric
bodies the reader is referred to Ivanov [18].

5. THE PROPAGATION OF WAVES

Having given consideration to static problems, let us now consider the propagat-
ion of waves.

In Continuum Mechanics waves are described as �singularities� across the two
sides of a geometric two-dimensional surface that propagates in space. Such surfaces
are called singular. To make things speci�c, consider a family of surfaces given by

x = x(p1, p2, t), (27)
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where p1, p2 are a pair of surface parameters, identifying what we shall call a surface
point. The velocity of the surface point, identi�ed in this way, is

∂x

∂t

∣∣∣
p1,p2=const.

. (28)

By eliminating the parameters, we may write (27) in the form

α(x, t) = 0 (29)

for some function α. De�ne the normal component vn of the velocity of a moving
surface by the scalar product

vn ≡
∂x

∂t

∣∣∣
p1,p2=const.

· n = −
∂α
∂t√
α,i α,i

(30)

where n is the unit normal to the surface. vn is called the speed of displacement

of the surface. The velocity vnn is the normal velocity of the surface.

Let Ψ be a function de�ned on the surface, we may for our purposes consider
it scalar, vector or tensor-valued. If Ψ undergoes an abrupt change in its value from
one side of the surface to the other, the surface is called a singular surface with
respect to the tensor Ψ. The jump in value of Ψ is denoted by [Ψ]. Hugoniot-
Duhem theorem states that: The speed of displacement of a singular surface across
which Ψ and its derivatives of orders 1, . . . , p − 1 are continuous, but at least one
p-th derivative of Ψ is discontinuous is determined up to sign by the ratio of the
jump of ∂pΨ/∂tp to that of the normal p-th derivative, ∂pΨ/∂np.

Let us now recall the material representation of a moving surface. If we express
the Eulerian coordinates x via the Lagrangian coordinates X and substitute them
in the de�nition (29) of the surface, we obtain S(X, t) ≡ α(x(X, t)). In the latter
representation, which we denote by S(t), we may consider the medium particles as
stationary and the surface S(t) moving amongst them, being occupied by a di�erent
set of particles at each time t. The speed of propagation of the wave is

VN ≡ −
∂S
∂t√
S,i S,i

.

This speed is a measure of the rate at which the moving surface S(t) traverses the
material.

A surface that is singular with respect to some quantity and that has a nonzero
speed of propagation is called a propagating singular surface or a wave.

Above we de�ned a singular surface with respect to an arbitrary quantity Ψ.
Duhem proposed to regard all quantities associated with a motion as functions of
the material variables X and t and to de�ne the order of a singular surface with
respect to Ψ as the order of the derivative of Ψ of the lowest order su�ering a
non-zero jump upon the surface.
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Some of the most interesting singularities are included in the case when

Ψ ≡ x(X, t),

i.e., are surfaces across which the motion itself, or one of its derivatives, is discontin-
uous. Surfaces across which at least one of the functional relations x = x(X, t) or
X = X(x, t) de�ning the motion itself is discontinuous are singularities of order
zero; those across which some of the �rst derivatives of x are discontinuous are of
�rst order, etc.

For a singular surface of order 1, we put Ψ = xi and obtain

[xi,k] = siNk si = [Nm xi,m], [ẋi] = −VN si.

Here Nk are the components of the unit normal N to the surface x = S(X, t)
de�ning the motion and equal

Nk =
S,k√
S,m S,m

.

The vectorN is the normal velocity of the material. The vector s, with components
si, is the singularity vector. It is parallel to the jump of velocity, its magnitude
varies with the choice of the initial state and thus does not furnish a measure of
the strength of the singularity. The jump in the speed of propagation of a singular
surface is the negative of the jump in the normal velocity of the material.

For a singular surface of order 2:

[xi,km] = siNkNm si = [NkNm xi,km]. (31)

Also
[ẋi,k] = −VN siNk, [ẍi] = V 2

N si. (32)

The formulae (31) and (32) show that a singular surface of order 2 is completely
determined by a vector s and the speed of propagation VN . They show that every
wave of second order carries jumps in the velocity gradient and the acceleration.
Waves of second order are therefore called acceleration waves.

For a body of continuous constant elasticity C, putting σmk = Ckmpq εpq into
the equations of motion ρẍk = σkm,m + ρfk yields

[ρẍk] = Ckmpq [up,qm], (33)

where we have supposed that ρf is continuous. In linear elasticity
[up,qm] = δαqδβm[xp,αβ ]. By applying the general identities (31) and (32) for an
acceleration wave, when the present con�guration is taken as the initial one, from
(33) we obtain

ρ V 2sk = Ckmpq nq nm sp, (34)

or
(Ckmpq nq nm − ρ V 2δpk) sp = 0.
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From this it follows that in order for an acceleration wave with normal n to exist
and propagate, the jump s which it carries must be an eigenvector of Ckmpq nq nm
corresponding to the eigenvalue ρ V 2. For a body such that the work of the stress
in any deformation is positive, as in the case for a hyperelastic body with positive
de�nite stored energy, the tensor Ckmpq nq nm is positive de�nite, therefore all
eigenvalues ρ V 2 are positive, and therefore all possible speeds are real. In the
general case, in any linearly elastic body such that the work of the stress is positive
for arbitrary deformations, a wave with given normal n may carry a discontinuity of
the acceleration parallel to any one of three uniquely determined, mutually
orthogonal directions, and corresponding to each of these directions there is a speed
of propagation determined uniquely by the elasticities of the material and by n.

When the eigenvalues ρ V 2 are not distinct, the above conclusion must be
modi�ed, as is seen most easily by considering the isotropic case, for then (33)
assumes the more special form

[ρẍk] = (λ+ µ) [up,pk] + µ [uk,pp],

so that for an acceleration wave we have

ρ V 2sk = (λ+ µ) spnpnk + µ sk,

specializing (34). Taking the scalar and vector products of this equation by n yields

(ρ V 2 − (λ+ 2µ)) s · n = 0, (ρ V 2 − µ) s× n = 0.

If s · n 6= 0, the �rst of these equations yields ρ V 2 = λ+ 2µ, and the second, if we
exclude the case when λ+µ = 0, yields s×n = 0. If s·n = 0, but s×n 6= 0, the second
equation yields ρ V 2 = µ. Summarizing these results, we see that in an isotropic
linearly elastic body for which λ + µ 6= 0, a necessary and su�cient condition
that the acceleration waves be propagated at positive speeds is λ + 2µ > 0, µ > 0.
This condition is satis�ed when the stored energy is positive de�nite. Two kinds of
acceleration waves are possible: longitudinal waves, whose speed of propagation is
given by

V 2 = (λ+ 2µ)/ρ,

and transverse waves, for which

V 2 = µ/ρ.

The foregoing results were �rst obtained by Christo�el [5] in 1877 and independently
by Hugoniot [16] in 1886. These results demonstrate the far-reaching e�ect of
isotropy: instead of three speeds of propagation, for an isotropic body there are only
two, but instead of there being only three possible directions for the discontinuity,
there are in�nitely many, though the possible directions are still far from arbitrary.
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6. PERFECT FLUIDS

A continuous medium is a perfect �uid if it can support no shearing stress
and no couple stress. As a consequence of these restrictions, the stress tensor σ
is hydrostatic, σ = −p1, and from Cauchy's �rst law of motion the dynamical

equation of Euler is obtained

ρẍ = −grad p+ ρf . (35)

Euler published this equation in 1757, see [8]. Cauchy's second law is satis�ed
automatically, in other words, ballance of linear momentum in a perfect �uid implies
balance of moment of momentum, as long as there are no extrinsic couples, while
if there are such present, the perfect �uid is incompatible with the principles of
mechanics. Hugoniot in 1887 [17] Part I, Hadamard in 1903 [13] and Duhem in
1901 [7] Part II, Chap. IV, proved that a perfect �uid admits only longitudinal
waves. Hadamard [13] and Duhem [7] Part II, Chap. I, proved that in an isochoric
motion of a perfect �uid wave propagation of any kind is impossible.

In 1869 Kelvin proved that: �A �ow of a perfect �uid subject to lamellar
assigned force is circulation preserving if and only if there exists a functional
relation

f(p, ρ, t) = 0; (36)

alternatively, if and only if, for each �xed time, the pressure is constant, or the
density is constant, or the surfaces p = const. coincide with the surfaces ρ =
const.� Kelvin's theorem is regarded as the fundamental theorem of classical hydro-
dynamics. Flows satisfying (36) are called barotropic.

A perfect �uid may be such that all its �ows are barotropic; this is the case
for homogeneous incompressible �uids, for which ρ = const. in space and time,
and for piezotropic �uids, for which there is an equation of state of the form
p = f(ρ). But these conditions are merely su�cient, not necessary for barotropic
�ow. For example, in a �uid having equations of state p = F (ρ, θ) = G(ρ, η), special
conditions may lead to a �ow for which θ = const. or for which η = const. Any such
�ow is barotropic, but the functional form of f in (36) depends upon the particular
conditions giving rise to the �ow.

When (36) holds, all the numerous theorems appropriate to circulation
preserving motion may be applied: the Helmholtz vorticity theorems, the Bernoullian
theorems and the Helmholtz theorem of conservation of energy. Indeed, all general
theorems of classical hydrodynamics follow from the circulation preserving property.

It should be noted also that In the case of a barotropic �ow, the speed of
propagation of acceleration waves

[ẍn] = −c2
[d log ρ

dn

]
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is c, where

c2 ≡ ∂p

∂ρ
.

This is Hugoniot's theorem, published in 1885, see [15] and [17], Part I.

For barotropic �ows in which neither the pressure nor the density is uniform,
a necessary and su�cient condition for wave propagation to be possible is that the
pressure be an increasing function of the density; this being so, waves of all orders
greater than 1 propagate with the unique speed c. Since c is the common speed of
propagation of so many kinds of waves, it is called the speed of sound.

7. PROBLEMS

In this section we would like to apply the ideas presented so far in order to
solve some concrete problems.

Problem 1. A rectangular tank containing a nonviscous liquid of constant
density moves horizontally to the right with a constant acceleration. Gravitational
force is the only external force. Find the pressure distribution in the liquid and the
geometrical shape of the upper surface of the liquid.

Solution. Choose the positive x-direction of the coordinate system to be the
direction in which the tank moves, and the positive z-direction to be the vertical
direction upward. Then, dv/dt = a e1 and b = −g e3, where a = |dv/dt| is a
constant and g is the (constant) acceleration due to gravity. Euler's equation

dv

dt
= −1

ρ
∇p+ b,

where b is the body force, yields the following three equations for the three Cartesian
components (x, y, z) of the ∇p:

∂p

∂x
= −aρ

∂p

∂y
= 0

∂p

∂z
= −gρ.

The second of these tree equations shows that p is independent of y, and thus has
the form

p = −ρax+ f(z) ,

where f(z) is an arbitrary function of z. From this form of p and the third component
of ∇p above, we see that f(z) = −ρgz+C, where C is a constant, thus arriving at

p = −ρ(ax+ gz) + C.
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At the point where the z-axis meets the upper surface of the liquid, we have p = pa,
where pa is the atmospheric pressure. If this point is at a height h above the origin,
the last equation for p gives C = pa + ρgh. Thus the pressure distribution of the
liquid is

p = pa − ρ(ax+ gz − gh).

For p = pa, the last equation for p becomes

z = −
(a
g

)
x+ h.

This is the shape of the upper surface of the liquid. Evidently, this surface is a
plane, making an acute angle θ = tan−1(a/g) with the horizontal. In the limiting
case when a→ 0, the liquid moves with a constant velocity and the upper surface
of the liquid becomes a horizontal plane.

The interested reader is invited to apply the method of solution of the last
problem in order to solve

Problem 2. A column of a nonviscous liquid of constant density contained in
a vertical circular vessel rotates like a rigid body about the axis of the vessel with a
constant angular velocity ω. Gravitational force is the only external force. Find the
pressure distribution in the liquid and the geometrical form of the upper surface of
the liquid.

In the next problem we will use Bernoulli's equation

∂v

∂t
+ w × v = −∇H ,

where w is the vorticity vector and H ≡ P + χ+ v2/2. Here P is

P =

∫
1

ρ
dp ,

with p being the pressure. This equation is known after Daniel Bernoulli (1738). It
is the equation of motion for an elastic �uid moving under conservative body force
−∇χ. Since Bernoulli's equation holds for an elastic �uid for which ρ = ρ(p), it
automatically holds in the special case of ρ = constant.

Problem 3. For a certain �ow of a nonviscous �uid of constant density under
the Earth's gravitational �eld, the velocity distribution is given by v = ∇φ, where
φ = x3 − 3xy2. Find the pressure distribution.

Solution. From the given v, we �nd that curl v = 0 and ∂v/∂t = 0. Thus
the �uid is irrotational and steady. Then ∂v/∂t = 0 and either the vorticity vector
w = 0 or v ×w = 0. Further, since the body force is the gravitational force, it is
conservative. With these observations, Bernoulli's equation

∂v

∂t
+ w × v = −∇H,
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where H is the Bernoulli's function H ≡ P + χ+ v2/2, reduces to

∇H = 0.

Since ∂H/∂t = 0, it follows that

H ≡ P + χ+
v2

2
= constant

everywhere in the �uid. Thus, under the assumed conditions, the function H is an
integral of the equation of motion of the elastic �uid.

Since the body force is conservative, χ = gz, where z is measured vertically
upward. Accordingly, from H = P + χ+ v2/2 = constant with P = p/ρ we obtain

p

ρ
+

1

2
v2 + gz = C,

where C is a constant.

From the given v we also �nd

v1 =
∂φ

∂x
= 3(x2 − y2), v2 =

∂φ

∂y
= −6xy, v3 = 0

and hence
v2 = v21 + v22 = 9(x2 + y2)2.

Substituting this result into the equation relating v2, p and z (above), we obtain

p

ρ
+

9

2
(x2 + y2)2 + gz = C.

From this result it is evident that C = p0/ρ, where p0 is the pressure at the origin.
Thus,

p = p0 − ρ
(9

2
(x2 + y2)2 + gz

)
is the sought pressure distribution.

Many interesting problems in Continuum Mechanics can be fond in the book
of Chandrasekharaiah and Debnath [3].

8. LINEARLY VISCOUS FLUIDS

Let us now consider a medium which in equilibrium, satis�es Euler's equation
(35)

grad p = ρ f ,

Ann. So�a Univ., Fac. Math and Inf., 107, 2020, 57�79. 73



but when in motion can support appropriate shearing stresses. More speci�cally,
let us assume that the stress tensor σ is a linear function of the velocity ẋ and the
velocity gradient, namely

σ = g(ẋ,w,d), (37)

where g is a linear function. Here d is Euler's stretching tensor and w is Cauchy's
spin tensor. The constitutive equations (37) de�ne linearly viscous �uid. By
applying the principle that the constitutive equation must have the same form for
all observers, one shows that in fact σ is independent of ẋ and w, i.e.,

σ = g(d), (38),

with the function g being linear. This equation in an internal frame, along with
f(0) = −p1, was taken as the de�nition of a �uid by Stokes [35] in 1845. If we now
use a coordinate system with axes that coincide with the principal directions of d,
so that (38) becomes

σkm = fkm(d1, d2, d3)

it is easily seen that the principal axes of stretching are also principal axes of stress.
Another interesting property of �uids included in the de�nition (37) is that such
�uids are necessarily isotropic.

The most general linear isotropic function σ of a symmetric second order tensor
d may be written in the form of Navier-Poisson law:

σ = −p1 + λ Id 1 + 2µd

or in components
σkm = −p δkm + λ dqqδkm + 2µdkm , (39)

where a use is made of the requirement that σ = −p1 when d = 0. Historically, the
simplest case of this law was proposed by Newton [31], Lib. II, Chap.IX. It follows
from (39) that σ is symmetric, thus Cauchy's second law is automatically satis�ed.
Thus, for the �uids in question, ballance of momentum implies ballance of moment
of momentum. Substitution of (39) into Cauchy's �rst law of motion

σij,j + ρfi = ρ
dvi
dt
, i = 1, 2, 3

yields a system of three di�erential equations, known, when subjected to further
simplifying assumptions, as the Navier-Stokes equations:

µ∇2v + (λ+ µ)∇(divv)−∇p+ ρf = ρ
dv

dt
. (40)

They are attributed to Navier (1822) and Stokes (1845) and hold for both
compressible and incompressible viscous �uid �ows; in the incompressible case
ρ = ρ0 and divv = 0.
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The coe�cients λ and µ are the viscosities of the �uid. In the absence of
viscosity, that is if λ and µ are negligibly small, this equation reduces to Euler's
equation of motion (35) for perfect �uids. Because of that perfect �uids are often
called inviscid.

The portion λ Id 1 + 2µd of the stress is considered as arising from internal
friction. Because

σkm = 2µdkm when k 6= m, (41)

µ is the ratio of the shear stress to the corresponding shearing of any two orthogonal
elements, and so is called the shear viscosity.

The stress power assumes the form

P = σkm dkm = −p dkk + λ(dkk)2 + 2µdkm dmk.

In 1850 Stokes had shown in [36] that for the �uids in consideration

µ ≥ 0, 3λ+ 2µ ≥ 0.

The same conclusion was reached independently by Duhem in 1901, published in
[7], Part I. These inequalities have some signi�cant mechanical consequences. For
example, equations (40) with µ ≥ 0 imply that the shear stress always opposes
the shearing. These consequences show that the e�ect of the viscous stress σ + p1,
as given by (39) is always to resist change of shape, and thus is of the nature of
frictional resistance.

For an incompressible viscous �uid, the Navier-Stokes equations (40) are
rewritten in the form:

µ

ρ
∇2v +

1

ρ
∇p+ f =

dv

dt
. (42)

The coe�cient µ/ρ is called kinematic viscosity.

The presence of viscosity has the e�ect of making the propagation of most
kinds of waves impossible. In 1926 Kotchine [21] proved that the instantaneous
existence of a surface upon which ẋ and p are continuous but ẋk,m su�ers a jump
discontinuity is incompatible with the law of linear viscosity (39). His result is
contained in an earlier one of Duhem from 1901 [7], Part II, Chap. III, who uses
a di�erent terminology. In [6] and [7], Part II, Chap. III, Duhem asserts that in a
linearly viscous �uid no waves of order greater than 1 are possible.

A summary of the existing knowledge of the theories of non-linear viscosity is
given in [38]. An excellent text from the latter part of the 20th Century, which the
reader can use to get acquainted with the modern developments of the presented
theories, is the book of Timoshenko and Goodier [37].

For the readers privileged to know Russian, we list two excellent texts on
hydrodynamics [40], [41]. They can be used to deepen knowledge in the theories
presented in this review. Two prominent texts in Bulgarian on hydrodynamics are
the book of Zaprianov and that of Shkadov and Zaprianov, [39] and [42].
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9. CONDITIONS FOR COMPATABILITY OF THE STRESSES

The conditions for compatability of the stresses are due to Beltrami [1], and
were independently discovered by Mitchell in 1899 [27].

We consider the static case in which the equations of motion

σij,j + ρfi = ρ
∂2ui
∂t2

become the equations for equilibrium

σij,j + Fi = 0, (43)

where F = rf . These equations form a system of 3 equations for the 6 unknowns
σij (we assume that the volume forces f are given). This system has in�nitely
many solutions, but not every one of them corresponds to a real deformation,
from which we can calculate the displacement u in the medium. As we know, for
the deformations, determined using equation (17), it is necessary and su�cient to
satisfy the conditions for the compatability of the deformations of St. Venant

εij,kl + εkl,ij − εik,jl − εjl,ik = 0. (44)

Let us express these conditions with the stresses. Let's substitute the components
of the tensor of deformations, using equations (17), into the conditions (44), and
then introduce the notation σ = σkk. We obtain

σij,kl + σkl,ij − σik,jl − σjl,ik =
ν

1 + ν
(σ,ijδkl + σ,klδij − σ,ikδjl − σ,jlδik). (45)

If we set k = l and sum over the repeated index, we will arrive at the following
system of equations:

σij,kk + σ,ij − σik,jk − σjk,ik =
ν

1 + ν
(σ,ij + σ,kkδij). (46)

This system consists of 9 equations, from which independent are only 6. We can
obtain these 6 independent equations if we let, for example, i ≥ j, because of the
symmetry with respect to the indexes i and j. The system (46), obtained in this
manner, is equivalent to the initial system (45), because each system consists of 6
independent equations, and the equations of system (46) are linear combinations
of the equations of system (45).

Let us di�erentiate the equations (43) with respect to xk. We obtain

σij,jk = −Fi,k. (47)

Substitute (47) in (46) to obtain

σij,kk +
ν

1 + ν
σ,ij −

ν

1 + ν
σ,kk δij = −(Fi,j + Fj,i). (48)
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We are now going to simplify this system in the following way: We set in (45) k = i
and l = j and after a few calculations obtain

σij,ij =
1− ν
1 + ν

σ,ii. (49)

Now using (47), we can write equation (49) as

σ,ii = −1 + ν

1− ν
Fi,i.

Substituting this result in (48), we �nally obtain the conditions of Beltrami-

Mitchell for the compatability of the stresses:

σij,kk +
1

1 + ν
σ,ij = − ν

1− ν
Fk,k δij − (Fi,j + Fj,i).
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