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1. INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

The questions of C∗-simplicity and unique trace property for a discrete group
have been studied extensively. By definition, a discrete group G is C∗-simple if the
C∗-algebra associated to the left regular representation, C∗r (G), is simple; likewise
it has the unique trace property if C∗r (G) has a unique tracial state. An extensive
introduction to that topic was given by de la Harpe ([6]). Recently, Kalantar and
Kennedy ([10]) gave a necessary and sufficient condition for C∗-simplicity in terms
of action on the Furstenberg boundary of the group in question. Later, Breuillard,
Kalantar, Kennedy, and Ozawa ([2]) studied further the question of C∗-simplicity
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and also showed that a group has the unique trace property if and only if its
amenable radical is trivial. They also showed that C∗-simplicity implies the unique
trace property. The reverse implication was disproven by examples given by Le
Boudec ([11]). In the case of group amalgamations and HNN-extensions, the kernel
controls the uniqueness of trace, and the quasi-kernels control the C∗-simplicity.

The notion of inner amenability for discrete groups was introduced by Effros
([5]) as an analogue to Property Γ for II1 factors that was introduced by Murray
and von Neumann ([12]). By definition, a discrete group G is inner amenable if
there exist a conjugation invariant, positive, finitely additive, probability measure
on G\{1}. Effros showed that Property Γ implies inner amenability, but the reverse
implication doesn’t hold, as demonstrated by Vaes ([14]).

Our examples (all of which being HNN-extensions) stem from the questions
of C∗-simplicity and the unique trace properties for groups. In particular, all of
our examples have the unique trace property, and we also determine the C∗-simple
ones and the non-C∗-simple ones. The examples of section 2 generalize the example
given in [3, Section 5] (which corresponds to the group Λ[Sym(2), Sym(2)] of section
2). There is a resemblance to the groups introduced by Le Boudec in [11] since
they all act on trees. The main benefit is that our groups are given concretely
by generators and relations, which makes them more tractable to investigate some
further properties they possess.

We study some additional analytic properties of our examples. We show that
they are all non-inner-amenable by showing that they are finitely fledged - a prop-
erty that we introduce in [8].

We also explore some of the group-theoretical properties of our groups. We
remark that they are not finitely presented. Also, under some mild natural assump-
tions, we show that each group has a relatively large, simple, normal subgroup.

1.2. PRELIMINARIES

For a group Γ acting on a set X, we denote the set-wise stabilizer of a subset
Y ⊂ X by

Γ{Y } ≡ { g ∈ Γ | gY = Y }

and the point-wise stabilizer of a subset Y ⊂ X by

Γ(Y ) ≡ { g ∈ Γ | gy = y, ∀y ∈ Y }.

For a point x ∈ X, we denote its stabilizer by

Γx = { g ∈ Γ | gx = x }.

Note that, Γ{Y }, Γ(Y ), and Γx are all subgroups of Γ. Also note that,

gΓ{Y }g
−1 = Γ{gY }, gΓxg

−1 = Γgx , and gΓ(Y )g
−1 = Γ(gY ).
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For a group G and its subgroup H, by 〈〈H〉〉G or by 〈〈H〉〉, we denote the
normal closure of H in G.

For some general references on group amalgamations and HNN-extensions see,
e.g., [1], [4], [13], [7], etc.

Let G = 〈X | R〉 be a group; let H be a subgroup of G; and let θ : H ↪→ G be
a monomorphism. Then an HNN-extension of this data (named after G. Higman,
B. Neumann, H. Neumann) is the group

HNN(G,H, θ) ≡ G∗θ ≡ 〈X t {τ} | R t {θ(h) = τ−1hτ | h ∈ H}〉.

It is convenient to denoteH−1≡H andH1≡θ(H). Every element γ∈HNN(G,H,θ)
can be written in reduced form as

γ = g1τ
ε1 · · · gnτεngn+1, where n ∈ N, g1, . . . , gn+1 ∈ G, ε1, . . . , εn = ±1,

and where if εi+1 = −εi for 1 ≤ i ≤ n− 1, then gi+1 /∈ Hεi .

If Sε is a set of left coset representatives for G/Hε, where ε = ±1, satisfy S−1 ∩
S1 = {1}, then every element γ ∈ HNN(G,H, θ) can be uniquely written in
normal form as

γ = s1τ
ε1s2τ

ε2 · · · snτεng, where n ∈ N0, g ∈ G, εi = ±1, si ∈ S−εi , ∀1≤ i ≤ n,
and where if εi−1 = −εi for 2 ≤ i ≤ n, then si 6= 1.

The HNN-extension HNN(G,H, θ) is called nondegenerate if either H 6= G or
θ(H) 6= G and is called non-ascending if H 6= G 6= θ(G).
The Bass-Serre tree T (HNN(G,H, θ)) of HNN(G,H, θ) is the graph, that can be
shown to be a tree, consisting of a vertex set

Vertex(HNN(G,H, θ)) =

{G} ∪ {s1τ
ε1s2τ

ε2 · · · snτεnG | n ∈ N, s1τ
ε1s2τ

ε2 · · · snτεn is in normal form}

and an edge set

Edge(HNN(G,H, θ)) =

{H} ∪ {s1τ
ε1s2τ

ε2 · · · snτεnsn+1H | n∈N, s1τ
ε1s2τ

ε2 · · · snτεn is in normal form}.

The group HNN(G,H, θ) acts on T (HNN(G,H, θ)) by left multiplication.

The vertex v = s1τ
ε1s2τ

ε2 · · · snτεnG is adjacent to the vertex
w = s1τ

ε1s2τ
ε2 · · · snτεnsn+1τ

εn+1G with connecting edge

e =

{
s1τ

ε1s2τ
ε2 · · · snτεnsn+1τ

εn+1H if εn+1 = −1,

s1τ
ε1s2τ

ε2 · · · snτεnsn+1H if εn+1 = 1.

To see the reason for this, we need to look at the stabilizers. The stabilizer of v is

HNN(G,H, θ)v = s1τ
ε1s2τ

ε2 · · · snτεnG(s1τ
ε1s2τ

ε2 · · · snτεn)−1
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and the stabilizer of w is

HNN(G,H,θ)w=s1τ
ε1s2τ

ε2 · · · snτεnsn+1τ
εn+1G(s1τ

ε1s2τ
ε2 · · · snτεnsn+1τ

εn+1)−1.

Therefore the stabilizer of e is

HNN(G,H, θ)e = HNN(G,H, θ)v ∩ HNN(G,H, θ)w =

s1τ
ε1s2τ

ε2 · · · snτεnsn+1 [G ∩ τεn+1Gτ−εn+1 ] (s1τ
ε1s2τ

ε2 · · · snτεnsn+1)−1 =

s1τ
ε1s2τ

ε2 · · · snτεnsn+1 H−εn+1
(s1τ

ε1s2τ
ε2 · · · snτεnsn+1)−1 ={

s1τ
ε1s2τ

ε2 · · · snτεnsn+1H(s1τ
ε1s2τ

ε2 · · · snτεnsn+1)−1 if εn+1 = 1,

s1τ
ε1s2τ

ε2 · · · snτεnsn+1τ
εn+1Hτ−εn+1(s1τ

ε1s2τ
ε2 · · · snτεnsn+1)−1 if εn+1 = −1.

Finally, since HNN(G,H, θ) can be expressed as

HNN(G,H, θ) = (G ∗ 〈τ〉)/〈〈τ−1hτθ(h−1) | h ∈ H〉〉,

it has the following universal property (see, e.g., [4], page 36):

Remark 1.1. Let C be a group; let α : G −→ C be a group homomorphism;
and let t ∈ C be an element for which the following holds: t−1α(h)t = α(θ(h)) for
each h ∈ H. Then there is a unique group homomorphism β : HNN(G,H, θ) −→ C
satisfying β|G = α and β(τ) = t.

To conclude this section, we recall that we called a group amenablish if it has
no nontrivial C∗-simple quotients ([9, Definition 7.1]). We showed in [9] that the
class on amenablish groups is a radical class, so every group has a unique maximal
normal amenablish subgroup, the amenablish radical. Also, the class of amenablish
groups is closed under extensions. The amenablish radical “detects” C∗-simplicity
the same way as the amenable radical “detects” the unique trace property (see [9,
Corollary 7.3] and [2, Theorem 1.3]).

2. HNN-EXTENSIONS

2.1. NOTATION, DEFINITIONS, QUASI-KERNELS

We use the following notations, some of which appear in [3]:

Tε = {γ = g0τ
εg1τ

ε1 · · · gnτεngn+1 | n ≥ 0, γ ∈ Λ is reduced},

T †ε = {γ = τεg1τ
ε1 · · · gnτεngn+1 | n ≥ 0, γ ∈ Λ is reduced}.
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For ε = ±1, consider also the quasi-kernels defined in [3]:

Kε ≡
⋂

r∈Λ\T †ε

rHr−1. (1)

They satisfy the relation ker Λ = K1 ∩K−1, where, by definition,

ker Λ ≡
⋂
r∈Λ

rHr−1.

It follows from [3, Theorem 4.19] that Λ has the unique trace property if and
only if ker Λ has the unique trace property. It also follows from [3, Theorem 4.20]
that Λ is C∗-simple if and only if K−1 or K1 is trivial or non-amenable provided Λ
is a non-ascending HNN-extension and ker Λ is trivial.

We need the following results.

Remark 2.1. Consider the Bass-Serre tree Θ = Θ[Λ] of the group

Λ = HNN(G,H, θ) = 〈G, τ | τ−1hτ = θ(h) for all h ∈ H〉,

and consider the edge H connecting vertices G and τG. Denote by Θ1 the full
subtree of Θ consisting of all vertices v ∈ Θ satisfying dist(v,G) < dist(v, τG).
Also, denote by Θ̄1 the full subtree of Θ consisting of all vertices v ∈ Θ satisfying
dist(v,G) > dist(v, τG). Likewise, consider the edge τ−1H connecting vertices G
and τ−1G. Then, denote by Θ−1 the full subtree of Θ consisting of all vertices
v ∈ Θ satisfying dist(v,G) < dist(v, τ−1G), and denote by Θ̄−1 the full subtree of
Θ consisting of all vertices v ∈ Θ satisfying dist(v,G) > dist(v, τ−1G).

It is easy to see that Θ̄ε = τεΘ−ε,

Θε = {G} ∪ { tεG | tε ∈ Λ \ T †ε }, and Θ̄ε = { t†εG | t†ε ∈ T †ε }.

Proposition 2.2. With the notation from the previous Remark, the following
hold for each ε = ±1:

(i) Kε = Λ(Θε).

(ii) Kε < H ∩ θ(H).

(iii) γKεγ
−1 = Λ(γΘε) for every γ ∈ Λ.

In particular Λ(Θ̄ε) = τεK−ετ
−ε.

Proof. (i)

g ∈ Kε ⇐⇒ r−1gr ∈ H, ∀r ∈ Λ \ T †ε ⇐⇒ gr ∈ rH, ∀r ∈ Λ \ T †ε
⇐⇒ grH = rH, ∀r ∈ Λ \ T †ε ⇐⇒ g fixes every edge of Θε

⇐⇒ g ∈ Λ(Θε).
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(ii) From (i), we know that every element g ∈ Kε fixes all vertices adjacent to G
except for the vertex τεG, eventually. Therefore it also fixes τεG, so g fixes all
edges around G. In particular, g fixes the edge H, so g ∈ H. Likewise, g fixes the
edge τ−1H, so g ∈ τ−1Hτ = θ(H).

(iii) As in (i), we have

g ∈ γKεγ
−1 ⇐⇒ γ−1gγ ∈ Kε ⇐⇒ γ−1gγ ∈ Λ(Θε)

⇐⇒ g ∈ γΛ(Θε)γ
−1 ⇐⇒ g ∈ Λ(γΘε).

�

Lemma 2.3. For ε = ±1, Kε is a normal subgroup of H−ε, and a normal
subgroup of H ∩θ(H). Moreover, if ker Λ is trivial, then K−1 and K1 have a trivial
intersection and mutually commute.

Proof. From Proposition 2.2 (ii), it follows that K1 and K−1 are subgroups of
H ∩ θ(H). Take h ∈ H−ε. Then

h · T †ε = {hτεg1τ
ε1 · · · gnτεngn+1 | n ≥ 0, τεg1τ

ε1 · · · gnτεngn+1 is reduced} =

{τεθε(h)g1τ
ε1 · · · gnτεngn+1 | n ≥ 0, τεg1τ

ε1 · · · gnτεngn+1 is reduced} = T †ε .

This gives the first assertion. For the second assertion, take kε∈Kε for each ε = ±1.
Then, from Kε / H ∩ θ(H), it follows that k−1k

−1
1 k−1

−1 ∈ K1 and k1k−1k
−1
1 ∈ K−1.

Thus
K−1 3 (k1k−1k

−1
1 )k−1

−1 = k1(k−1k
−1
1 k−1

−1) ∈ K1,

and therefore k1k−1k
−1
1 k−1

−1 ∈ K1 ∩K−1 = ker Λ = {1}. �

Lemma 2.4.

(i) Let γ=τεngn · · · g2τ
ε1g1τ

ε∈Λ be reduced. Then γ ·T †−ε⊃T
†
−εn . In particular,

K−εn < γK−εγ
−1.

(ii) Let γ ∈ G\Hε. Then γT †−ε∩T
†
−ε = ∅. In particular, γK−εγ

−1∩K−ε = ker Λ.

(iii) Let γ ∈ Λ be a reduced word starting and ending with τε. Then T †−ε∩γT †ε = ∅.
In particular, K−ε ∩ γKεγ

−1 = ker Λ.

Proof. (i) Observe that

γ · T−ε
⊃ {γ ·τ−εg−1

1 τ−ε1 · · · g−1
n τ−εn ·τ−εn · gn+1τ

εn+1gn+2τ
εn+2 · · · gn+mτ

εn+mgn+m+1 |
m ≥ 0, τ−εngn+1τ

εn+1gn+2 · · · gn+mτ
εn+mgn+m+1 is reduced}

= {λ = τ−εngn+1τ
εn+1gn+2 · · · gn+mτ

εn+mgn+m+1 | m ≥ 0, λ is reduced}
= T−εn .
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The second statement follows from the observation

γ · (Λ \ T †−ε) = Λ \ γT †−ε ⊂ Λ \ T †−εn .

(ii) and (iii) follow easily. �

Lemma 2.5. Let γ = gn+1τ
εngn · · · g2τ

ε1g1τ
ε, γ′ = g′n+1τ

ε′ng′n · · · g′2τε
′
1g′1τ

ε,

and γ′′ = g′′n+1τ
ε′′ng′n · · · g′′2 τε

′′
1 g′′1 τ

−ε be reduced, where n ≥ 0 and ε = ±1. Then:

(i) If (γ′)−1γ ∈ H−ε, then γKεγ
−1 = γ′Kε(γ

′)−1.

(ii) If ker Λ is trivial and if (γ′)−1γ /∈ H−ε, then γKεγ
−1 and γ′Kε(γ

′)−1 have
a trivial intersection and mutually commute.

(iii) If ker Λ is trivial, then γKεγ
−1 and γ′′K−ε(γ

′′)−1 have a trivial intersection
and mutually commute.

Proof. (i) (γ′)−1γKεγ
−1γ′ = Kε by Lemma 2.3.

(ii) If (γ′)−1γ is an element of G \ H−ε, then the assertion follows from
Lemma 2.4 (ii). If (γ′)−1γ starts with τ−ε and ends with τε, then, by Lemma 2.4
(i), it follows that

(γ′)−1γKεγ
−1γ′ < K−ε,

which, combined with Kε ∩K−ε = ker Λ = {1}, proves the assertion.

(iii) Observe that the reduced form of (γ′′)−1γ starts and ends with τε, there-
fore the assertion follows from Lemma 2.4 (iii). �

Assume that ker Λ = {1}. Let Sε be a left coset representatives of G/Hε for
ε = ±1.

It follows from Lemma 2.5 that, for two reduced words

γ = sn+1τ
εnsn · · · s2τ

ε1s1τ
ε and γ′ = tn+1τ

ε′ntn · · · t2τε
′
1t1τ

ε

with si, ti ∈ S−1 ∪ S1 and ε, εi, ε
′
i ∈ {−1, 1},

γKεγ
−1 = γ′Kε(γ

′)−1

if and only if γ = γ′, and this happens if and only if εi = ε′i and si = ti, ∀i. In
the case γ 6= γ′, γKεγ

−1 and γ′Kε(γ
′)−1 have a trivial intersection and mutually

commute.
If γ′′ = rn+1τ

ε′′nrn · · · r2τ
ε′′1 s1τ

−ε is another reduced word, where ri ∈ S−1 ∪ S1

and ε′′i ∈ {−1, 1}, then γKεγ
−1 and γ′′K−ε(γ

′′)−1 have a trivial intersection and
mutually commute.

From these considerations, it follow that

K(0) ≡
⊕
s∈S−1

sK1s
−1 ⊕

⊕
t∈S1

tK−1t
−1 (2)

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107–129. 113



and, for n ≥ 0,

K(n+ 1) ≡
⊕
ε=±1

si∈S−1∪S1, εi=±1

sn+1τεnsn···s2τε1s1τε reduced

sn+1τ
εnsn · · · s2τ

ε1s1τ
εKετ

−εs−1
1 τ−ε1s−1

2 · · · s
−1
n τ−εns−1

n+1

(3)

are normal subgroups of G. Also, consider the groups

K(0, ε) ≡
⊕
s∈S−ε

sK1s
−1 ⊕

⊕
t∈S′ε

tK−1t
−1,

which are normal in Hε for ε = ±1.

Remark 2.6. The group G acts transitively on the vertices sτG, where s∈S−1.
It also acts transitively on the vertices sτ−1G, where s ∈ S1. This fact is an
important ingredient in the examples below.

Remark 2.7. It follows from Lemma 2.4 that K−1 is isomorphic to a subgroup
of K1 and vice-versa. Consequently, K−1 = {1} if and only if K1 = {1}. In this
situation, K(n) = {1} ∀n ≥ 0.

2.2. A FAMILY OF EXAMPLES

For ε = ±1, consider nonempty sets I ′ε, and let Iε ≡ I ′ε t {ιε}. Also, let Σε
be transitive permutation groups on Iε, and let Γ = Σ−1 ·Σ1 be the corresponding
permutation group on I−1tI1. Let Σ′ε ≡ (Σε)ιε be the respective stabilizer groups,
and define Γε ≡ Γιε = Σ′ε · Σ−ε. Define

Λ[Σ−1,Σ1] ≡ Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1]

≡ HNN(G,H, θ) = 〈G, τ | τ−1hτ = θ(h) for all h ∈ H〉 ,

where

H ≡ 〈{h(i1, ε1 . . . , in, εn;σn) | n ∈ N, εt ∈ {−1, 1}, it ∈ I−εt , and σn ∈ Γεn

satisfy it ∈ I ′−εt whenever εtεt−1 = −1; }〉 and

Hε = 〈H ∪ {h(σε) | σε ∈ Γε}〉, ε = ±1.

Finally, define
G = 〈H−1, H1〉 = 〈H ∪ { h(σ) | σ ∈ Γ}〉,

where the following relations hold (there are redundancies):

(R1) Elements h(σ−1)’s and h(σ1)’s commute for all σε ∈ Σε, where ε = ±1.

(R2) Let 1 ≤ m < n, σn ∈ Γεn , and σ′m ∈ Γem . If (i1, ε1 . . . , im, εm) 6=
(j1, e1 . . . , jm, em), the elements

h(j1, e1 . . . , jm, em;σ′m) and h(i1, ε1 . . . , im, εm, . . . , in, εn;σn)
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commute.

(R3) For 1 ≤ m < n and σt ∈ Γεt , the following holds

h(i1, ε1 . . . , im, εm;σm)h(i1, ε1 . . . , im, εm, im+1, εm+1, . . . , in, εn;σn)h(i1, ε1 . . . , im, εm;σm)−1

= h(i1, ε1 . . . , im, εm, σm(im+1), εm+1, . . . , in, εn;σn).

(R4) For σm, σ
′
m ∈ Γεm , the following holds

h(i1, ε1 . . . , im, εm;σm)h(i1, ε1 . . . , im, εm;σ′m) = h(i1, ε1 . . . , im, εm;σmσ
′
m).

(R5) For σ, σ′ ∈ Γ, the following holds

h(σ)h(σ′) = h(σσ′).

(R6) For n ∈ Z, σ ∈ Γ, and σn ∈ Γεn , the following holds

h(σ)h(i1, ε1 . . . , in, εn;σn)h(σ)−1 = h(σ(i1), ε1, i2, ε2, . . . , in, εn;σn).

(R7) For ε = ±1 and σε ∈ Γε, the following holds

θ−ε(h(σε)) = (τεh(σε)τ
−ε) = h(ι−ε, ε;σε).

(R8) For ε = ±1, n ∈ N, and σn ∈ Γεn , the following holds

θ−ε(h(i1, ε, i2, ε2, . . . , in, εn;σn)) = (τεh(i1, ε, i2, ε2, . . . , in, εn;σn)τ−ε)

= h(ι−ε, ε, i1, ε, i2, ε2 . . . , in, εn;σn).

(R9) For ε = ±1, n ∈ N, and σn ∈ Γεn , the following holds

θε(h(i1, ε . . . , in, εn;σn)) = (τ−εh(i1, ε . . . , in, εn;σn)τε)

=

{
h(i2, ε2 . . . , in, εn;σn), if i1 = ι−ε,

h(ιε,−ε, i1, ε . . . , in, εn;σn), if i1 6= ι−ε.

2.3. SOME BASIC PROPERTIES OF THE EXAMPLES AND THEIR QUASI-KERNELS

In this subsection we fix a group Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1].

First, let’s note that Index[G : Hε] = #(Iε) for ε = ±1. To see this, recall
that Σε acts transitively on Iε, and for i ∈ Iε, choose µiε ∈ Σε satisfying µiε(ιε) = i.
Let’s denote λiε = h(µiε). If σ ∈ Σε \Σ′ε satisfies σ(ιε) = i, then (µiε)

−1 ◦σ(ιε) = ιε.
Therefore (µiε)

−1◦σ∈Σ′ε, so h((µiε)
−1◦σ)∈Hε. It follows that h(σ)∈h(µiε)Hε=λiεH.

Consequently, for each ε = ±1,

G = Hε t
⊔
i∈I′ε

λiεHε. (4)

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107–129. 115



It is easy to see in these notations that for ε = ±1, the set

Sε = { λiε | i ∈ I ′ε } ∪ { 1 }

is a left coset representative of Hε in G.

Next, consider the action of Λ on its Bass-Serre tree Θ = Θ[Λ]. The set of all
adjacent vertices to the vertex G is

{ τG } ∪ { λi−1τG | i ∈ I ′−1 } ∪ { τ−1G } ∪ { λi1 | i ∈ I ′1 }.

This set can be indexed by the set I−1 ∪ I1 in the obvious way: Denote by v(∅) the
vertex G, by v(ι−1, 1) the vertex τG, by v(ι1,−1) the vertex τ−1G, by v(i−1, 1)

the vertex λ
i−1

−1 τG, where i−1 ∈ I ′−1, and by v(i1,−1) the vertex λi11 τ
−1G, where

i1 ∈ I ′1. Denote a general vertex

λi1−ε1τ
ε1 · · ·λin−εnτ

εnG

by v(i1, ε1, . . . , in, εn) for an element λi1−ε1τ
ε1 · · ·λin−εnτ

εn ∈ Λ in its normal form,
i.e., it ∈ I−εt and if εt−1 · εt = −1, then it ∈ I ′−εt .

With the notation of Remark 2.1, for ε = ±1, Θε is the full subtree of Θ
containing the vertex v(∅) = G and vertices v(i1, ε1, . . . , in, εn), where n ≥ 1
and (i1, ε1) 6= (ι−ε, ε), and Θ̄ε is the full subtree of Θ containing the vertices
v(ι−ε, ε, i1, ε1, . . . , in, εn), where n ≥ 0.

Remark 2.8. It follows from [1, Exercise VI.3] that our examples are never
finitely presented since H is never finitely generated.

We continue with

Lemma 2.9. (i) Let m ≥ 1, σm ∈ Γεm , it ∈ I−εt , and ε ∈ {−1, 1} satisfy
εtεt−1 = −1⇒ it ∈ I ′−εt . Then

h(i1, eps1 . . . ,im, εm;σm)

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(σm)τ−εm(λim−εm)−1 · · · τ−ε1(λi1−ε1)−1.

(ii) Every element h of G can be written as

h = h(σ)

m∏
k=1

h(ik1 , εk,1, . . . , i
k
nk
, εk,nk

;σk),

where m ≥ 1, σk ∈ Γεk,nk
, 1 ≤ n1 ≤ · · · ≤ nm, and σ ∈ Γ satisfy the

condition: if nk = nk+a for some 1 ≥ k ≥ m and some a ≥ 1, then

(ik1 , εk,1, . . . , i
k
nk
, εk,nk

) 6= (ik+a
1 , εk+a,1, . . . , i

k+a
nk+a

, εk+a,nk+a
).
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(ii) Every element g ∈ Tε can be written as

g = λi−ετ
ελi1−ε1τ

ε1 · · ·λim−εmτ
εmh,

where h ∈ G and m ≥ 0.

Proof. (i) follows by repeated applications of relations (R7), (R8), and (R6).
(ii) follows by repeated applications of relations (R3) and (R6).
(iii) follows by equation (4) and the structure of HNN-extensions. �

Lemma 2.10. Let n > m ≥ 1 and σk ∈ Γεk . Then the following hold

(i) h(i1, ε1 . . . , im, εm;σm)v(i1, ε1, . . . , im, εm, im+1, εm+1, . . . , in, εn)

= v(i1, ε1, . . . , im, εm, σm(im+1), εm+1, . . . , in, εn).

(ii) h(i1, ε1 . . . , im, εm;σm) ∈ Λv(i1,ε1...,im,εm) and h(σ) ∈ Λv(∅) for σ ∈ Γ.

(iii) If σε ∈ Γε, then h(σε) ∈ Λ(Θ̄−ε) = τ−εKετ
ε.

(iv) Let m ≤ n and let h(i1, ε1 . . . , in, εn;σn), h(j1, e1 . . . , jm, em; δm) ∈ Λ. If
(i1, ε1 . . . , im, εm) 6=(j1, e1 . . . , jm, em), then h(i1, ε1 . . . , in, εn;σn)∈Λv(j1,e1...,jm,em)

and h(j1, e1 . . . , jm, em; δm) ∈ Λv(i1,ε1...,in,εn).

(iv) h(i1, ε1 . . . , in, εn;σn) ∈ Λ(Θ̄ε) ⇐⇒ (i1, ε1) 6= (ι−ε, ε).

Proof. (i) First, note that

σ ≡ (λ
σm(im+1)
−εm+1

)−1 ◦ h(σm)λ
im+1

−εm+1
∈ Γ−εm+1

since it fixes ι−εm+1 . It follows by Lemma 2.9 (i) and (iii) that there are kt ∈ Iεt
and a χ ∈ Hεn that satisfy (τεm+1 · · ·λin−εnτ

εn)−1 = χτ−εnλ
kn−1
εn−1 · · ·λ

km+1
εm+1 τ

−εm+1 .
Therefore

(τεm+1 · · ·λin−εnτ
εn)−1h(σ)τεm+1 · · ·λin−εnτ

εn

= χτ−εnλkn−1
εn−1

· · ·λkm+1
εm+1

τ−εm+1h(σ)τεm+1(λkm+1
εm+1

)−1 · · · (λkn−1
εn−1

)−1τεnχ−1

= χh(ιεn ,−εn, kn−1,−εn−1, . . . , km+2,−εm+2, ιεm+1,−εm+1;σ)χ−1.

Then Lemma 2.9 (i) implies

h(i1, ε1 . . . , im, εm;σm)v(i1, ε1, . . . , im, εm, im+1, εm+1, . . . , in, εn)

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(σm)τ−εm(λim−εm)−1· · ·τ−ε1(λi1−ε1)−1 · λi1−ε1τ
ε1 · · ·λin−εnτ

εnG

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(σm)λ
im+1

−εm+1
τεm+1 · · ·λin−εnτ

εnG

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmλ
σm(im+1)
−εm+1

h(σ)τεm+1 · · ·λin−εnτ
εnG
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= λi1−ε1τ
ε1 · · ·λim−εmτ

εmλ
σm(im+1)
−εm+1

τεm+1 · · ·λin−εnτ
εn

· (τεm+1 · · ·λin−εnτ
εn)−1h(σ)τεm+1 · · ·λin−εnτ

εnG

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmλ
σm(im+1)
−εm+1

τεm+1 · · ·λin−εnτ
εn

· χh(ιεn ,−εn, kn−1,−εn−1, . . . , km+2,−εm+2, ιεm+1,−εm+1;σ)χ−1G

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmλ
σm(im+1)
−εm+1

τεm+1 · · ·λin−εnτ
εnG

= v(i1, ε1, . . . , im, εm, σm(im+1), εm+1, . . . , in, εn).

(ii) The second claim is obvious. For the first claim,

h(i1, ε1 . . . , im, εm;σm)v(i1, ε1 . . . , im, εm)

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(σm)τ−εm(λim−εm)−1· · ·τ−ε1(λi1−ε1)
−1 ·λi1−ε1τ

ε1 · · ·λim−εnτ
εmG

= λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(σm)G = v(i1, ε1 . . . , im, εm).

(iii) The fact Λ(Θ̄−ε) = τ−εKετ
ε is stated in Proposition 2.2. Let n ≥ 0 and let

v(ιε,−ε, i1, ε1, . . . , in, εn) ∈ Θ̄−ε. By the argument at the beginning of the proof of
(i), there are kt ∈ Iεt and a χ ∈ Hεn satisfying

(τ−ελi1−ε1τ
ε1 · · ·λin−εnτ

εn)−1h(σε)τ
−ελi1−ε1τ

ε1 · · ·λin−εnτ
εn

= χh(ιεn ,−εn, kn−1,−εn−1, . . . , iε1 ,−ε1, ε, ι−ε;σε)χ
−1.

Therefore

h(σε)v(ιε,−ε, i1, ε1, . . . , in, εn) = h(σε)τ
−ελi1−ε1τ

ε1 · · ·λin−εmτ
εnG

= τ−ελi1−ε1τ
ε1 · · ·λin−εmτ

εn ·(τ−ελi1−ε1τ
ε1 · · ·λin−εmτ

εn)−1h(σε)τ
−ελi1−ε1τ

ε1 · · ·λin−εmτ
εnG

= τ−ελi1−ε1τ
ε1 · · ·λin−εmτ

εn · χh(ιεn ,−εn, kn−1,−εn−1, . . . , iε1 ,−ε1, ε, ι−ε;σε)χ
−1G

= v(ιε,−ε, i1, ε1, . . . , in, εn).

Consequently h(σε) ∈ Θ̄−ε.

(iv) Note that the element γ = τ−em(λjm−em)−1 · · · τ−e1(λj1−e1)−1λi1−ε1τ
ε1 · · ·λin−εnτ

εn

belongs to T †−em because of the condition (i1, ε1 . . . , im, εm) 6= (j1, e1 . . . , jm, em).

It follows from Lemma 2.9 (iii) that γ = τ−emλk1−l1τ
l1λk2−l2τ

l2 · · ·λks−lsτ
lsh, where

h ∈ G and where kt ∈ I−lt , ∀t. Then

h(j1, e1 . . . , jm, em; δm) ∈ Λv(i1,ε1...,in,εn)

⇐⇒ λj1−e1τ
e1 · · ·λjm−emτ

emh(δm)τ−em(λjm−em)−1 · · · τ−e1(λj1−e1)−1 ∈ Λv(i1,ε1...,in,εn)

⇐⇒ h(δm) ∈ τ−em(λjm−em)−1 · · · τ−e1(λj1−e1)−1Λv(i1,ε1...,in,εn)λ
j1
−e1τ

e1 · · ·λjm−emτ
em

⇐⇒ h(δm) ∈ Λ
τ−em (λjm

−em
)−1···τ−e1 (λ

j1
−e1

)−1v(i1,ε1...,in,εn)

⇐⇒ h(δm) ∈ Λ
τ−em (λjm

−em
)−1···τ−e1 (λ

j1
−e1

)−1λ
i1
−ε1

τε1 ···λin
−εn

τεnG

⇐⇒ h(δm) ∈ Λ
τ−emλ

k1
−l1

τ l1λ
k2
−l2

τ l2 ···λks
−ls

τ lshG

⇐⇒ h(δm) ∈ Λv(ιem ,−em,k1,l1,...,ks,ls).
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The last equivalence holds according to (iii). The inclusion h(i1, ε1 . . . , in, εn;σn) ∈
Λv(j1,e1...,jm,em) is proven analogously.

(v) Every vertex of Λ(Θ̄ε) is of the form v(ι−ε, ε, j1, e1, . . . , jm, em), so if tuples
(i1, ε1 . . . , in, εn) and (ι−ε, ε, j1, e1, . . . , jm, em) satisfy the assumptions of (iv), then
h(i1, ε1 . . . , in, εn;σn) ∈ Λ(Θ̄ε). By (i), h(ι−ε, ε, j1, e1, . . . , jm, em;σm) /∈ Λ(Θ̄ε), and
the statement follows. �

Proposition 2.11. For a group Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1] and for ε=±1,
the following hold

(i) Λ(Θ̄ε) = 〈 { h(σ−ε) | σ−ε ∈ Γ−ε } ∪
{h(i1, ε1, . . . , im, εm;σm) |m≥1, h(i1, ε1,. . ., im, εm;σm)∈H−ε,

and (i1, ε1) 6=(ι−ε, ε) } 〉 ;

(ii) |Kε| = 〈{ h(ιε,−ε;σ−ε) | σ−ε ∈ Γ−ε }t
{ h(ιε,−ε, i1, ε1, . . . , in, εn;σn) |n ≥ 1, σn ∈ Γεn}〉 ;

(iii) ker Λ = {1}.

Proof. (i) Denote the group on the right-hand-side by ∆. The inclusion ∆ < Λ(Θ̄ε)

follows from Lemma 2.10 (iii) and (v). Take an element h ∈ Λ(Θ̄ε). Proposi-
tion 2.2 (iv) implies that h ∈ H−ε. If we assume h = h(σ), then σ ∈ Γ−ε, and
therefore h(σ) ∈ ∆. If h is not of the form h(σ), Lemma 2.9 (ii) can be applied to
h−1 ∈ H−ε. It follows that

h =

m∏
k=1

h(ik1 , εk,1, . . . , i
k
nk
, εk,nk

;σk) · h(σ−ε),

where m ≥ 0, σk ∈ Γεk,nk
, n1 ≥ n2 ≥ · · · ≥ nm ≥ 1, and σ−ε ∈ Γ−ε. Assume

h(il1, εl,1, . . . , i
l
nl
, εl,nl

;σl) /∈ ∆ for some 1 ≤ l ≤ m and that l is the biggest number
with this property. We will derive a contradiction below. Then it is clear that
il1 = ι−ε and εl,1 = ε. Also, σl ∈ Γεl,nl

is not the identity, so there exist two
different elements κ, ρ ∈ I−1 t I1, such that σl(κ) = ρ. Let h act on

v = v(il1, εl,1, . . . , i
l
nl
, εl,nl

, κ, εl,nl
, α1, e1, . . . , αn1

, en1
),

where α’s and e’s are arbitrary and allowed. The terms h(σ−ε) and∏m
k=l+1 h(ik1 , εk,1, . . . , i

k
nk
, εk,nk

;σk) leave v fixed by the choice of l. From the final
condition of Lemma 2.9 (ii) and from Lemma 2.10 (iv), it follows that the terms
with length equal to nl also leave v fixed. Finally, from Lemma 2.10 (i), it follows
that the remaining terms act on v by eventually changing only the α’s. Therefore
we conclude that

hv(il1, εl,1, . . . , i
l
nl
, εl,nl

, κ, εl,nl
, α1, e1, . . . , αn1

, en1
)

= v(il1, εl,1, . . . , i
l
nl
, εl,nl

, ρ, εl,nl
, β1, e1, . . . , βn1

, en1
)
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for some β’s. This shows that h /∈ Λ(Θ̄ε), a contradiction that proves (i).

(ii) From Proposition 2.2 (iii), it follows that

Kε = τ−εKε(τ
−ε)τε = τ−εΛ(Θ̄ε)τ

ε = θε(Λ(Θ̄ε)).

The assertion follows from relation (R7) and Lemma 2.9 (i).

(iii) is obvious. �

Now, we want to explore the structure of the quasi-kernels of
Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1], in particular, that of Λ(Θ̄ε).

First, we note that Proposition 2.11 (ii) and relation (R6) imply that for i ∈ Iε,

λiετ
−εΛ(Θ̄ε)τ

ε(λiε)
−1 = λiεKε(λ

i
ε)
−1

= 〈{h(i,−ε, i1, ε1, . . . , im, εm;σm) |m ≥ 0, h(i,−ε, i1, ε1, . . . , im, εm;σm) ∈ H}〉.

It is clear that

Λ(Θ̄ε)

=〈{h(σ−ε) |σ−ε∈Γ−ε} ∪ ∪
i∈Iε

λiετ
−εΛ(Θ̄ε)τ

ε(λiε)
−1∪ ∪

i∈I′−ε

λi−ετ
εΛ(Θ̄−ε)τ

−ε(λi−ε)
−1〉

=〈 { h(σ−ε) | σ−ε ∈ Γ−ε } ∪ K(0,−ε) 〉.

In other words,
Λ(Θ̄ε)

∼= K(0,−ε) o Γ−ε.

This can be written “recursively” as

Kε
∼= [

⊕
#(S′−ε)

K−ε ⊕
⊕

#(Sε)

Kε] o Γ−ε. (5)

This is in a sense a “wreath product” representation.

Let’s denote
Hε(0) = 〈 { h(σ−ε) | σ−ε ∈ Γ−ε } 〉.

For n ≥ 1, let

Hε(n)=〈{h(i1, ε1,. . ., in, εn;σn) |h(i1, ε1,. . ., in, εn;σn)∈H−ε and (i1, ε1) 6=(ι−ε, ε)}〉.

Note that, each Hε(n) is isomorphic to a direct sum of copies of Γ1 and Γ−1. Let
us also denote

Hε[n] = 〈 Hε(0) ∪Hε(1) ∪ · · · ∪ Hε(n) 〉.
Relation (R3) implies that Hε(n) C Hε[n] and that there is an extension

{1} −→ Hε(n) −→ Hε[n] −→ Hε[n− 1] −→ {1}. (6)

The natural embeddings Hε[m] ↪→ Hε[n] give a representation of Λ(Θ̄ε) as a direct
limit of groups

Λ(Θ̄ε) = lim
−→
n

Hε[n]. (7)
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Lemma 2.12. K−1 is amenable if and only if K1 is amenable, if and only if
Γ−1 and Γ1 are both amenable, and if and only if Σ−1 and Σ1 are both amenable.

Proof. Assume that Γε is not amenable for some ε = ±1. Then, by equation (5),
it follows that K−ε is not amenable, so equation (5), applied once more, gives the
nonamenability of Kε.

Conversely, assume that Γ−1 and Γ1 are both amenable. Then Hε(n) is
amenable as a direct sum of copies of Γ−1 and Γ1. Also, Hε[0] = Hε(0) ∼= Γ−ε
is amenable for ε = ±1. Therefore an easy induction based on the extension (6),
gives the amenability of Hε[n] for each ε = ±1 and each n ≥ 0. Finally, the direct
limit representation (7) of Λ(Θ̄ε) implies the amenability of Λ(Θ̄ε) for and therefore
that of Kε = τ−εΛ(Θ̄ε)τ

ε for ε = ±1. �

2.4. GROUP-THEORETIC STRUCTURE

We give a result about the structure of our groups.

Theorem 2.13. Take Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1]. Let’s assume that:

(i) Σ−1 and Σ1 are 2-transitive, that is, all stabilizers (Σε)iε are transitive on
the sets Iε \ {iε} for all iε ∈ Iε and ε = ±1;

(ii) For each ε = ±1, either Σε = 〈(Σε)iε | iε ∈ Iε〉 or Σε = Sym(2).

Then Λ has a simple normal subgroup Ξ for which there is a group extension

1 −→ Ξ −→ Λ
η−→ (Γ/[Γ,Γ]) oZ Z −→ 1,

where η is defined on the generators by

η(h(σ)) = ((. . . , 0, . . . , 0, ([σ], 0), 0, . . . , 0, . . . ), 0), η(τ) = ((. . . , 0, . . . ), 1), and

η(h(i1, ε1, . . . , in, εn;σn)) = ((. . . , 0, . . . , 0, ([σn], ε1 + · · ·+ εn), 0, . . . , 0, . . . ), 0).

Here [σ] denotes the image of the permutation σ ∈ Γ in Γ/[Γ,Γ].

Proof. It follows from relations (R7), (R8), and (R9) that the action of θ on an
element h(i1, ε1, . . . , in, εn;σn) is consistent with the definition of η and the multi-
plication in the wreath product, that is,

η(θ(h(i1, ε1, . . . , in,εn;σn))) = η(τ−1h(i1, ε1, . . . , in, εn;σn)τ)

= ((. . . , 0, . . . , 0, ([σn], ε1 + · · ·+ εn − 1), 0, . . . , 0, . . . ), 0).

It is easy to see that, since the commutant is in the kernel, the homomorphism
η : G→ (Γ/[Γ,Γ]) oZ Z is well defined by

η(g) = ((. . . , (
∏

ε1+···+εn=m

[σn],m), . . . ), 0),

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107–129. 121



where the products are taken over all the factors h(i1, ε1, . . . , in, εn;σn) of g. These
two observations together with the universal property of the HNN-extensions (Re-
mark 1.1) enable us to extend η to the entire group Λ.

Now, notice that if λ = g1τ
ε1g2τ

ε2g3τ
ε3 · · · gnτεngn+1 ∈ Ξ, then ε1+· · ·+εn=0.

Thus

λ = g1(τε1g2τ
−ε1)(τε1+ε2g3τ

−ε1−ε2) · · · (τε1+ε2+···+εn−1gnτ
−ε1−ε2−···−εn−1)gn+1

can be represented as products of τ -conjugates of elements from G.

Using Lemma 2.9 (ii), we see that every λ = τngτ−n can be written as a
product of elements of the form τnh(σ)τ−n and τnh(i1, ε1 . . . , im, εm;σm)τ−n. The
second element equals either τn−mh(σm)τm−n or h(j1, ε

′
1, . . . , jk, ε

′
k;σm) for some

jp’s and ε′p’s. Therefore, it is easy to see that Ξ is generated by the following set

{h(i1, ε1, . . . , in, εn;σn)h(i′1, ε1, . . . , i
′
n, εn;σ−1

n ) | εk=±1, ik, i
′
k∈I−εk , ∀k; n ≥ 2, σn∈Γεn}

∪ {i, ε, i0,−ε, i1, ε, i2, ε2, . . . , in, εn;σn)h(̄i, ε, i′2, ε2, . . . , in, εn;σ−1
n ) |

n ≥ 2, , i0 ∈ Iε, i′2 ∈ I−ε2 , i, ī ∈ I−ε; ik ∈ I−εk , ε, εk = ±1, ∀k}

∪ {h(σε)h(iε,−ε, i−ε, ε;σ−1
ε ) | σε ∈ Γε, i−ε ∈ I ′ε, iε ∈ I−ε, ε = ±1}

∪ {h(i1, ε1, . . . , im, εm, i, ε, j,−ε, j1, ε′1, . . . , jn, ε′n;σ)

· h(i1, ε1, . . . , im, εm, j
′,−ε, i′, ε, j1, ε′1, . . . , jn, ε′n;σ−1) |

m,n ∈ N0, i, i
′,∈ I−ε, j, j′ ∈ Iε, σ ∈ Γε′n ; ε, εk, ε

′
k = ±1, ik ∈ I−εk , jk ∈ I−ε′k , ∀k}

∪ {τεnh(σ−ε)τ
−εnh(ι−ε, ε, . . . , ι−ε, ε︸ ︷︷ ︸

n times

;σ−1
−ε) | σ−ε ∈ Γ−ε, ε = ±1, n ∈ N}

∪ {τεnh(σ−ε)τ
−εn | n ∈ N, σ−ε ∈ Γ−ε ∩ [Γ,Γ], ε = ±1} ∪ {h(σ) | σ ∈ [Γ,Γ]} .

(8)

Take any element a ∈ Ξ\{1}. It remains to show that 〈〈a〉〉Ξ = Ξ. Relations
(R3), (R8), and (R9) and Lemma 2.9 (iii) imply that we can find a big enough n
and ik’s so that the element h(i1, ε1, . . . , in, εn;σn) does not commute with a and
does not modify a. Moreover, if we take

v ≡ h(i1, ε1, . . . , in, εn;σn)h(i′1, ε1, . . . , i
′
n, εn;σ−1

n ) ∈ Ξ \ {1},

for any i′k’s (not all equal to ik’s), we will have

〈〈a〉〉Ξ 3 b ≡ ava−1v

= h(p1, l1, . . . , pm, lm;σn)h(p′1, l
′
1, . . . , p

′
d, l
′
d;σ
−1
n )

· h(i1, ε1, . . . , in, εn;σn)h(i′1, ε1, . . . , i
′
n, εn;σ−1

n )

for some m, d, pk’s, p′k’s, lk’s, and l′k’s.
Now, it is clear that we can find big enough s and appropriate ek’s, e′′k ’s, jk’s, and
j′′k ’s, so that h(j′′1 , e

′′
1 , . . . , j

′′
s , e
′′
s ;σ−1) commutes with b and h(j1, e1, . . . , js, es;σ)
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does not. Then,

〈〈a〉〉Ξ 3 b′ ≡ bh(j1, e1, . . . , js, es;σ)h(j′′1 , e
′′
1 , . . . , j

′′
s , e
′′
s ;σ−1)b−1

h(j′′1 , e
′′
1 , . . . , j

′′
s , e
′′
s ;σ)h(j1, e1, . . . , js, es;σ

−1)

= h(j′1, e1, . . . , j
′
s, es;σ)h(j1, e1, . . . , js, es;σ

−1) 6= 1

for some j′k’s, from relation (R3). We can take s to be big enough and adjust the
’tail’ of (j1, e1, . . . , js, es) so that e1+· · ·+en = 0. Since the tuples (j1, e1, . . . , js, es)
and (j′1, e1, . . . , j

′
s, es) are different, it follows from Lemma 2.9 (i) and from the

assumption ε1 + · · ·+ εn = 0 that

βb′β−1 = h(p′′1 , e
′′′
1 , . . . , p

′′
k , e
′′′
k , p

′′, es;σ)h(σ−1) ∈ 〈〈a〉〉Ξ

for some k ∈ N, p′′l ’s, and e′′′l ’s, where

Ξ 3 β = τ−es(λjs−es)−1 · · · τ−e1(λj1−es)−1·

·
∏

ek=−1

h(ρk1 , w
k
1 , . . . , ρ

k
tk
, wktk , w, 1;µjk−ek) ·

∏
ek=1

h(ρ̄k1 , w̄
k
1 , . . . , ρ̄

k
t′k
, w̄kt′k

, w̄,−1;µjk−ek),

and where the last two factors are chosen appropriately to bring β into Ξ. This
argument does not depend on the ’tail’ of (p1, e1, . . . , ps, es), therefore we can take
es to be either 1 or −1.

We conclude that the following are elements of 〈〈a〉〉Ξ :

c = h(σ1)h(ι1,−1, p1, e1, . . . , pk, ek, p, 1;σ−1
1 ) and

d = h(σ−1)h(ι−1, 1, q1, l1, . . . , qk, lk, q,−1;σ−1
−1)

for any big enough even number k, for any σ1 ∈ Γ1 and σ−1 ∈ Γ−1, and for some
pm’s, qm’s, em’s, and lm’s.

We claim that, in the tuples (ι1,−1, p1, e1, . . . , pk, ek, p, 1) and
(ι−1, 1, q1, l1, . . . , qk, lk, q,−1), the indices p, q, pt’s, and qt’s can be chosen arbi-
trary. To see this, consider

Ξ 3 f = h(ι1,−1, p1, e1, . . . , pt, et;ωt)h(q0,−1, q1, o1, . . . , qr, or, q, et;ω
−1
t ),

where q0 6= ι1 and where the second factor is chosen appropriately. Then by relation
(R3),

fcf−1 = h(σ1)h(ι1,−1, p1, e1, . . . , ωt(pt+1), . . . , pk, ek, p, 1;σ−1
1 ) ∈ 〈〈a〉〉Ξ .

Because of the transitivity and 2-transitivity of Σ−1 and Σ1, the claim is proven.
The element d can be manipulated similarly.

Now, consider

Ξ 3 s = h(ι−1, 1, i2, ε2, . . . , it, εt;ωt)h(ι1,−1, q′1, o
′
1, . . . , q

′
r, o
′
r, q
′, et;ω

−1
t )
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for an appropriate choice of q′l’s and pl’s so it commutes with
h(ι1,−1, p1, e1, . . . , pk, ek, p, 1;σ−1

1 ). Therefore

scs−1c−1 = h(ι−1, 1, i2, ε2, . . . , it, εt;ωt)h(σ1(ι−1), 1, i2, ε2, . . . , it, εt;ω
−1
t ) ∈ 〈〈a〉〉Ξ,

so by the transitivity of the group Σ−1, we see that every element of the form

h(ι−1, 1, i2, ε2, . . . , it, εt;ωt)h(i1, 1, i2, ε2, . . . , it, εt;ω
−1
t )

belongs to 〈〈a〉〉Ξ. Products of such elements yield

h(i′1, 1, i2, ε2, . . . , it, εt;ωt)h(i1, 1, i2, ε2, . . . , it, εt;ω
−1
t ) ∈ 〈〈a〉〉Ξ

for any i1, i
′
1 ∈ I−1. By making the same argument that uses transitivity and 2-

transitivity, we see that we can change the il indices of the first factor, so we infer
that the first set of (8) belongs to 〈〈a〉〉Ξ .

Consider an integer n ≥ 2, an even number k ≥ 2, and an appropriate
h(j1, ε

′
1, . . . , jk, ε

′
k;σ) that commutes with h(i1, ε1, i2, ε2, . . . , in, εn;σn) and with

h(ι−ε1 , ε1, i2, ε2, . . . , in, εn;σ−1
n ) and has the property that

δ′ ≡ τε1h(σ)τ−ε1h(j1, ε
′
1, . . . , jk, ε

′
k;σ−1)

belongs to Ξ. Then

δ′h(i1,ε1, i2, ε2, . . . , in, εn;σn)h(ι−ε1 , ε1, i2, ε2, . . . , in, εn;σ−1
n )(δ′)−1

=h(ι−ε1 , ε1, σ(ιε1),−ε1, i1, ε1, i2, ε2, . . . , in, εn;σn)

h(ι−ε1 , ε1, σ(i2), ε2, . . . , in, εn;σ−1
n ) ∈ 〈〈a〉〉Ξ .

Products of those elements with elements from the first set give all the elements
from the second set of (8), so it is included in 〈〈a〉〉Ξ .

The third set of (8) belongs to 〈〈a〉〉Ξ since its elements are products of the
elements c and d above with elements from the second set.

A generic element of the fourth set of (8) can be written as

h(i1, ε1, . . . , im, εm, i, ε, j,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ)·
h(i1, ε1, . . . , im, εm, j

′,−ε, i′, ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ−1), (9)

where we have written ε′1 = ε. We must show that this element belongs to 〈〈a〉〉Ξ .

First, we start with the following element from the first set of (8)

〈〈a〉〉Ξ 3 z = h(i1, ε1, . . . , im, εm, i, ε, ι−ε, ε, q,−ε, j,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ)·
h(i1, ε1, . . . , im, εm, i, ε, ι−ε, ε, q,−ε, ιε,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ−1),

where q ∈ I ′ε.
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Next, using Lemma 2.9 (i) and adopting the notations thereof, we define

Ξ 3 γ = λi1−ε1τ
ε1 · · ·λim−εmτ

εmλi−ετ
2ε(λqε)

−1τ−2ε(λi−ε)
−1

· τ−εm(λim−εm)−1 · · · τ−ε1(λi1−ε1)−1 · h(r1, e1, . . . , r2l−1, e2l−1, r̄−ε, ε;µ
q
ε)

for appropriate rk’s and ek’s satisfying e1 + · · · + e2l−1 + ε = 0 and for which the
last factor commutes with everything in the next expressions. Then

γzγ−1 = h(i1, ε1, . . . , im, εm, i, ε, j,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ) · h̄,

where

h̄ ≡ γh(i1, ε1, . . . , im, εm, i, ε, ι−ε, ε, q,−ε, ιε,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ−1)γ−1

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmλi−ελ
ī
−ετ

ε · · ·λjn−ε′nτ
ε′nh(σ−1)

· τ−ε
′
n(λjn−ε′n

)−1 · · · τ−ε(λī−ε)−1(λi−ε)
−1τ−εm(λim−εm)−1 · · · τ−ε1(λi1−ε1)−1

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmλi−εh(̄i, ε, j2, ε
′
2, . . . , jn, ε

′
n;σ−1)(λi−ε)

−1τ−εm(λim−εm)−1· · ·τ−ε1(λi1−ε1)−1

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(µi−ε(̄i), ε, j2, ε
′
2, . . . , jn, ε

′
n;σ−1)τ−εm(λim−εm)−1 · · · τ−ε1(λi1−ε1)−1.

Likewise, we consider the following element from the first set of (8)

〈〈a〉〉Ξ 3 z′ =h(i1, ε1, . . . , im, εm, j
′,−ε, ιε,−ε, p, ε, ι−ε, ε, µi−ε(̄i), ε, j2, ε′2, . . . , jn, ε′n;σ)

· h(i1, ε1, . . . , im, εm, j
′,−ε, ιε,−ε, p, ε, i′, ε, µi−ε(̄i), ε, j2, ε′2, . . . , jn, ε′n;σ−1),

where p ∈ I ′−ε and define

Ξ 3 γ′ =λi1−ε1τ
ε1 · · ·λim−εmτ

εmλj
′

ε τ
−2ε(λp−ε)

−1τ2ε(λj
′

ε )−1

· τ−εm(λim−εm)−1 · · · τ−ε1(λi1−ε1)−1 · ·h(r′1, e1, . . . , r
′
2l−1, e2l−1, r̄−ε, ε;µ

p
−ε)

for appropriate r′k’s. Then,

γ′z′(γ′)−1 = ¯̄h · h(i1, ε1, . . . , im, εm, j
′,−ε, i′, ε, µi−ε(̄i), ε, j2, ε′2, . . . , jn, ε′n;σ−1),

where

¯̄h ≡γ′h(i1, ε1, . . . , im, εm, j
′,−ε, ιε,−ε, p, ε, ι−ε, ε, µi−ε(̄i), ε, j2, ε′2, . . . , jn, ε′n;σ)(γ′)−1

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmλj
′
ε h(µi−ε(̄i), ε, j2, ε

′
2, . . . , jn, ε

′
n;σ)(λj

′
ε )−1τ−εm(λim−εm)−1· · ·τ−ε1(λi1−ε1)

−1

=λi1−ε1τ
ε1 · · ·λim−εmτ

εmh(µj
′
ε (µi−ε(̄i)), ε, j2, ε

′
2, . . . , jn, ε

′
n;σ)τ−εm(λim−εm)−1· · ·τ−ε1(λi1−ε1)−1

=(h̄)−1 ,

since µj
′

ε (µi−ε(̄i)) = µi−ε(̄i), due to relation (R6) and µi−ε(̄i) ∈ I−ε. Finally,

〈〈a〉〉Ξ 3 γzγ−1·γ′z′(γ′)−1 = h(i1, ε1, . . . , im, εm, i, ε, j,−ε, ī, ε, j2, ε′2, . . . , jn, ε′n;σ)

· h(i1, ε1, . . . , im, εm, j
′,−ε, i′, ε, µi−ε(̄i), ε, j2, ε′2, . . . , jn, ε′n;σ−1),

and after a multiplication with an element from the first set of (8), we get the
element (9).
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Therefore the fourth set of (8) is in 〈〈a〉〉Ξ .

Repeating almost verbatim the corresponding part of the proof of Theorem [8,
Theorem 3.16] gives us that the seventh set of (8) belongs to 〈〈a〉〉Ξ. Note that if
Σε = Sym(2), then [Σε,Σε] is the trivial group.

Next, we take numbers m > n and

γ′′ = τεmh(σ′−ε)τ
−εmh(j1, ε, . . . , jm+1, ε, j,−ε; (σ′−ε)

−1) ∈ Ξ,

where σ′−ε ∈ Γ−ε, jk ∈ I ′−ε, ∀k, and j ∈ I ′ε, with the relation (σ′−ε)
−1(ιε) = q for

some q ∈ I ′ε.
After that, we take the following element of 〈〈a〉〉Ξ (it is a product of elements from
the second and fourth set)

x ≡ h(ι−ε, ε, . . . , ι−ε, ε︸ ︷︷ ︸
m times

, q,−ε, ιε,−ε, . . . , ιε,−ε︸ ︷︷ ︸
m−n−1 times

;σ−ε)·

· h(ι−ε, ε, . . . , ι−ε, ε︸ ︷︷ ︸
m times

, q,−ε, ιε,−ε, . . . , ιε,−ε︸ ︷︷ ︸
m times

, p, ε, ι−ε, ε, . . . , ι−ε, ε︸ ︷︷ ︸
n−1 times

;σ−ε),

where p ∈ I ′−ε. Then

γ′′x(γ′′)−1 = τεnh(σ−ε)τ
−εn · h(p, ε, ι−ε, ε, . . . , ι−ε, ε︸ ︷︷ ︸

n−1 times

;σ−ε) ∈ 〈〈a〉〉Ξ.

Therefore upon a multiplication by an element from the first set of (8), we infer
that the fifth set of (8) belongs to 〈〈a〉〉Ξ .

Finally, the argument from Theorem [8, Theorem 3.16] can be used for the
sixth set of (8) the same way it was used for the seventh set.

This completes the proof. �

Remark 2.14. The example introduced in [3, Section 5] corresponds to the
case Σ−1

∼= Σ1
∼= Sym(2). Theorem 2.13 corresponds to [3, Proposition 5.11] in

this particular case.

2.5. ANALYTIC STRUCTURE

In this section, we use some results from [8, Section 2].

Lemma 2.15. The group Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1] is a non-ascending
HNN-extension and its action on its Bass-Serre tree is minimal and of general type.

Proof. Since the action is transitive, it is minimal. Since H 6= G 6= θ(H), then Λ
is nondegenerate and non-ascending. The result now follows from [7, Proposition
20]. �
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Theorem 2.16. The HNN-extension Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1] has a
unique trace. It is C∗-simple if and only if either one of the groups Σ−1 and Σ1 is
non-amenable.

Proof. Lemma 2.15 enables us to apply [3, Theorem 4.19] to conclude that Λ has the
unique trace property since ker Λ is trivial. It also enables us to apply [3, Theorem
4.20] to conclude that Λ is C∗-simple if and only if K−1 and K1 are non-amenable,
which, by Lemma 2.12, is equivalent to the requirement that some of the groups
Σ−1 and Σ1 is non-amenable. �

Finally, we prove

Theorem 2.17. The HNN-extension Λ = Λ[Σ−1,Σ1] in not inner amenable.

Proof. Lemma 2.15 allows us to apply [8, Proposition 2.3], so we need to show that
the action of Λ = Λ[I−1, I1, ι−1, ι1; Σ−1,Σ1] on its Bass-Serre is finitely fledged.

For this, take any elliptic element g ∈ Λ \ {1}. Since g fixes some vertex, it
is a conjugate of an element of G. The finite fledgedness property is conjugation
invariant, so we can assume g ∈ G \ {1}.

From Lemma 2.9 (ii), we can write g = h(σ)h−1h1, where σ ∈ Γ,

h−1 =

m∏
k=1

h(ik1 ,−1, ik2 , εk,2, . . . , i
k
nk
, εk,nk

;σk) ,

h1 =

r∏
l=m+1

h(il1, 1, i
l
2, εl,2, . . . , i

l
nl
, εl,nl

; θl) ,

r≥m≥0, σk ∈ Γεk,nk
, θl ∈ Γεl,nl

, and ipz ∈ I ′εp,z . We also require 0 ≤n1≤ . . .≤ nm
and 0 ≤ nm+1 ≤ · · · ≤ nr.

Let us assume that g fixes a vertex v = v(i1, ε1, . . . , in, εn), where
n ≥ max{nm, nr} + 1, and let’s take w = v(i1, ε1, . . . , in, εn, . . . , in+d, εn+d) for
any d ≥ 1. We note that h−ε1 fixes w and h(σ)hε1 modifies only indices with
numbers no greater than {nm, nr}+ 1 ≤ n. Therefore

h(σ)hε1v = v(i′1, ε1, . . . , i
′
n, εn) and

h(σ)hε1w = v(i′1, ε1, . . . , i
′
n, εn, in+1, εn+1, . . . , in+d, εn+d)

for some i′k ∈ I ′−εk . By our assumption, it follows that

v = gv = h(σ)hε1v = v(i′1, ε1, . . . , i
′
n, εn).

Thus i′k = ik for all 1 ≤ k ≤ n, and therefore gw = w.

This concludes the proof. �
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Corollary 2.18. Theorems 2.16 and 2.13 imply:
If either Σ−1 or Σ1 is non-amenable, then the amenablish radical of Λ is trivial.
If Σ−1 and Σ1 are both amenable, then Λ is amenablish.

Proof. If we show that the centralizer CΛ(Ξ) is trivial, [2, Theorem 4.1] will im-
ply that Λ is C∗-simple if and only if Ξ is C∗-simple. Since Ξ is simple, if it is
not C∗-simple, then it is amenablish, and therefore Λ is also amenablish because
(Γ/[Γ,Γ]) oZ Z is amenable. If Ξ is C∗-simple, then so is Λ, thus both of their
amenablish radicals are trivial.

To illustrate that CΛ(Ξ) is trivial, assume that there is a nontrivial g ∈ CΛ(Ξ).
Then g can be written as in Lemma 2.9 (iii), and using relations (R3), (R7), and
(R8), we can find a non-trivial element of Ξ

h(i1, ε1, . . . , im, εm, j1, ε
′
1, . . . , jn, ε

′
n;σ) · h(i1, ε1, . . . , im, εm, j

′
1, ε
′′
1 , . . . , j

′
n, ε
′′
n;σ−1)

that does not commute with g, a contradiction. �
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