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We consider the set Π∗
d of monic polynomials Qd = xd +

∑d−1
j=0 ajx

j , x ∈ R, aj ∈ R∗,
having d distinct real roots, and its subsets defined by fixing the signs of the coefficients

aj . We show that for every choice of these signs, the corresponding subset is non-empty

and contractible. A similar result holds true in the cases of polynomials Qd of even
degree d and having no real roots or of odd degree and having exactly one real root.

For even d and when Qd has exactly two real roots which are of opposite signs, the

subset is contractible. For even d and when Qd has two positive (resp. two negative)
roots, the subset is contractible or empty. It is empty exactly when the constant term

is positive, among the other even coefficients there is at least one which is negative,

and all odd coefficients are positive (resp. negative).
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of signs.
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1. INTRODUCTION

In the present paper we consider the general family of real monic univari-
ate polynomials Qd = xd +

∑d−1
j=0 ajx

j . It is a classical fact that the subsets of

Rd ∼= Oa0 . . . ad−1 of values of the coefficients aj for which the polynomial Qd has
one and the same number of distinct real roots are contractible open sets. These
sets are the [d/2] + 1 open parts of R1,d := Rd \∆d, where ∆d is the discriminant
set corresponding to the family Qd.
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Remarks 1. (1) One defines the discriminant set by the two conditions:

(a) The set ∆1
d is defined by the equality Res(Qd,Q

′
d,x)=0, where Res(Qd,Q

′
d,x)

is the resultant of the polynomials Qd and Q′d, i. e. the determinant of the corre-
sponding Sylvester matrix.

(b) One sets ∆d := ∆1
d \∆2

d, where ∆2
d is the set of values of the coefficients aj

for which there is a multiple complex conjugate pair of roots of Qd and no multiple
real root.

One observes that dim(∆d) = dim(∆1
d) = d − 1 and dim(∆2

d) = d − 2. Thus
∆d is the set of values of (a0, . . . , ad−1) for which the polynomial Qd has a multiple
real root.

(2) The discriminant set is invariant under the one-parameter group of quasi-
homogeneous dilatations aj 7→ ud−jaj , j = 0, . . . , d.

Remark 1. If one considers the subsets of Rd for which the polynomial Qd
has one and the same numbers of positive and negative roots (all of them distinct)
and no zero roots, then these sets will be the open parts of the set R2,d := Rd \
(∆d∪{a0 = 0}). To prove their connectedness one can consider the mapping “roots
7→ coefficients”. Given two sets of nonzero roots with the same numbers of negative
and positive roots (in both cases they are all simple) one can continuously deform
the first set into the second one while keeping the absence of zero roots, the numbers
of positive and negative roots and their simplicity throughout the deformation. The
existence of this deformation implies the existence of a continuous path in the set
R2,d connecting the two polynomials Qd with the two sets of roots.

In the present text we focus on polynomials without vanishing coefficients and
we consider the set

R3,d := Rd \ (∆d ∪ {a0 = 0} ∪ {a1 = 0} ∪ · · · ∪ {ad−1 = 0}) .
We discuss the question when its subsets corresponding to given numbers of positive
and negative roots of Qd and to given signs of its coefficients are contractible.

Notation 1. (1) We denote by σ the d-tuple (sign(a0), . . ., sign(ad−1)), where
sign(aj) = + or −, by Ed the set of elliptic polynomials Qd, i. e. polynomials with
no real roots (hence d is even and a0 > 0), and by Ed(σ) ⊂ Ed the set consisting of
elliptic polynomials Qd with signs of the coefficients defined by σ.

(2) For d odd and for a given d-tuple σ, we denote by Fd(σ) the set of monic
real polynomials Qd with signs of their coefficients defined by the d-tuple σ and
having exactly one real (and simple) root.

(3) For d even, we denote by Gd(σ) the set of polynomials Qd having signs of
the coefficients defined by the d-tuple σ and having exactly two simple real roots.

Remark 2. For an elliptic polynomial Qd, one has a0 > 0, because for a0 < 0,
there is at least one positive root. The sign of the real root of a polynomial of Fd(σ)
is opposite to sign(a0). A polynomial from Gd(σ) has two roots of same (resp. of
opposite) signs if a0 > 0 (resp. if a0 < 0).
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In order to formulate our first result we need the following definition:

Definition 1. (1) For d even and a0 < 0, we set Gd,(1,1)(σ) := Gd(σ). For d
even and a0 > 0, we set Gd(σ) := Gd,(2,0)(σ) ∪ Gd,(0,2)(σ), where for Qd ∈ Gd,(2,0)
(resp. Qd ∈ Gd,(0,2)), Qd has two positive (resp. two negative) distinct roots and
no other real roots. Clearly Gd,(2,0)(σ) ∩ Gd,(0,2)(σ) = ∅.

(2) For d even, we define two special cases according to the signs of the coeffi-
cients of Qd and the quantities of its positive or negative real roots:

Case 1). The constant term and all coefficients of monomials of odd degrees
are positive, there is at least one coefficient of even degree which is negative, and
Qd has 2 positive and no negative roots.

Case 2). The constant term is positive, all coefficients of monomials of odd
degrees are negative, there is at least one coefficient of even degree which is negative,
and Qd has 2 negative and no positive roots.

Note that Cases 1) and 2) are exchanged when one performs the change of variable
x 7→ −x.

Our first result concerns real polynomials with not more than 2 real roots:

Theorem 1. (1) For d even and for each d-tuple σ, the subset Ed(σ) ⊂ Ed is
non-empty and convex hence contractible.

(2) For d odd and for each d-tuple σ, the set Fd(σ) is non-empty and con-
tractible.

(3) For d even and for each d-tuple σ with a0 < 0, the set Gd,(1,1)(σ) is con-
tractible. For d even and for each d-tuple σ with a0 > 0, each set Gd,(2,0)(σ)
(resp. Gd,(0,2)(σ)) is contractible or empty. It is empty exactly in Case 1) (resp. in
Case 2)).

The theorem is proved in Section 4. The next result of this paper concerns
hyperbolic polynomials, i. e. polynomials Qd with d real roots counted with multi-
plicity.

Notation 2. We denote by Πd the hyperbolicity domain, i. e. the subset of Rd
for which the corresponding polynomial Qd is hyperbolic. The interior of Πd is the
set of polynomials having d distinct real roots and its border ∂Πd equals ∆d ∩Πd.
We set

Π∗d := Πd \ (∆d ∪ {a0 = 0} ∪ {a1 = 0} ∪ · · · ∪ {ad−1 = 0}) .

Thus Π∗d is the set of monic degree d univariate polynomials with d distinct real roots
and with all coefficients non-vanishing. We denote by Πk

d and Π∗kd the projections
of the sets Πd and Π∗d in the space Oad−k . . . ad−1 (hence Πd

d = Πd and Π∗dd = Π∗d),
by ∂Πk

d the border of Πk
d and by pos and neg the numbers of positive and negative

roots of a polynomial Qd having no vanishing coefficients.

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 81–105. 83



We set a := (a0, a1, . . . , ad−1), a′ := (a1, . . . , ad−1), a′′ := (a2, . . . , ad−1) and
a(k) := (ak, . . . , ad−1). In what follows we use the same notation for functions and
for their graphs.

Remarks 2. (1) For a hyperbolic polynomial with no vanishing coefficients,
the d-tuple σ defines the numbers pos and neg. Indeed, by Descartes’ rule of signs a
real univariate polynomial Qd with c sign changes in its sequence of coefficients has
≤ c positive roots and the difference c−pos is even, see [13] and [10]. When applying
this rule to the polynomial Q(−x) one finds that the number p of sign preservations
is ≥ neg and the difference p − neg is even. For a hyperbolic polynomial one has
pos+ neg = c+ p = d, so in this case c = pos and p = neg.

(2) By Rolle’s theorem the non-constant derivatives of a hyperbolic polynomial
(resp. of a polynomial of the set Π∗d) are also hyperbolic (resp. are hyperbolic with
all roots non-zero and simple). Hence for two hyperbolic polynomials of the same
degree and with the same signs of their respective coefficients, their derivatives of
the same orders have one and the same numbers of positive and negative roots.

Our next result is the following theorem (proved in Section 5):

Theorem 2. For each d-tuple σ, there exists exactly one open component of
the set Π∗d the polynomials Qd from which have exactly pos positive simple and
neg negative simple roots and have signs of the coefficients as defined by σ. This
component is contractible.

One can give more explicit information about the components of the set Π∗d.
Denote by M such a component defined after a d-tuple σ and by Mk its projection
in the space Oad−k · · · ad−1. It is shown in [19] (see Proposition 1 therein) that M
is non-empty. In Section 5 we prove the following statement:

Theorem 3. For k ≥ 3, the set Mk is the set of all points between the graphs
Lk± of two continuous functions defined on Mk−1:

Mk = {a(d−k) ∈ Rd−k | Lk−(a(d−k+1)) < ad−k < Lk+(a(d−k+1)), a(d−k+1) ∈Mk−1} .

The functions Lk± can be extended to continuous functions defined on Mk−1, whose
values might coincide (but this does not necessarily happen) only on ∂Mk−1.

Remark 3. Theorem 2 can be deduced from Theorem 3 (but we give in
Section 5 a direct proof which is short enough). Indeed, given a component M of
the set Π∗d, one can successively contract it into its projections Md−1, Md−2, . . .,
M2. The latter is one of the sets Π∗2d±± defined in Example 2 which are contractible.

In Section 2 we remind some results which are used in the proof of Theorem 2.
In Section 3 we introduce some notation and we give examples concerning the sets
Πd and Π∗d for d = 1, 2 and 3. These examples are used in the proofs of Theorems 2
and 3. In Section 6 we make comments on Theorems 1, 2 and 3 and we formulate
open problems.
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2. KNOWN RESULTS ABOUT THE HYPERBOLICITY DOMAIN

Before proving Theorems 1, 2 and 3 we remind some results about the set Πd

which are due to V. I. Arnold, A. B. Givental and the author, see [3], [11] and [14]
or Chapter 2 of [17] and the references therein.

Notation 3. We denote by Kd the simplicial angle {x1 ≥ x2 ≥ · · · ≥ xd} ⊂ Rd
and by Ṽ the Viète mapping

Ṽ : (x1, . . . , xd) 7→ (ϕ1, . . . , ϕd) , ϕj =
∑

1≤i1<i2<···<ij≤d

xi1xi2 · · ·xij .

Strata of Kd are denoted by their multiplicity vectors. E. g. for d = 5, the stratum
of K5 defined by the multiplicity vector (2, 2, 1) is the set {x1 = x2 > x3 = x4 >
x5} ⊂ R5. The same notation is used for strata of Πd which is justified by parts
(3) and (4) of Theorem 4.

Remark 4. The set ∆d ∩ Πd = ∆1
d ∩ Πd consists of points a ∈ Πd ⊂ Rd,

for which the hyperbolic polynomial Qd has at least one root of multiplicity ≥ 2.
That is why Πd \∆d = Πd \∆1

d = S1d is the stratum of Πd with multiplicity vector
1d = (1, . . . , 1) and

Π∗d = S1d \ ({a0 = 0} ∪ · · · ∪ {ad−1 = 0}) .

The strata of Π∗d (they are all of dimension d, so they can also be called components)
are of the form

S1d(σ) := {a ∈ S1d | sign(aj) = σj , 0 ≤ j ≤ d− 1}

for some σ = (σ0, . . . , σd−1) ∈ {±}d.

Theorem 4. (1) For k ≥ 3, every non-empty fibre f̃k of the projection πk :
Πk
d → Πk−1

d is either a segment or a point.

(2) The fibre f̃k is a segment (resp. a point) exactly if the fibre is over a point
of the interior of Πk−1

d (resp. over ∂Πk−1
d ).

(3) The mapping Ṽ : Kd → Πd is a homeomorphism.

(4) The restriction of the mapping Ṽ to (the closure of) any stratum of Kd

defines a homeomorphism of the (closure of the) stratum onto its image which is
(the closure of) a stratum of Πd.

(5) A stratum S of Πd defined by a multiplicity vector with ` components
is a smooth `-dimensional real submanifold in Rd. It is the graph of a smooth
(d − `)-dimensional vector-function defined on the projection of the stratum in
Oad−` . . . ad−1. Thus S is a real manifold with boundary. The field of tangent
spaces to S continuously extends to the strata from the closure of S. The extension
is everywhere transversal to the space Oa0 . . . ad−`−1. That is, the sum of the two
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vector spaces Oa0 . . . ad−`−1 and (the extension of) the field of tangent spaces to S
is the space Oa0 . . . ad−1.

(6) For k ≥ 3, the set Πk
d is the set of points on and between the graphs Hk

+

and Hk
− of two locally Lipschitz functions defined on Πk−1

d whose values coincide

on and only on ∂Πk−1
d :

Πk
d = {(ad−k, a(d−k+1)) ∈ R×Πk−1

d | Hk
−(a(d−k+1)) ≤ ad−k ≤ Hk

+(a(d−k+1))} ,

(Hk
−(a(d−k+1)) = Hk

+(a(d−k+1)))⇔ (a(d−k+1) ∈ ∂Πk−1
d ) .

(7) For k ≥ 3, the graph Hk
+ (resp. Hk

−) consists of the closures of the strata
whose multiplicity vectors are of the form (r, 1, s, 1, . . .) (resp. (1, r, 1, s, . . .)) and
which have exactly k − 1 components. (In [17] it is written “k components” which
is wrong.)

(8) For 2 ≤ k ≤ `, the projection Sk of every `-dimensional stratum S of Πd

in the space Oad−k . . . ad−1 is the set of points on and between the graphs Hk
+(S)

and Hk
−(S) of two locally Lipschitz functions defined on the closure Sk−1 of Sk−1

whose values coincide on and only on ∂Sk−1.

Remarks 3. (1) The projections πk are defined also for k = 2. For k = 2,
each fibre f̃2 is a half-line and only the graph H+

2 (but not H−2 ) is defined, see
Example 2.

(2) Consider two strata S1 and S2 of Πd defined by their multiplicity vectors
µ(S1) and µ(S2). The stratum S2 belongs to the topological and algebraic closure
of the stratum S1 if and only if the vector µ(S2) is obtained from the vector µ(S1)
by finitely-many replacings of two consecutive components by their sum.

Remark 5. For m ≥ 2, consider the fibres f�m of the projection

πm∗ : Πd → Πm
d , πm∗ := πm+1 ◦ · · · ◦ πd .

In particular, f̃d = f�d−1. Suppose that such a fibre f�m is over a point A :=
(a0d−m, . . . , a

0
d−1) ∈ Πm

d . When non-empty, the fibre f�m is either a point (when
A ∈ ∂Πm

d ) or a set homeomorphic to a (d−m)-dimensional cell and its boundary
(when A ∈ Πm

d \ ∂Πm
d ). This follows from part (6) of Theorem 4. The boundary of

the cell can be represented as consistsing of:

– two 0-dimensional cells (these are the graphs of the functions Hm+1
± |A),

– two 1-dimensional cells (the graphs of Hm+2
± |(πm+1)−1(A)),

– two 2-dimensional cells (the graphs of Hm+3
± |(πm+1◦πm+2)−1(A)),

– . . .,

– two (d−m−1)-dimensional cells (the graphs ofHd
±|((πm+1◦πm+2◦···◦πd−1)−1(A)).
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Remark 6. It is a priori clear that for the functions Lk± defined in Theorem 3,
one has the inequalities

Lk+(a(d−k+1)) ≤ Hk
+(a(d−k+1)) and Lk−(a(d−k+1)) ≥ Hk

−(a(d−k+1))

for each value of a(d−k−1), where Lk+ or Lk− (hence Hk
+ or Hk

−) is defined. It is
also clear that the border of each component of the set Π∗d consists of parts of the
closures of the graphs Hd

± and of parts of the hyperplanes {aj = 0}, j = 1, . . ., d−1.

In Chapter 2 of [17] one can find also results concerning the hyperbolicity
domain which are exposed in the thesis [21] of I. Méguerditchian.

3. NOTATION AND EXAMPLES

Notation 4. Given a d-tuple σ = (σ0, . . . , σd−1), where σj = + or −, we
denote byR(σ) the subset of Rd∼=Oa0 · · · ad−1 defined by the conditions sign(aj)=σj ,
j = 0, . . ., d − 1, and we set Π∗d,σ := Π∗d ∩ R(σ). For a set T ⊂ Oa0 · · · ad−1, we

denote by T k its projection in the space Oad−k · · · ad−1.

Example 1. For k = 1 and for aj = 0, j = 0, . . ., d − 2, there exists a
hyperbolic polynomial of the form (x+ ad−1)xd−1 with any ad−1 ∈ R, so Π1

d = R.
If one chooses any hyperbolic degree d polynomial Q∗d with distinct roots, the shift
x 7→ x + g results in ad−1 7→ ad−1 + dg, so there exist such polynomials Q∗d with
any values of ad−1. In addition, one can perturb the coefficients a0, . . . , ad−2 to
make them all non-zero by keeping the roots real and distinct. Thus Π∗1d = R∗ =
R \ {ad−1 = 0},

Π∗1d ∩ {ad−1 > 0} = {R∗+ : ad−1 > 0} , Π∗1d ∩ {ad−1 < 0} = {R∗− : ad−1 < 0} .

Example 2. One can formulate analogs to parts (1), (6) and (7) of Theorem 4
for k = 2 by saying that the border of the set Π2

d is the set H2
+ while H2

− is empty,
see part (1) of Remarks 3.

The setH2
+ is the projection in R2 ∼= Oad−2ad−1 of the stratum of Πd consisting

of polynomials having a d-fold real root: (x + λ)d. Its multiplicity vector equals
(d). Hence ad−1 = dλ, ad−2 = d(d− 1)λ2/2, so H2

+ : ad−2 = (d− 1)a2d−1/2d. One
can observe that

Π∗2d = {ad−2 6= 0 6= ad−1, ad−2 < (d− 1)a2d−1/2d} ,

Π∗2d ∩ {ad−1 > 0, ad−2 > 0} = {ad−1 > 0, 0 < ad−2 < (d− 1)a2d−1/2d} =: Π∗2d++ ,

Π∗2d ∩ {ad−1 < 0, ad−2 > 0} = {ad−1 < 0, 0 < ad−2 < (d− 1)a2d−1/2d} =: Π∗2d−+ ,

Π∗2d ∩ {ad−1 > 0, ad−2 < 0} = {ad−1 > 0, ad−2 < 0} =: Π∗2d+− and

Π∗2d ∩ {ad−1 < 0, ad−2 < 0} = {ad−1 < 0, ad−2 < 0} =: Π∗2d−− .
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To obtain similar formulas for Π2
d instead of Π∗2d one has to replace everywhere the

inequalities ad−1 < 0, ad−1 > 0, ad−2 < 0, ad−2 > 0 and ad−2 < (d− 1)a2d−1/2d by
ad−1 ≤ 0, ad−1 ≥ 0, ad−2 ≤ 0, ad−2 ≥ 0 and ad−2 ≤ (d− 1)a2d−1/2d respectively.

Example 3. For d = 3 (hence σ = (σ0, σ1, σ2)), we set a2 := a, a1 := b,
a0 := c, and we consider the polynomial Q3 := x3+ax2+bx+c. Taking into account
the group of quasi-homogeneous dilatations which preserves the discriminant set
(see part (2) of Remarks 1) one concludes that each set Π∗3,σ is diffeomorphic to
the corresponding direct product

(Π∗3,σ∩{a = 1})×(0,∞) if σ2 = + or (Π∗3,σ∩{a = −1})×(−∞, 0) if β2 = − .

Set σ′ := (−σ0, σ1,−σ2). Using the same group of dilatations with u = −1 one
deduces that the set Π∗3,σ′ ∩ {a = −1} is diffeomorphic to the set Π∗3,σ ∩ {a = 1}.
Therefore in order to prove that all sets Π∗3,σ are contractible it suffices to show
this for the sets Π∗3,σ ∩{a = 1} with σ2 = +. The latter sets are shown in Figure 1.

-0.4 -0.З

Figure 1: The discriminant set of the family of polynomials x3 + x2 + bx + c and
the sets Π∗3,σ ∩ {a = 1}.

The figure represents the discriminant set of the polynomial Q•3 := x3 +x2 + bx+ c,
i. e. the set

Res(Q•3, Q
•
3
′, x) = 4b3 − b2 − 18bc+ 27c2 + 4c = 0 .

(The set ∆2
3 is empty, because there is not more than one complex conjugate pair

of roots, so ∆3 = ∆1
3, see Remarks 1.) This is a curve in R2 := Obc having a cusp
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at (b, c) = (1/3, 1/27) which corresponds to the polynomial (x + 1/3)3. The four
sets Π∗3,σ ∩ {a = 1} are the intersections of the interior of the curve with the open
coordinate quadrants. The intersections with {b > 0, c > 0} and {b > 0, c < 0} are
bounded curvilinear triangles.

4. PROOF OF THEOREM 1

Part (1). Each set Ed(σ) is non-empty. Indeed, given a polynomial Qd with
a0 > 0 (see Remark 2), for C > 0 large enough, the polynomial Qd + C is elliptic.
If the polynomials Qd,1 and Qd,2 belong to the set Ed(σ), then for t ∈ [0, 1], the

polynomial Q]d := tQd,1 + (1 − t)Qd,2 also belongs to it. Indeed, the signs of the
respective coefficients are the same and if Qd,1(x) > 0 and Qd,2(x) > 0, then

Q]d(x) > 0. Thus the set Ed(σ) is convex hence contractible.

Part (2). Each set Fd(σ) is non-empty. Indeed, for C > 0 large enough, the
polynomial Qd+sign(a0)C has a single real root which is simple and the sign of this
root is opposite to the sign of Qd(0). For a given polynomial Qd ∈ Fd(σ), denote
this root by ξ. Hence the polynomial Q0

d := |ξ|dQd(x/|ξ|) is in Fd(σ) and has a root
at 1 or −1. Suppose that the root is at 1 (for −1 the proof is similar). We show
that the subset F0

d (σ) of Fd(σ) consisting of such polynomials Q0
d is convex hence

contractible. On the other hand the set Fd(σ) is diffeomorphic to F0
d (σ)×R∗+ from

which contractibility of Fd(σ) follows.

For any two polynomials Q0,†
d , Q0,∗

d ∈ F0
d (σ), the signs of the coefficients of the

polynomial

Q0,[
d := tQ0,†

d + (1− t)Q0,∗
d , t ∈ [0, 1],

are the same as the signs of the respective coefficients of Q0,†
d and Q0,∗

d , hence

Q0,[
d ∈ F0

d (σ). This proves that F0
d (σ) is convex.

Part (3).

A) Contractibility of the sets Gd,(2,0)(σ) and Gd,(0,2)(σ).

The two real roots of Qd have the same sign (i. e. a0 > 0). We assume
that they are positive, i. e. we prove contractibility only of Gd,(2,0)(σ); otherwise
one can consider the polynomial Qd(−x) with the d-tuple σ̃ resulting from σ via
x 7→ −x (this mapping induces a bijection of the set of d-tuples onto itself) and
contractibility of Gd,(0,2)(σ̃) will be proved in the same way. Denote the real roots
of Qd by 0 < ξ < η.

We can assume that at least one coefficient of odd degree of Qd is negative.
Indeed, if all coefficients of Q0

d of odd degree are positive, then by Descartes’ rule
of signs the polynomial Q0

d can have two real positive roots only if there is at least
one coefficient of even degree which is negative. However in this case (and this is
Case 1)) the set Gd,(2,0)(σ) is empty, see Proposition 4 in [7].
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Next, we assume that η = 1 (hence ξ ∈ (0, 1)). Indeed, if one considers instead
of Qd ∈ Gd,(2,0)(σ) the polynomial Q0

d := ηdQd(x/η), one has Q0
d ∈ Gd,(2,0)(σ) and

Q0
d(1) = 0. We denote the set of such polynomials Q0

d by G0d,(2,0)(σ). As Gd,(2,0)(σ)

is diffeomorphic to G0d,(2,0)(σ)×R∗+, contractibility of G0d,(2,0)(σ) implies the one of

Gd,(2,0)(σ).

For ξ∗ ∈ (0, 1), we denote by G0,ξ
∗

d,(2,0)(σ) the subset of polynomials of G0d,(2,0)(σ)

with ξ = ξ∗. If Q0,1
d and Q0,2

d are two polynomials of G0,ξ
∗

d,(2,0)(σ), then for t ∈ [0, 1],

one has tQ0,1
d + (1 − t)Q0,2

d ∈ G0,ξ
∗

d,(2,0)(σ). Therefore for each ξ ∈ (0, 1), the set

G0,ξd,(2,0)(σ) is convex hence contractible, and to prove contractibility of G0d,(2,0)(σ)

(and hence of Gd,(2,0)(σ)) it suffices to find for each ξ ∈ (0, 1) a polynomial Q0,ξ
d ∈

G0,ξd,(2,0)(σ) depending continuously on ξ.

Suppose m is odd, 1 ≤ m ≤ d− 1, and that the coefficient of Qd ∈ Gd,(2,0)(σ)
of xm must be negative. There exists a unique polynomial of the form

R := xd −Axm +B , A > 0 , B > 0 , such that R(ξ) = R(1) = 0 . (4.1)

Indeed, the conditions

ξd −Aξm +B = 1−A+B = 0 (4.2)

imply

A = (1−ξd)/(1−ξm) > 0 and B = −1+A = ξm(1−ξd−m)/(1−ξm) > 0 . (4.3)

Remarks 4. (1) The fractions for A, B and B/ξm can be extended by conti-
nuity for ξ = 0 and ξ = 1. For ξ ∈ [0, 1], one has

A ∈ [1, dm ], limξ→0+ A = 1 , limξ→1− A = d
m ,

B ∈ [0, d−mm ] , limξ→0+ B = 0+, limξ→1− B = d−m
m ,

B/ξm ∈ [0,max(d−mm , 1)], limξ→0+ B/ξ
m = 1 , limξ→1− B/ξ

m = d−m
m .

(4.4)

(2) The function R has a global minimum at some point xM = xM (ξ) ∈ (0, 1).
One has

lim
ξ→0+

xM (ξ) = xM,0 = (m/d)1/(d−m) ∈ (0, 1) , R(xM,0) < 0 and lim
ξ→1−

xM (ξ) = 1 .

For m ≥ 3, the tangent line to the graph of R for x = 0 is horizontal and (0, R(0))
is an inflection point. There is also another inflection point xI = xI(ξ) ∈ (0, xM ).

Set
I := {1, 2, , . . . ,m− 1,m+ 1,m+ 2, . . . , d− 1} . (4.5)
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We construct a polynomial Ψ :=
∑d−1
j=0 ψjx

j with signs of the coefficients ψj , j ∈ I,
as defined by the d-tuple σ and satisfying the conditions

Ψ(ξ) = Ψ(1) = 0 . (4.6)

The latter conditions can be considered as a linear system with unknown variables
ψ0 and ψm. Its determinant equals ξm − 1 6= 0, so for given ψj , j ∈ I, these
conditions define a unique couple (ψ0, ψm) whose signs are not necessarily the ones
defined by the d-tuple σ. So to construct Ψ it suffices to fix ψj for j ∈ I.

For each ξ ∈ (0, 1) fixed and for ε > 0 sufficiently small, one has R + εΨ ∈
G0,ξd,(2,0)(σ). Indeed, for m 6= j 6= 0, the coefficients of R+ εΨ have the signs defined
by the d-tuple σ, so one has to check two things:

1) If ε is small enough, then

−A+ εψm < 0 and B + εψ0 > 0 . (4.7)

To obtain these two conditions simultaneously for all ξ ∈ (0, 1), one has to choose
ε as a function of ξ.

The conditions (4.6) can be given the form

ξmψm + ψ0 = U , ψm + ψ0 = V ,

where U and V are polynomials in ξ of degree ≤ d− 1. Hence

ψ0 = (U − ξmV )/(1− ξm) and ψm = (V − U)/(1− ξm) . (4.8)

Formulas (4.8) imply that Ψ is of the form

K(x, ξ)/(1− ξ)m , K ∈ R[x, ξ] , degxK ≤ d− 1 . (4.9)

As ξ → 0+, the quantity B decreases as ξm, see (4.3) and (4.4). As ξ → 1−, the
quantities |ψ0| and |ψm| increase not faster than C/(1 − ξ) for some C > 0. So
to obtain ε = ε(ξ) such that conditions (4.7) hold for ξ ∈ (0, 1), it suffices to set
ε := cξm+1(1− ξ)3 for some c > 0 small enough.

2) For ξ ∈ (0, 1), one must have

R+εΨ > 0 for x ∈ (−∞, ξ)∪(1,∞), and R+εΨ < 0 for x ∈ (ξ, 1) . (4.10)

Lemma 1. It is possible to choose c > 0 so small that conditions (4.7) and
(4.10) hold true simultaneously.

The lemma implies that for such c > 0, R + ε(ξ)Ψ ∈ G0,ξd,(2,0)(σ). So one can

set Q0,ξ
d := R+ ε(ξ)Ψ from which contractibility of Gd,(2,0)(σ) follows.
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Proof of Lemma 1. Conditions (4.7) were already discussed, so we focus on condi-
tions (4.10). Lowercase indices ξ indicate differentiations w.r.t. ξ.

a) To obtain the condition R+εΨ > 0 for x > 1, it suffices to get (R+εΨ)′ > 0
for x ≥ 1. For x ≥ 1, one has

R′ = dxd−1 −mAxm−1 = xm−1(dxd−m −mA) ≥ xm−1(d−mA) (4.11)

(as R′(1) > 0, one knows that d−mA > 0). Next,

d−mA = Λ/(1− ξm) , Λ := d−m+mξd − dξm .

There exists α > 0 such that for ξ ∈ [0, 1], Λ ≥ α(1− ξ)2. Indeed, Λξ = dm(ξd−1−
ξm−1) ≤ 0, with equality only for ξ = 0 and ξ = 1, so Λ is strictly decreasing on
[0, 1]. The existence of α follows from

Λ(0) = d−m > 0 , Λ(1) = Λξ(1) = 0 and

Λξξ = dm((d− 1)ξd−1 − (m− 1)ξm−1) hence

Λξξ(1) = dm(d−m) > 0 .

Thus for ξ ∈ (0, 1) and x > 1, one has

R ≥ (xm/m)α(1− ξ)2/(1− ξm) and ε(ξ)Ψ ≤ cξm+1(1− ξ)3K(x, ξ)/(1− ξm) ,

see (4.9). One can choose c > 0 sufficiently small so that for x ∈ (1, 2], R+ εΨ > 0.
There exists β > 0 such that for x ≥ 2, dxd−m − mA > βxd−m (see (4.11) and
(4.4)), so R ≥ βxd/d and for c > 0 small enough, R+ εΨ > 0.

b) For x ≤ −1 (resp. for x ∈ [−1, 0]), one has

R ≥ |x|m(|x|d−m +A) (resp. R ≥ B ≥ (max((d−m)/m, 1))ξm)

(see (4.1) and (4.4)) which for c > 0 small enough is larger than |ε(ξ)Ψ| and (4.10)
holds true.

c) Suppose that x ∈ (0, ξ). Then R ≥ min(h(x, ξ), q(x, ξ)), where

τ : y = h(x, ξ) := R′(ξ)(x− ξ) and χ : y = q(x, ξ) := B −Bx/ξ

are the tangent line to the graph of R at the point (ξ, 0) and the line joining
the points (0, B) and (ξ, 0) respectively. Indeed, if xI ∈ [ξ, 1) (see part (2) of
Remarks 4), then the graph of R is concave for x ∈ [0, ξ], so it is situated above the
line χ. If xI ∈ (0, ξ), then for x ∈ [xI , ξ], one has R ≥ h(x, ξ) and for x ∈ (0, xI ],
one has R ≥ q1(x, ξ), where

χ1 : y = q1(x, ξ) := R(xI) + (x− xI)(R(xI)−B)/xI
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is the line joining the points (0, B) and (xI , R(xI)). The line χ1 is above the line
χ for x ∈ (0, xI).

Consider the smaller in absolute value of the slopes of the lines τ and χ, i.e.
µ := min(|R′(ξ)|, B/ξ). One finds that

R′(ξ) = ξm−1g(ξ)/(1− ξm) , g := dξd−m −m− (d−m)ξd ,

with gξ = d(d −m)(ξd−m−1 − ξd−1) ≥ 0, with equality only for ξ = 0 and ξ = 1.
As g(0) = −m < 0, g(1) = 0,

gξξ = d(d−m)((d−m−1)ξd−m−2−(d−1)ξd−2) , so gξξ(1) = −md(d−m) < 0 ,

there exists β̃ > 0 such that for ξ ∈ (0, 1), |R′(ξ)| ≥ β̃ξm−1(1−ξ)2/(1−ξm). On the
other hand B/ξ = ξm−1(1−ξd−m)/(1−ξm). Thus µ ≥ µ0 := γξm−1(1−ξ) for some
γ > 0. Hence for x ∈ (0, ξ), the graph of R is above the line δ : y = −µ0(x− ξ).

There exists D0>0 such that for ξ∈(0, 1) and x∈ [0, 1], one has |(1−ξ)Ψ′|≤ D0,
see (4.8). Hence if c > 0 is sufficiently small, the graph of εΨ is below the line δ
for x ∈ [0, ξ), so R+ εΨ > 0.

d) Suppose that m ≥ 3 and that ξ > 0 is close to 0. Then for x > ξ, the line
τ̃ , which is tangent to the graph of R at the point (ξ, 0), is above the straight line
ρ̃ joining the points (ξ, 0) and (xM , R(xM )). Indeed,

R′(ξ) = ξm−1(dξd−m −m− (d−m)ξd)/(1− ξm) = O(ξm−1)

whereas the slope of ρ̃ is close to R(xM,0)/xM,0 < 0. Therefore for x ∈ (ξ, xM ], the
graph of R is below the line τ̃ .

For x∈ [xM ,1), the graph ofR is below the line χ̃ joining the points (xM ,R(xM ))
and (1, 0) whose slope −R(xM )/(1−xM ) is close to −R(xM,0)/(1−xM,0) > 0. On
the other hand one has |(1 − ξ)Ψ′| ≤ D0 (see c)), so |ε(ξ)Ψ′| ≤ cξm+1(1 − ξ)2D0.
Thus the graph of ε(ξ)Ψ is above the line τ̃ for x ∈ (ξ, xM ] and above χ̃ for
x ∈ [xM , 1), hence it is between the graph of R and the x-axis for x ∈ (ξ, 1), so
R+ εΨ < 0.

e) For m ≥ 3, we fix θ0 > 0 small enough such that for ξ ∈ (0, θ0], R+ εΨ < 0,
see d). For m ≥ 3, ξ ∈ [θ0, 1], x ∈ (ξ, 1), and for m = 1, ξ ∈ [0, 1], x ∈ (ξ, 1), one
has R+ ε(ξ)Ψ < 0 if c > 0 is small enough. Indeed, one can write

R = (x− 1)(x− ξ)R1 and Ψ = (x− 1)(x− ξ)Ψ1 , R1, Ψ1 ∈ R[x, ξ] .

Then R1(x, ξ) > 0. In particular, for ξ = 1, one obtains

R = xd − (d/m)xm + (d−m)/m , R′ = dxd−1 − dxm−1 , so R′(1) = 0 ,

and R′′ = d((d − 1)xd−2 − (m − 1)xm−2) hence R′′(1) = d(d −m) > 0, i. e. R is
divisible by (x− 1)2, but not by (x− 1)3.
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For m = 1, ξ = 0, one has R′(0) < 0 (whereas for m = 3, ξ = 0, one has
R′(0) = 0), this why for m = 1 our reasoning is valid for ξ ∈ [0, 1], not only for
ξ ∈ [θ0, 1].

Denote by R1,0 > 0 the minimal value of R1 and by Ψ1,0 the maximal value
of Ψ1 for x ∈ [0, 1]. One can choose c > 0 so small that for x ∈ (ξ, 1) and for the
values of ξ mentioned at the beginning of e),

R1− εΨ1 ≥ R1,0− εΨ1,0 > 0 , so R+ εΨ < 0 , because (x− 1)(x− ξ) < 0 .

The proof of the lemma results from a) – e). �

B) Contractibility of the set Gd,(1,1)(σ).

The two real roots of Qd have opposite signs (hence a0 < 0). Denote them by
−η < 0 < ξ. We define the sets

K := Gd,(1,1)(σ)∩{ξ > η} , L := Gd,(1,1)(σ)∩{ξ < η} and M := Gd,(1,1)(σ)∩{ξ = η}.

Lemma 2. Set σ := (σ0, . . . , σd−1), σj = + or −.

(1) Suppose that σ2j+1 = +, j = 0, 1, . . ., (d/2)− 1. Then K =M = ∅.
(2) Suppose that σ2j+1 = −, j = 0, 1, . . ., (d/2)− 1. Then L =M = ∅.
(3) Suppose that there exist two odd integers j1 6= j2, 1 ≤ j1, j2 ≤ d − 1, such

that σj1 = −σj2 . Then all three sets K, L and M are non-empty. There exists
an open d-dimensional ball B ⊂ Gd,(1,1)(σ) centered at a point in M and such that
B ∩ K 6= ∅ and B ∩ L 6= ∅.

Proof. Parts (1) and (2). If σ2j+1 = + (resp. σ2j+1 = −), j = 0, 1, . . ., (d/2)− 1,
then for a polynomial Qd ∈ Gd,(1,1)(σ), one has Qd(0) < 0 and Qd(a) > Qd(−a)
(resp. Qd(0) < 0 and Qd(a) < Qd(−a)) for a > 0. Hence ξ < η (resp. ξ > η).

Part (3). We construct a polynomial Q�d ∈M. Set u := ξj1−j2 and

Q�d := xd − ξd + σj1(xj1 − uxj2) + ε(Q�,od +Q�,ed ) ,

where

Q�,ed = b+

d/2∑
j=1

σ2jx
2j , b ∈ R , Q�,od = rxj1 +

d/2−1∑
j=0

σ2j+1x
2j+1

and ε > 0 is small enough. We choose b and r such that Q�,ed (±ξ) = 0 and
Q�,od (±ξ) = 0 respectively. Then Q�d(±ξ) = 0 and for j 6= 0 and j1 6= j 6= j2, the
sign of the coefficients of xj of Q�d is as defined by σ. For ε > 0 small enough, one
has sign(Q�d(0))=sign(−ξd+εb) = −. The coefficient of xj1 (resp. xj2) of Q�d equals
σj1 × (1 + ε(1 + r)) (resp. σj2 × (u+ ε(1 + r))), so it has the same sign as σj1 (resp.
as σj2).
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Consider a d-dimensional ball B centered at a point Q�d ∈M, with ξ = η = ξ0
and belonging to Gd,(1,1)(σ). Perturb the real root ξ of Q�d so that it takes values
smaller and values larger than ξ0. The signs of the coefficients of Q�d do not change.
Hence B intersects K and L. �

We show first that each of the two sets K and L, when nonempty, is con-
tractible. If we are in the conditions of part (1) or (2) of Lemma 2, then this
implies contractibility of Gd,(1,1)(σ). When we are in the conditions of part (3),
then one can contract K and L into points of B and then contract B into a point,
so in this case Gd,(1,1)(σ) is also contractible.

We prove contractibility only of K (when non-empty). The one of L is per-
formed by complete analogy (the change of variable x 7→ −x exchanges the roles
of K and L and changes the d-tuple σ accordingly). So we suppose that ξ > η. As
in the proof of A) we reduce the proof of the contractibility of K to the one of the
contractibility of K ∩ {ξ = 1}. As in A) we observe that if

Q‡d , Q4d ∈ K
η∗ := K ∩ {ξ = 1, η = η∗ ∈ (0, 1)} ,

then tQ‡d+(1−t)Q4d ∈ Kη
∗
, so Kη∗ is convex hence contractible and contractibility

of K ∩ {ξ = 1} (and also of K) will be proved if we construct for each η ∈ (0, 1) a
polynomial Qd ∈ Kη depending continuously on η.

Suppose that there is a negative coefficient of Qd of odd degree m (otherwise
K is empty). For η ∈ (0, 1), we construct a polynomial

S := xd − Ãxm − B̃ , Ã > 0 , B̃ > 0 , such that S(1) = S(−η) = 0 .

The latter two equalities imply

Ã = (1− ηd)/(1 + ηm) > 0 and B̃ = ηm(1 + ηd−m)/(1 + ηm) > 0 . (4.12)

Remarks 5. (1) Thus for η ∈ [0, 1], there exist constants 0 < Bmin ≤ Bmax

such that B̃/ηm ∈ [Bmin, Bmax]. Moreover one has

Ã ∈ [0, 1] , limη→0+ Ã = 1 , limη→1− Ã = 0+ ,

B̃ ∈ [0, 1] , limη→0+ B̃ = 0+ , limη→1− B̃ = 1 ,

limη→0+ B̃/η
m = 1 and limη→1− B̃/η

m = 1 .

(4.13)

(2) The derivative S′ has a unique root x̃M (which is simple) in (0, 1). All
non-constant derivatives of S are increasing for x > x̃M , have one or two roots
(depending on m) in [0, x̃M ) and no root outside this interval.
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We construct a polynomial Φ :=
∑d−1
j=0 ϕjx

j , where for j ∈ I (see (4.5)), the
sign of ϕj is defined by the d-tuple σ. This polynomial must satisfy the condition

Φ(−η) = Φ(1) = 0

which can be regarded as a linear system with known quantities ϕj , j ∈ I, and
with unknown variables ϕ0 and ϕm:

−ηmϕm+ϕ0 = W , ϕm+ϕ0 = T , W, T ∈ R[η] , so

ϕ0 = (ηmT+W )/(1+ηm) , ϕm = (T−W )/(1+ηm).
(4.14)

One must also have S + ε1(η)Φ ∈ Kη, η ∈ (0, 1), for some suitably chosen positive-
valued continuous function ε1(η). For ε1(η) > 0 small enough, the sign of the
coefficient of xj , j ∈ I, of the polynomial S+ ε1(η)Φ is as defined by the d-tuple σ.
So one needs to choose ε1(η) such that

−Ã+ ε1(η)ϕm < 0 , −B̃ + ε1(η)ϕ0 < 0 (4.15)

and

S+ε1(η)Φ > 0 for x ∈ (−∞,−η)∪(1,∞) , S+ε1(η)Φ < 0 for x ∈ (−η, 1) . (4.16)

We set ε1 := c̃ηm(1 − η)2, c̃ > 0. If one chooses c̃ small enough, conditions (4.15)
will hold true.

Lemma 3. For c̃ > 0 small enough, conditions (4.16) hold true.

Contractibility of K follows from the lemma.

Proof of Lemma 3. All derivatives of S of order ≤ d− 1 are increasing functions in
x for x ≥ 1 (see Remarks 5). As

S′(1) = (d+ dηm −m+mηd)/(1 + ηm) ≥ (d−m)/2 ,

one can choose c̃ small enough so that for x ∈ [1, 2], S′ + ε1(η)Φ′ > 0. Hence
S + ε1(η)Φ > 0 for x ∈ (1, 2]. If x ≥ 2, then for some positive constants k1 and k2,
one has S′ ≥ k1x

d−1 and Φ′ ≤ k2x
d−2, so if c̃ > 0 is small enough, then for x ≥ 2

(hence for x > 1), S′ + ε1(η)Φ′ > 0 and S + ε1(η)Φ > 0.

One has

S′(−η) = −(dηd−1 + (d−m)ηd+m−1 +mηm−1)/(1 + ηm) = O(ηm−1) ,

S′(−η) < 0 and S is convex for x < 0. Hence one can choose c̃ > 0 so small that
for x ∈ [−2,−η], S′ + ε1(η)Φ′ < 0 hence S + ε1(η)Φ > 0. Indeed, for η ∈ [0, 1] and
x ∈ [−2, 0], Φ′ is bounded. For x ≤ −2, one has

S′ ≤ k∗1xd−1 and |Φ′| ≤ k∗2xd−2
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for some positive constants k∗1 , k∗2 , so S + ε1(η)Φ < 0 (thus this holds true for
x < −η).

The function S is convex on [−η, 0], see Remarks 5. Hence for x ∈ [−η, 0], the
graph of S is below the line ζ joining the points (−η, 0) and (0,−B̃). Its slope is
−B̃/η, with | − B̃/η| = O(ηm−1). Hence for x ∈ [−η, 0] and for c̃ > 0 sufficiently
small, the graph of Φ is above the line ζ (because Φ′ is bounded for x ∈ [−1, 0],
η ∈ [0, 1]) and one has S + ε1(η)Φ < 0.

Suppose that x ∈ [0, x̃M ]. The function S is decreasing, see Remarks 5, hence
S(x) ≤ S(0) = −B̃ = O(ηm). As there exists k3 > 0 such that for x ∈ [0, 1],
|Φ| ≤ k3, for c̃ > 0 sufficiently small, one has S + ε1(η)Φ < 0.

For x ∈ [x̃M ,1], the function S is convex, hence its graph is below the line ζ̃
joining the points (x̃M , S(x̃M )) and (1, 0). Recall that S(x̃M )≤S(0)=−B̃=O(ηm).
There exists k4 > 0 such that for x ∈ [0, 1] and η ∈ [0, 1], |Φ′| ≤ k4. Thus the slope
of ζ̃ is

≥ B̃/(1− x̃M ) > B̃ = O(ηm)

while |εΦ′| ≤ c̃ηm(1− η)2k4. Hence for sufficiently small values of c̃ > 0, the graph
of εΦ is above the line ζ̃ and S + ε1(η)Φ < 0. �

5. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2. In the proof we assume that the polynomials of Πd are of the
form Qd := xd + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0 and the ones of Πd−1 are of the

form Qd−1 := xd−1+ad−1x
d−2+ · · ·+a2x+a1. Thus the intersection Πd∩{a0 = 0}

can be identified with Πd−1.

We show that every polynomial Qd ∈ Π∗d can be continuously deformed so
that it remains in Π∗d, the signs of its coefficients do not change throughout the
deformation except the one of a0 which vanishes at the end of the deformation.
Therefore

1) throughout the deformation the quantities of positive and negative roots do
not change;

2) at the end of the deformation exactly one root vanishes and a polynomial
of the form xQd−1 is obtained with Qd−1 ∈ Πd ∩ {a0 = 0}.

Moreover, we show that throughout and at the end of the deformation one
obtains polynomials with distinct real roots. Thus any given component of the
set Π∗d can be retracted into a component of the set Π∗d−1; the latter is defined by
the (d − 1)-tuple obtained from σ by deleting its first component. For d = 2, all
components of the set Π∗2 are contractible, see Example 2.
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This means that for every given d and σ, there exists exactly one component
of Π∗d, and which is contractible. The deformation mentioned above is defined like
this:

Yd := (Qd + txQ′d)/(1 + td) =

d∑
j=0

((1 + tj)/(1 + td))ajx
j , t ≥ 0 .

It is clear that the polynomial Yd is monic, with sign(aj) =sign((1 + tj)aj/(1 + td))
and limt→+∞((1 + tj)aj/(1 + td)) = jaj/d. There remains to prove only that Yd
has d distinct real roots.

Denote the roots of Qd by η1 < · · · < ηs < 0 < ξ1 < · · · < ξd−s. The
polynomial Q′d has exactly one root in each of the intervals (η1, η2), . . ., (ηs−1, ηs),
(ηs, ξ1), (ξ1, ξ2), . . ., (ξd−s−1, ξd−s). We denote these roots by τ1 < · · · < τd−1.

For each t ≥ 0, the polynomial Yd changes sign in each of the intervals (ηj , τj),
j = 1, . . ., s− 1, and in each of the intervals (τs+i−1, ξi), i = 2, . . ., d− s, so it has
a root there. This makes not less than d− 2 distinct real roots.

If τs > 0 (resp. τs < 0), then Yd changes sign in each of the intervals (ηs, 0)
and (τs, ξ1) (resp. (ηs, τs) and (0, ξ1)), so it has two more real distinct roots. Hence
for any t ≥ 0, Yd is hyperbolic, with d distinct roots. �

Proof of Theorem 3. We remind that we denote by Hk
± not only the graphs men-

tioned in Theorem 4, but also the corresponding functions.

A) We prove Theorem 3 by induction on d. The induction base are the cases
d = 2 and d = 3, see Examples 2 and 3.

Suppose that Theorem 3 holds true for d = d0 ≥ 3. Set d := d0 + 1. As in
the proof of Theorem 2 we set Qd := xd + ad−1x

d−1 + · · · + a2x
2 + a1x + a0 and

Qd−1 := xd−1 + ad−1x
d−2 + · · ·+ a2x+ a1, so that the intersection Πd ∩ {a0 = 0}

can be identified with Πd−1.

B) We remind that any stratum (or component) U of Π∗d−1 is of the form (see
Notation 2 and Remark 4)

U = S1d−1(σ1, . . . , σd−1) = {a′ ∈ S1d−1 | sign(aj) = σj , 1 ≤ j ≤ d− 1} .

Starting with such a component U (hence U = Ud−1), we construct in several steps
the components U+ and U− of the set Π∗d sharing with U the signs of the coefficients
ad−1, . . ., a1. One has a0 > 0 in U+ and a0 < 0 in U−.

At the first step we construct the sets U1,± as follows. We remind that the
projections πk and their fibres f̃k were defined in part (1) of Theorem 4. Each fibre
f̃d of the projection πd which is over a point of U is a segment, see part (1) of
Theorem 4. If Qd−1 ∈ U , then for ε > 0 small enough, both polynomials xQd−1±ε
are hyperbolic. Indeed, all roots of Qd−1 are real and simple. The set U1,+ (resp.
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U1,−) is the union of the interior points of these fibres f̃d which are with positive
(resp. with negative) a0-coordinates. Thus

U1,+ = {a ∈ f̃d | a′ ∈ U, 0 < a0 < Hd
+(a′)} and

U1,− = {a ∈ f̃d | a′ ∈ U, Hd
−(a′) < a0 < 0} ,

see part (6) of Theorem 4). Hence the sets U1,± are open, non-empty and con-
tractible.

For d ≥ 2, the intersection Πd ∩ {a0 = 0} is strictly included in the projection
Πd−1
d of Πd in Oa1 · · · ad−1. Therefore one can expect that the sets U1,± are not

the whole of two components of Π∗d. We construct contractible sets U1,± ⊂ U2,± ⊂
· · · ⊂ Ud−1,±, where for 1 ≤ j ≤ d− 1, the signs of the coordinates aj of each point
of Uk,+ (resp. Uk,−) are defined by σ, and Ud−1,± are components of Π∗d. One has
a0 > 0 in Uk,+ and a0 < 0 in Uk,−.

C) Recall that the set U consists of all the points between the graphs Ld−1± of
two continuous functions defined on Ud−2:

U = {a′ | Ld−1− (a′′) < a′′ < Ld−1+ (a′′), a′′ ∈ Ud−2} ,

see Notation 2. Thus (Ld−1+ ∪ Ld−1− ) ⊂ ∂U . Depending on the sign of a1 in U , for
each of these graphs, part or the whole of it could belong to the hyperplane a1 = 0.

Consider a fibre f̃d over a point of one of the graphs Ld−1± and not belonging
to the hyperplane a1 = 0. A priori the two endpoints of the fibre cannot have
a0-coordinates with opposite signs. Indeed, if this were the case for the fibre over
a′ = a∗′ (see Notation 2), then for all fibres over a′ close to a∗′, these signs would
also be opposite, because the functions Ld±, whose values are the values of the a0-

coordinates of the endpoints, are continuous. Hence all these fibres f̃d intersect the
hyperplane a0 = 0 (see part (1) of Theorem 4), but not the hyperplane a1 = 0.
Hence the point a∗′ is an interior point of Πd (hence of U as well) and not a point
of ∂U which is a contradiction, see part (2) of Theorem 4.

Both endpoints cannot have non-zero coordinates of the same sign, because
then in the same way the fibres f̃d over all points a′ close to a∗′ would not intersect
the hyperplane a0 = 0 hence a∗′ 6∈ U , so a∗′ 6∈ ∂U .

Hence the following three possibilities remain:

a) both endpoints have zero a0-coordinates;

b) one endpoint has a zero and the other endpoint has a positive a0-coordinate;

c) one endpoint has a zero and the other endpoint has a negative a0-coordinate.

D) Consider the points of the graph Ld−1+ which do not belong to the hyperplane

a1 = 0 (for Ld−1− the reasoning is similar). If for B ∈ (Ld−1+ \ {a1 = 0}), possibility
a) takes place, then there is nothing to do.
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Suppose that possibility b) takes place. Denote by aj,B the coordinates of the
point B (hence a0,B = 0). For each such point B, fix the coordinates aj = aj,B for
j 6= 1 and increase a1. The interior points of the corresponding fibres f̃d (when non-
void) have the same signs of their a0-coordinates, hence these signs are positive.
Then for some a1 = a1,C > a1,B , one has either a1,C = 0 (this can happen only
when a1,B < 0) or the point C belongs to the graph Hd−1

+ and for a1 > a1,C , the

fibres f̃d are void, see Theorem 4.

In both these situations we add to the set U1,+ the points of the interior of all
fibres f̃d over the interval [a1,B , a1,C) (with aj = aj,B for j 6= 1), over all points
B ∈ (Ld−1+ \ {a1 = 0}).

If possibility c) takes place, then we fix again aj,B for j 6= 1 and increase a1.
The interior points of the corresponding fibres f̃d (when non-void) have negative
sign of their a0-coordinates. We add to the set U1,− the interior points of all
fibres f̃d over the interval [a1,B , a1,C) (with aj = aj,B for j 6= 1), over all points
B ∈ (Ld−1+ \ {a1 = 0}).

E) We perform a similar reasoning and construction with Ld−1− (in which the

role of Hd−1
+ is played by Hd−1

− ). In this case a1 is to be decreased, one has
a1,C < a1,B and the interval [a1,B , a1,C) is to be replaced by the interval (a1,C , a1,B ].

F) Thus we have enlarged the sets U1,±; the new sets are denoted by U2,±:

U2,+ = U1,+ ∪ {a ∈ Π∗d | a′′ ∈ Ud−2, L
d−1
+ (a′′) < a1 < Hd−1

+ (a′′),

if Ld−1+ (a′′) ≥ 0, Ld−1+ (a′′)<a1< min(0, Hd−1
+ (a′′)), if Ld−1+ (a′′) < 0} ,

U2,− = U1,− ∪ {a ∈ Π∗d | a′′ ∈ Ud−2, H
d−1
− (a′′) <a1< Ld−1− (a′′),

if Ld−1− (a′′) ≤ 0, max(0, Hd−1
− (a′′))<a1<L

d−1
− (a′′), if Ld−1− (a′′) > 0} .

The sets U1,± and U2,± satisfy the conclusion of Theorem 3. We denote the
graphs Lk± defined for the sets U1,± and U2,± by Lk1,± and Lk2,±. The construction
of these graphs implies that they are graphs of continuous functions (because such
are the graphs Hk

±). The set U1,+ ∪ U1,− (resp. U2,+ ∪ U2,−) contains all points of
the set (πd)−1(U) ∩Π∗d,σ (resp. (πd−1 ◦ πd)−1(Ud−2) ∩Π∗d,σ).

G) We remind that f̃d = f�d−1, see Remark 5. Suppose that the sets Us,±,
2 ≤ s ≤ d− 3, are constructed such that they satisfy the conclusion of Theorem 3
(the graphs Lk± are denoted by Lks,±) and that the set Us,+∪Us,− contains all points

of the set (πd−s+1 ◦ · · · ◦ πd)−1(Ud−s) ∩Π∗d,σ.

Consider a point D ∈ Ld−s+ which does not belong to the hyperplane as = 0.
For the fibre f�d−s of the projection πd−s+1 ◦ · · ·◦πd which is over D (see Remark 5)
one of the three possibilities takes place:
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a′) the minimal and the maximal possible value of the as-coordinate of the
points of the fibre are zero;

b′) the minimal possible value is 0 and the maximal possible value is positive;

c′) the minimal possible value is negative and the maximal possible value is 0.

It is not possible to have both the maximal and minimal possible value of as
non-zero, because in this case the point D does not belong to the set ∂Ud−s. This
is proved by analogy with C). With regard to Remark 5, when the fibre f�d−s is not
a point, then the maximal (resp. the minimal) value of as is attained at one of the
0-dimensional cells (resp. at the other 0-dimensional cell) and only there. This can
be deduced from part (2) of Theorem 4.

H) When possibility a′) takes place, then there is nothing to do. Suppose that
possibility b′) takes place. Denote by aj,D the coordinates of the point D (hence
a0,D = · · · = as−1,D = 0). Fix aj,D for j 6= s and increase as. Then for some
as = as,E > as,D, one has either as,E = 0 (which is possible only if as,D < 0) or the
point E belongs to the graph Hd−s

+ . In this case we add to the set Us,+ the points
of the interior of all fibres f�d−s over the interval [as,D, as,E) (with aj = aj,D for

j 6= s), over all points D ∈ (Ld−s+ \ {as = 0}). The as−1-coordinates of all points
thus added are positive.

If possibility c′) takes place, then we fix again aj,D for j 6= s and increase as.
We add to the set Us,− the points of the interior of all fibres f�d−s over the interval

[as,D, as,E) (with aj = aj,D for j 6= s), over all points D ∈ Ld−s+ \ {as = 0}. The
as−1-coordinates of all points thus added are negative.

We consider in a similar way the graph Ld−s− in which case the role of Hd−s
+

is played by Hd−s
− , as is to be decreased, one has as,E < as,D and the interval

[as,D, as,E) is to be replaced by the interval (as,E , as,D].

I) We have thus constructed the sets Us+1,± which satisfy the conclusion of
Theorem 3:

Us+1,+ = Us,+ ∪ {a ∈ Π∗d | a(s+1) ∈ Ud−s−1,

Ld−ss,+ (a(s+1)) < as < Hd−s
+ (a(s+1)), if Ld−ss,+ (a(s+1)) ≥ 0,

Ld−ss,+ (a(s+1)) < as < min(0, Hd−s
+ (a(s+1))), if Ld−ss,+ (a(s+1)) < 0 } ,

Us+1,− = Us,− ∪ {a ∈ Π∗d | a(s+1) ∈ Ud−s−1,

Hd−s
− (a(s+1)) < as < Ld−ss,− (a(s+1)), if Ld−ss,− (a(s+1)) ≤ 0,

max(0, Hd−s
− (a(s+1))) < as < Ld−ss,− (a(s+1)), if Ld−ss,− (a(s+1)) > 0 } .

The set Us+1,+ ∪Us+1,− contains all points of the set (πd−s ◦ · · · ◦πd)−1(Ud−s−1)∩
Π∗d,σ. It should be noticed that as the fibres f�d−s contain cells of dimension from 0 to
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s, all graphs Lks,± would have to be changed when passing from Lks,± to Lks+1,±. The
new graphs are graphs of continuous functions; this follows from the construction
and from the fact that such are the graphs Hk

±.

J) One can construct the sets Ud−1,± in a similar way. The only difference is
the fact that there is a graph H2

+, but not a graph H2
−, see Example 2:

Ud−1,+ = Ud−2,+ ∪ {a ∈ Π∗d | a(d−1) ∈ U1,

L2
d−2,+(a(d−1)) < ad−2 < H2

+(a(d−1)), if L2
d−2,+(a(d−1)) ≥ 0,

L2
d−2,+(a(d−1)) < ad−2 < min(0, H2

+(a(d−1))), if L2
d−2,+(a(d−1)) < 0 } ,

Ud−1,− = Ud−2,− ∪ {a ∈ Π∗d | a(d−1) ∈ U1,

ad−2 < L2
d−2,−(a(d−1)), if L2

d−2,−(a(d−1)) ≤ 0,

0 < ad−2 < L2
d−2,−(a(d−1)), if L2

d−2,−(a(d−1)) > 0 } .

We set U± := Ud−1,±. The set U+ ∪ U− contains all points from the set (π2 ◦ · · · ◦
πd)−1(U1) ∩ Π∗d,σ. The sets U± satisfy the conclusion of Theorem 3. Hence they
are contractible.

K) The functions Lk± encountered throughout the proof of the theorem can
be extended by continuity on the closures of the sets on which they are defined,
because this is the case of the functions Hk

±. Moreover, fibres f̃k which are points

appear only in case they are over points of the graphs Hk−1
± . Hence this describes

the only possibility for the values of the functions Lk± to coincide. �

6. COMMENTS AND OPEN PROBLEMS

One could try to generalize Theorem 2 by considering instead of the set Π∗d the
set R3,d, i. e. by dropping the requirement the polynomial Qd to be hyperbolic. So
an open problem can be formulated like this:

Open problem 1. For a given degree d, consider the triples (σ, pos, neg)
compatible with Descartes’ rule of signs. Is it true that for each such triple, the
corresponding subset of the set R3,d is either contractible or empty ?

The difference between this open problem and Theorem 2 is the necessity to
check whether the subset is empty or not (see part (3) of Theorem 1). For instance,
if d = 4, then for neither of the triples

((+,−,+,+), 2, 0) and ((−,−,−,+), 0, 2)
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(both compatible with Descartes’ rule of signs) does there exist a polynomial
x4 + a3x

3 + a2x
2 + a1x + a0 with signs of the coefficients aj as defined by σ and

with 2 positive and 0 negative or with 0 positive and 2 negative roots respectively,
see [12] (all roots are assumed to be simple).

The question of realizability of triples (σ, pos, neg) has been asked in [2]. The
exhaustive answer to this question is known for d ≤ 8. For d = 4, it is due to
D. Grabiner ([12]), for d = 5 and 6, to A. Albouy and Y. Fu ([1]), for d = 7 and
partially for d = 8, to J. Forsg̊ard, V. P. Kostov and B. Shapiro ([7] and [8]) and
for d = 8 the result was completed in [15]. Other results in this direction can be
found in [4], [6] and [16].

Remarks 6. (1) It is not easy to imagine how one could prove that all compo-
nents of R3,d are either contractible or empty without giving an exhaustive answer
to the question which triples (σ, pos, neg) are realizable and which are not. Un-
fortunately, at present, giving such an answer for any degree d is out of reach.

(2) If one can prove not contractibility of the non-empty components, but only
that they are (simply) connected, would also be of interest.

For a degree d univariate real monic polynomial Qd without vanishing coef-
ficients, one can define the couples (pos`, neg`) of the numbers of positive and

negative roots of Q
(`)
d , ` = 0, 1, . . ., d − 1. One can observe that the d couples

(pos`, neg`) define the signs of the coefficients of Qd and that their choice must be
compatible not only with Descartes’ rule of signs, but also with Rolle’s theorem.
We call such d-tuples of couples compatible for short. We assume that for ` = 0, 1,

. . ., d− 1, all real roots of Q
(`)
d are simple and non-zero.

To have a geometric idea of the situation we define the discriminant sets ∆̃j ,
j = 1, . . ., d as the sets ∆j defined in the spaces Oad−j . . . ad−1 for the polynomials

Q
(d−j)
d . In particular, ∆̃d = ∆d. For j = 1, . . ., d − 1, we set ∆j := ∆̃j ×

Oa0 . . . ad−j−1. We define the set R4,d as

R4,d := Rd \
(
(∪dj=1∆j) ∪ (∪d−1j=0{aj = 0})

)
.

For d ≤ 5, the question when a subset of R4,d defined by a given compatible d-tuple
of couples (pos`, neg`) is empty is considered in [5].

Open problem 2. Given the d compatible couples (pos`, neg`), is it true that
the subset of R4,d defined by them is either connected (eventually contractible) or
empty? In other words, is it true that each d-tuple of such couples defines either
exactly one or none of the components of the set R4,d ?

Some problems connected with comparing the moduli of the positive and neg-
ative roots of hyperbolic polynomials are treated in [18], [20] and [19]. Other
problems concerning hyperbolic polynomials are to be found in [17]. A tropical
analog of Descartes’ rule of signs is discussed in [9].
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