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1. INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

The questions of C*-simplicity and unique trace property for a discrete group
have been studied extensively. By definition, a discrete group G is C*-simple if the
C*-algebra associated to the left regular representation, C(G), is simple; likewise
it has the unique trace property if C*(G) has a unique tracial state. An extensive
introduction to that topic was given by de la Harpe ([6]). Recently, Kalantar and
Kennedy ([10]) gave a necessary and sufficient condition for C*-simplicity in terms
of action on the Furstenberg boundary of the group in question. Later, Breuillard,
Kalantar, Kennedy, and Ozawa ([2]) studied further the question of C*-simplicity
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and also showed that a group has the unique trace property if and only if its
amenable radical is trivial. They also showed that C*-simplicity implies the unique
trace property. The reverse implication was disproven by examples given by Le
Boudec ([11]). In the case of group amalgamations and HNN-extensions, the kernel
controls the uniqueness of trace, and the quasi-kernels control the C'*-simplicity.

The notion of inner amenability for discrete groups was introduced by Effros
([5]) as an analogue to Property I for I; factors that was introduced by Murray
and von Neumann ([12]). By definition, a discrete group G is inner amenable if
there exist a conjugation invariant, positive, finitely additive, probability measure
on G\{1}. Effros showed that Property I" implies inner amenability, but the reverse
implication doesn’t hold, as demonstrated by Vaes ([14]).

Our examples (all of which being HNN-extensions) stem from the questions
of C*-simplicity and the unique trace properties for groups. In particular, all of
our examples have the unique trace property, and we also determine the C*-simple
ones and the non-C*-simple ones. The examples of section 2 generalize the example
given in [3, Section 5] (which corresponds to the group A[Sym(2), Sym(2)] of section
2). There is a resemblance to the groups introduced by Le Boudec in [11] since
they all act on trees. The main benefit is that our groups are given concretely
by generators and relations, which makes them more tractable to investigate some
further properties they possess.

We study some additional analytic properties of our examples. We show that
they are all non-inner-amenable by showing that they are finitely fledged - a prop-
erty that we introduce in [8].

We also explore some of the group-theoretical properties of our groups. We
remark that they are not finitely presented. Also, under some mild natural assump-
tions, we show that each group has a relatively large, simple, normal subgroup.

1.2. PRELIMINARIES

For a group I' acting on a set X, we denote the set-wise stabilizer of a subset
Y C X by
Fiyy = {gel|gY =Y}

and the point-wise stabilizer of a subset Y C X by
Tyy = {gel|gy=y, WyeY }.
For a point x € X, we denote its stabilizer by
Iy={gel|gz=2x}
Note that, I'ry}, I'(y), and I';; are all subgroups of I'. Also note that,

9U vy~ =Tigvy, 9Tag™ ! =Ty , and gL g~ = Tgyy.
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For a group G and its subgroup H, by ((H))c or by ((H)), we denote the
normal closure of H in G.

For some general references on group amalgamations and HNN-extensions see,
e.g., [1], [4], [13], [7], etc.

Let G = (X | R) be a group; let H be a subgroup of G; and let 6 : H — G be
a monomorphism. Then an HNN-extension of this data (named after G. Higman,
B. Neumann, H. Neumann) is the group

HNN(G,H,0) = Gx¢ = (XU{r} | Ru{(h) = 7 'h7t | h € H}).
It is convenient to denote H_1 = H and Hy =0(H). Every element y€ HNN (G, H,0)
can be written in reduced form as
Y=g gnT"gny1, where n €N, g1,..., 9041 € G, €1,...,6, = %1,
and where if €,11 = —¢; for 1 <i¢ <n—1, then g;41 ¢ H.,.

If S is a set of left coset representatives for G/H,, where ¢ = £1, satisfy S_; N
S1 = {1}, then every element v € HNN(G, H,0) can be uniquely written in
normal form as
v =517"897%2 - 5, 7°"g, where n € Ny, g € G, ¢, = £1, s, € S_.,, V1<i < n,
and where if ,_1 = —¢; for 2 < i <n, then s; # 1.

The HNN-extension HNN(G, H,0) is called nondegenerate if either H # G or
O(H) # G and is called non-ascending if H # G # 0(G).

The Bass-Serre tree T(HNN (G, H,0)) of HNN(G, H, 0) is the graph, that can be
shown to be a tree, consisting of a vertex set

Vertex(HNN (G, H,0)) =

{G}U {8171 8272 - - 5, 7°"G | n €N, 8178972 -+ - 5,7°" is in normal form}
and an edge set

Edge(HNN(G, H,0)) =
{H}YU {5172 897%% -+ - 8, 7" 841 H | nEN, 81718972 - -+ 5, 7°" is in normal form}.

The group HNN(G, H,0) acts on T(HNN(G, H,0)) by left multiplication.
The vertex v = §17%1897%2---5,7°"G is adjacent to the vertex
W= §1T°189T%2 - - 5, 7" 5, 11751 G with connecting edge

B {8175152752 Sy TS T H i ey = -1,

51T 859152 -+ - 5T s H if g1 = 1.
To see the reason for this, we need to look at the stabilizers. The stabilizer of v is

HNN(G,H,0), = 5175972 - 5,7 G (5171 5972 - - - 5,757 ) 71
) )
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and the stabilizer of w is
HNN(G,H,0)y=517"8T2 -+ - 8, 7" 8, 1 T G (517 8972 -+ - 8, T 5, 1 757 7L

Therefore the stabilizer of e is

HNN(G,H,0). = HNN(G,H,0), N HNN(G,H,0), =
1T 8972 - 8, T Spy1 [G N TEHLGT 0] (81751 89752 -~-sn75"sn+1)_1 =

S1T 8972 o5, T s 1 H o (517 5272 - - - ST Spy1) L =

51718972 5, T 8 1 H (8175189752 -+ 5,755, 11) "L if epyy = 1,
S1TE189T 2 v 8, 7o 8, TEH  HT 8041 (5175189752 - 5,757 8,01) " if g1 = —1.

Finally, since HNN (G, H, ) can be expressed as
HNN(G,H,0) = (Gx*(r))/{(r " *hr0(h™") | h € H)),
it has the following universal property (see, e.g., [4], page 36):

Remark 1.1. Let C be a group; let a : G — C' be a group homomorphism;
and let t € C be an element for which the following holds: t= a/(h)t = a(0(h)) for
each h € H. Then there is a unique group homomorphism 3 : HNN(G, H,0) — C

satisfying Ble = a and (1) = t.

To conclude this section, we recall that we called a group amenablish if it has
no nontrivial C*-simple quotients ([9, Definition 7.1]). We showed in [9] that the
class on amenablish groups is a radical class, so every group has a unique maximal
normal amenablish subgroup, the amenablish radical. Also, the class of amenablish
groups is closed under extensions. The amenablish radical “detects” C*-simplicity
the same way as the amenable radical “detects” the unique trace property (see [9,
Corollary 7.3] and [2, Theorem 1.3]).

2. HNN-EXTENSIONS
2.1. NOTATION, DEFINITIONS, QUASI-KERNELS

We use the following notations, some of which appear in [3]:

T.={y=go7°q17 -+ gnT"gnt1 | n > 0,7 € A is reduced},
T; = {’y = 7691761 .. -gnTE"gn_;’_l | n Z 07'}/ (S A iS reduCed}-
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For ¢ = £1, consider also the quasi-kernels defined in [3]:
K. = ﬂ rHr L. (1)
reA\TS
They satisfy the relation ker A = Ky N K_1, where, by definition,

ker A = m rHr— L.
reA

It follows from [3, Theorem 4.19] that A has the unique trace property if and
only if ker A has the unique trace property. It also follows from [3, Theorem 4.20]
that A is C*-simple if and only if K 1 or K is trivial or non-amenable provided A
is a non-ascending HNN-extension and ker A is trivial.

We need the following results.
Remark 2.1. Consider the Bass-Serre tree © = ©[A] of the group
A =HNN(G, H,0) = (G, 7 | 7~ *hr = 0(h) for all h € H),

and consider the edge H connecting vertices G and TG. Denote by ©1 the full
subtree of © consisting of all vertices v € O satisfying dist(v, G) < dist(v, 7G).
Also, denote by ©1 the full subtree of © consisting of all vertices v € © satisfying
dist(v, G) > dist(v,7GQ). Likewise, consider the edge T-1H connecting vertices G
and 771G. Then, denote by ©_; the full subtree of © consisting of all vertices
v € O satisfying dist(v, G) < dist(v,77'Q), and denote by ©_; the full subtree of
© consisting of all vertices v € © satisfying dist(v, G) > dist(v, 771Q).
It is easy to see that O, = T°O_,,
0.={G} U {t.G |t. e A\T! }, and ©. = { tiG | tl e T} }.

Proposition 2.2. With the notation from the previous Remark, the following
hold for each € = +1:

(i) Ke=Ae.)-
(i) K. < HNO(H).
(iif) vKev™" = Ao, for every v € A.

In particular Ag_y = 7K _c7"°.

Proof. (1)

geK. «—=rlgreH, YreA\T! <= grerH, VreA\T!
< grH =rH, VTGA\TJ < g fixes every edge of O,
<~ gEA(QE).
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(ii) From (i), we know that every element g € K. fixes all vertices adjacent to G
except for the vertex 7°G, eventually. Therefore it also fixes 7°G, so g fixes all
edges around G. In particular, g fixes the edge H, so g € H. Likewise, g fixes the
edge 77 'H,soge v Hr = 0(H).

(iii) As in (i), we have
geEVKNT! = Tlgve K. = 7 'gyeA@,
— gevho)y ! = g€Ae.).
O

Lemma 2.3. For e = +1, K. is a normal subgroup of H_., and a normal
subgroup of HNO(H). Moreover, if ker A is trivial, then K_1 and K1 have a trivial
intersection and mutually commute.

Proof. From Proposition 2.2 (ii), it follows that K; and K_; are subgroups of
HNO(H). Take h € H_.. Then
h- TJ ={ht® 17 gnT g1 | >0, TSI T gn T gy 18 reduced} =

{7°0°(h)g17%" -+ - gnT " Gny1 | n >0, 75171 -+ - g 7" gpy1 s reduced} = T;.

This gives the first assertion. For the second assertion, take k. € K, for each € = +1.
Then, from K. < H NO(H), it follows that k_1k; k=] € K; and kik_1k; ' € K_;.
Thus

K_ 13 (kik_1ky k"] = ki (k_1 kT 'kT]) € Ky,

and therefore klk,lkflkj e KiNK_; =kerA={1}. O

Lemma 2.4.

(i) Let y=7%"gy, -+ 927 g17° €A be reduced. Then - TL D Tign. In particular,
K., <yK_.y '

(ii) Lety € G\H.. Then vTLﬁTL = (. In particular, yK_.y'NK_. = ker A.

(iii) Let~y € A be a reduced word starting and ending with 7¢. Then TiaﬂyTg = 0.
In particular, K_, N YK,y ! =ker A.

Proof. (i) Observe that

v-T-e
—e —1_—&1 —1,_—en

S {yr gt gt
m > 0, T_Engn+17'€n+1gn+2 e gn+m7-6n+mgn+m+1 is reduced}

—& 1> g g
T n o, gTL—‘—lT n+1 gTL+2T n+2 ,, . gn+m7— n+7ngn+m+l ‘

={A =70 1T Gnt2 GntmT T Grrmt1 | m >0, A is reduced}

T —€&n-
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The second statement follows from the observation
v (AT = A\ATE, c ATt

(ii) and (iii) follow easily. O

Lemma 2.5. Let v = gni17"gpn -+ - 92Tt 17, ' = g;+17'€;/g;1 . ~g’27'sllg’17'€,
and ~" = g;{HTEgg;L g7 g7 be reduced, where n >0 and € = +1. Then:

(i) If (v/)"'y € H_., then yK.y ' ="K (/)7

(i) If ker A is trivial and if (v')"'y ¢ H_., then K.y~ ! and v'K.(v')~! have
a trivial intersection and mutually commute.

(iii) If ker A is trivial, then YKy~ and v"K_.(v")~! have a trivial intersection
and mutually commute.

Proof. (i) (') 'vK.y~'4' = K. by Lemma 2.3.

(i) If (v/)~'v is an element of G \ H_., then the assertion follows from
Lemma 2.4 (ii). If (7/)~ !y starts with 77° and ends with 7°, then, by Lemma 2.4
(1), it follows that

(V) I EATY < K-,
which, combined with K. N K_. = ker A = {1}, proves the assertion.

(iii) Observe that the reduced form of (y”) "1y starts and ends with 7¢, there-
fore the assertion follows from Lemma 2.4 (iii). O

Assume that ker A = {1}. Let S, be a left coset representatives of G/H. for
€= =£L

It follows from Lemma 2.5 that, for two reduced words
N = S 1T S - 597 817 and ' =ty 1T 0ty - taT T
with S, b € S_1US and E,Ei,€; S {—1, 1},

VKA =K ()"

if and only if v = 4/, and this happens if and only if ¢; = &} and s; = t;, Vi. In
the case v # v/, yK.y~! and v/ K.(7')~! have a trivial intersection and mutually
commute.

If v = rn+175/r:rn - 1ro71 8177 is another reduced word, where r; € S_1 U S
and e € {—1,1}, then yK.y~! and v"K_.(7”)~! have a trivial intersection and
mutually commute.

g

From these considerations, it follow that

K©0)= P skis & PtK at™! (2)

seS_4 teS
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and, for n > 0,
Kn+1)= @ SnA1T " Sp - 82T€IS1TEK5T7€SI1T7€18271 ces 5517—75" s;}rl
e=+1

s, €S_1US1, g;=%1

Sp41TEn sy 82751 51 7% reduced

are normal subgroups of G. Also, consider the groups
IC(O,&') = @ SKlsil D @tK_ltil,
sES_. teS.
which are normal in H, for e = £1.

Remark 2.6. The group G acts transitively on the vertices stG, where s€S_1.
It also acts transitively on the vertices st~ 'G, where s € Si. This fact is an
important ingredient in the examples below.

Remark 2.7. It follows from Lemma 2.4 that K_1 is isomorphic to a subgroup
of K1 and vice-versa. Consequently, K_1 = {1} if and only if K1 = {1}. In this
situation, K(n) = {1} ¥Yn > 0.

2.2. A FAMILY OF EXAMPLES

For e = +1, consider nonempty sets I, and let I, = I’ U {¢.}. Also, let X,
be transitive permutation groups on I, and let I' = 3_; - 331 be the corresponding

permutation group on I_ UI;. Let ¥, = (X.),. be the respective stabilizer groups,
and define I'. =T,. = X, - X__. Define

A[Eflazl} = A[IflaIIaLflaLl;thzl}
= HNN(G, H,0) = (G,7 | 7~ hr = 0(h) for all h € H),
where
EE <{h(i1751 .. 7in75n;0n) ‘ nec Na €t € {_17 1}7 it € I—8t7 and On € FEn
satisfy i € I' . whenever g,6,_1 = —1; }) and
H.=(HU{h(o.) | 0c €T.}), e = £1.

Finally, define
G = (H.1,Hi) = (HU{h(o) |0 €T}),

where the following relations hold (there are redundancies):
(R1) Elements h(c_1)’s and h(c1)’s commute for all o, € ¥, where e = £1.

(R2) Let 1 <m < n, o, €T, ,and o, €T, . If (i1,61...,0m,&m) #
(j1,€1 -+, Jm;s€m), the elements

. . 12 . . .
h(j1,€1 -y dm,em;0r,) and h(i1,€1 .., fm, Emy - -+ iny Eni On)
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commute.

(R3) For 1 <m < n and o € I'¢,, the following holds

h(1,€1 -y im, Em;Om)RE1, €1« oy Ty Emy by Emtdy « -+ bny EnOn)R(11,E1 « oy by EmiOm)

= h(i1,€1 P ,im,Em,Um(im+1),Em+1, . ,in,En;O'n).

(R4) For o.,,0,, € T, , the following holds
h(i1,€1 -y imy €m; Tm)R(E1,€1 o oy imy Emi Oo) = R(I1,€1 -+« s s Em Tm O )-
(R5) For o,0’ €T, the following holds
h(o)h(c') = h(od’).
(R6) Forn € Z,o0 €T, and o, € I';,, the following holds
h(o)h(i1,€1 ..., in,En; crn)h(a)*1 = h(o(i1),€1,%2,€2, - -, in,En;On)-

(R7) For e = +1 and o, € T, the following holds

07 (h(oc)) = (T°h(0e)T™7) = h(1—c,&50¢).
(R8) For e =+1, n €N, and o, € T, the following holds

G_E(h(ih&,ig,ﬁg, . ,in,én; O'n)) = (Tsh(il,&ig,z’:‘g, . ,in,€n;0n)7_€)

= h(Lfs’E,il,E’ 12,82 ..., in, En; o—n)'
(R9) Fore=+1,n€eN, and o, € T, the following holds

0°(h(i1,e. .. 0in,En;00)) = (T °h(i1,€ ... in,En;0n)T°)

N h(ig,é‘z...,in,é‘n;O’n), ifilzL_E,
h(tey,—€,01,€ ... in, En;0n), if 11 # .

2.3. SOME BASIC PROPERTIES OF THE EXAMPLES AND THEIR QUASI-KERNELS

In this subsection we fix a group A = A[J_1,11,t-1,t1; 21, 21].

First, let’s note that Index[G : H.] = #(I.) for ¢ = £1. To see this, recall
that X, acts transitively on I., and for i € I., choose ué € 3. satisfying ﬂé(bs) =1.
Let’s denote AL = h(ut). If o € ¥, \ XL satisfies o(1) =4, then (p) too(te) = te.
Therefore (ut) oo €Y., so h((ul) too) € H.. It follows that h(o) e h(ul)H. =\.H.
Consequently, for each ¢ = £1,

G = H.u| |XH.. (4)
iel!
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It is easy to see in these notations that for e = 41, the set
Se ={Aliell}u{1}

is a left coset representative of H. in G.

Next, consider the action of A on its Bass-Serre tree © = O[A]. The set of all
adjacent vertices to the vertex G is

{7GY U { N yrGicel’ ;YU {77'GYy U { )\ |iel }.

This set can be indexed by the set 7_; U I in the obvious way: Denote by v((}) the
vertex G, by v(1_1,1) the vertex 7G, by v(t1, —1) the vertex 771G, by v(i_1,1)
the vertex \''7G, where i_; € I’ |, and by wv(i1, —1) the vertex /\?T’lG, where
i1 € I{. Denote a general vertex

)\1_1517'51 e )\i_"EnTE"G
by v(i1,€1,...,in,n) for an element )@61751 ~-~)\i,"an75" € A in its normal form,
ie,igel ., andife, 1 -6 = —1, theni, €I’ _ .

With the notation of Remark 2.1, for ¢ = £1, O, is the full subtree of ©
containing the vertex v(f)) = G and vertices v(i1,€1,...,%n,€n), where n > 1
and (iy,€1) # (t_c,€), and O, is the full subtree of © containing the vertices
V(t_e,€,%1,E1, -+ -, in,En), where n > 0.

Remark 2.8. It follows from [1, Exercise VI.3] that our examples are never
finitely presented since H is never finitely generated.

We continue with

Lemma 2.9. (i) Letm > 1, o, € T, , i € I_¢,, and e € {—1,1} satisfy
€€i_1 = —1=14 € ILet' Then
h(i1,eps1 ... sim,Em;0m)

= Ai_lsl 7—51 e )\i_"ém/]—em h(o—m)T75'rrL (}J:Tém)71 N 7-751 ()\i—lgl )71.

(ii) Fwvery element h of G can be written as

m
h=nh(o) [] (i} cnn,. il ehms on),
k=1

where m > 1, o € Fak,nk7 1 <n <+ < ny, and o € T satisfy the
condition: if ng = Ng4q for some 1 >k > m and some a > 1, then

-k -l ‘k+a -k+a
(Zl 7€k Lyl Ek,nk) 7& (Zl yEk+a,ly- .- aznk+a ; €k+(l7nk+a)'
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(ii) Fvery element g € T, can be written as

g= AL TN TN 7,

—E&m
where h € G and m > 0.

Proof. (i) follows by repeated applications of relations (R7), (R8), and (R6).
(ii) follows by repeated applications of relations (R3) and (R6).
(iii) follows by equation (4) and the structure of HNN-extensions. O

Lemma 2.10. Letn >m > 1 and o, € I'c,. Then the following hold

(1) h(i1,€1 DR 7ima€m; Jm)v(ihgla ey imagmvim+1;€m+1a e 7in75n)

= U(il,El, ey im,ﬁm,dm(im+1),€m+1, . 7ina€n)-
(i) A1, 1. 0msEms Om) € Ay(iy eq..sim,enm) and h(0) € Aypy for o €T,
(iii) Ifoc € I'c, then h(oe) € Ag_ ) =7 “K.7°.

(iv) Let m < n and let h(i1,€1...,in,En;00), A(J1,€1 -, Jms€m;0m) € A, If
(11,61 im, €m) Z (J1,€1 -+, Jms €m), then h(in, €1 ... in, €03 00) € Ay(yer . jomrem)
and h(jh €1y Jm»Cm; 5m) S Av(il,a‘l...,in,en)'

(IV) h(il,El...,in,En;O’n) 6‘/\((:)5) — (il,El) # (L_E,{-:).
Proof. (i) First, note that

o= ()\om(ierl))—l ° h(O’m))\ierl c F—Em+1

—E€m+1 —&m+1

since it fixes 1. . It follows by Lemma 2.9 (i) and (iii) that there are k; € I,
and a x € M., that satisfy (rsm+1 ...\ 7on)~1 = D i ...AI;TTZI;T*Eerl'
Therefore

(TEm+1 . NI e ) TLp(g)pEmat L NI e

—&n —E&n
— —€n\kn—1 . \Em+1,-—Em+1 Em+1( \em+1\—1 . (\kn-1\—1_€n,—1
=XT AT AT h(o)Tem s (A2 ir) (A=) T x
. -1
= Xh(L€n7 —€n, k’nflu —En—1y---, km+27 —Em42s bey, +15 “EMAH1; J)X

Then Lemma 2.9 (i) implies

h(il,&‘l . ,im,€m; Om)v(i1,€1, ce ,im,fm,im+1,€m+1, . ,in,én)
_ i1 €1 % € —e 7 -1 —e1 (%1 -1 i1 £1 % €
=N TN TS (o )T T (A )T T (A )T A A, TG
_\u €1, .. \im Em 41 Em+1 ... \in En
=\ T A T h(om) AT Al TG

i1 €1 ... im Em o'm(im+1) Em41 , ., . in En
=\ T AT )\%m+1 h(o)T A TG
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_vit e Vim o em \Om(Emt1) _empr . \in €
- A*EIT )\*EmT /\*€m+1 T )‘75"7—
. (Tem+1 .. )\in Tfn)_lh(o—)TEW1+l .. .)\in TG
—en —&n
)b €1 ... \im Em \Om (Im+1) _epma1 Lo )\ €n
=T AT )\_Em+1 T AT

' Xh(Lgn, —En, kn—la —En—1y---

. -1
) km+27 —Em+25 ley+1y —Em+1s U)X G

=\2_7f1.

—e1

= (i1, €1, .

.. )\im Tam)\gm(inl+1)7-5m+1 .

—€m —E€m+1

. ,’im,Em,Um(’im+1),Em+1, e

N @

—€n

yinsEn)-

(ii) The second claim is obvious. For the first claim,

h(il,é'l ey im,€m;0m)v(i1,€1 e ,im, Em)
— /\i_lalTsl. . .,\i_vréstmh(am)T—sm ()‘i—"ém)_l' LpE (/\i_lm)—l,,\i_lelTsl. . ~>\i_7';nrsm'G
=N T AT T R (00)G = 0(i1, €1 Ty Em)-

(iii) The fact Ag ) = 7 °K.7° is stated in Proposition 2.2. Let n > 0 and let
V(Le, —€,91,1, ..+ ,in,&n) € O_.. By the argument at the beginning of the proof of
(i), there are k; € I, and a x € H. satisfying

(7_8)\2517’51 . -)\ifsnTE")_lh(UE)T_E)\ijslTsl e )\ifsnTE"

—1

=xh(te,, —Enskn—1,—En—1, -1 le;s —€1,E,L—c;0c)X

Therefore
. . _ —e\ 11 £ in 5
h(oe)v(te, —€,i1,€1,. .., in,€n) = h(o)T A2 750 - A7 750
€\l €1,..\!n En . (+~—E )\l €1, .. )\in en\—1 —e\ 11 €1,..\!n €,
=7 AT A e (TR T AT m)h(o )T AT Al TG

= 77Nl 7 A

. . —1
—&1 —Em cslers _61757L—8705)X G

En
T 'Xh(LEnv_Enakn—ly_gn—lw-

= U(’/Ea —&,11,E15- .- 7Zn7€n)'

Consequently h(o.) € ©_..

(iv) Note that the element v = T*e""()\jj’ém)*l ceeTTe ()\jjel)’l)\ijeﬁal . ')\ifsnTE”
belongs to Tiem because of the condition (i1,€1...,%m,Em) # (J1,€1 -+, JmsEm)-
It follows from Lemma 2.9 (iii) that v = T*e"")\]illlTll)\’iZlQTl? e )\]islSle‘h, where
h € G and where k, € I_;,, Vt. Then

h(jh €1 ..y Jm,Cm; 5m) S Av(il,sl...,in,sn)

= N TN e h(8) T (A )T T )T € Ay ey i)
= () €T (N )T T N ) T A ey ey A T N
= h0m) €A e im Yot (VL ) o1 o)
= h(om) € Aﬂm(xﬁzm)fl-WH(Ailel)*lxile;ﬂ-wi"nffnc
& h(0m) € Arem,\’jlllrll,\’jigrlz--~>\’1757lshc
= h(0m) € Mu(ue,, ,—em krslasekosls):
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The last equivalence holds according to (iii). The inclusion h(i1, €1 ..., in,En;0n) €

Au(jr,e1 o jmaem) 18 Proven analogously.
(v) Every vertex of A,y is of the form v(i_c,¢,j1,€1,...,Jm,em), so if tuples
(i1,€1 .-+, in,en) and (t—e, €, J1,€1, - -, Jm, €m) satisfy the assumptions of (iv), then

h(it,€1. .. in €n;0n) € Mg,y By (i), h(t—c,&,51,€1, -+ s my €m; om) ¢ As.), and
the statement follows. O

Proposition 2.11. For a group A = A[I_1,11,t—1,t1;X_1,%1] and fore==1,
the following hold

() M@y =({h(c-)ocel . }uU
{h(i1751, e 77;m75m;0—m) |m2 17h(i1751v . wimﬂgm;am) €H767

and (i1,€1) # (1-¢,€) }) ;
(i) |Kel = hlte,—€50-¢) | o_c €T_. }U

{ h(te, —€,91,€1, - yin,En;on) |n > 1,0, €T, 1)
(iii) ker A = {1}.

Proof. (i) Denote the group on the right-hand-side by A. The inclusion A < Ao,
follows from Lemma 2.10 (iii) and (v). Take an element h € A ). Proposi-
tion 2.2 (iv) implies that h € H_.. If we assume h = h(c), then ¢ € T'_,, and
therefore h(o) € A. If h is not of the form h(c), Lemma 2.9 (ii) can be applied to
h~1 € H_.. It follows that

m
h = H h(i]f,fk,h e 7ika7€k,7Lk;Uk) . h(U—e)a
k=1

where m > 0, o, € T
h(i, e, .. ,ilm €l 01) ¢ A for some 1 <1 <m and that [ is the biggest number
with this property. We will derive a contradiction below. Then it is clear that
zll =t .and g, = ¢. Also, 07 € Fel,n, is not the identity, so there exist two

different elements &, p € I_y U I;, such that o;(k) = p. Let h act on

by ML 2 N2 = s 2 My 2> 1, and o_. € I'_.. Assume

3y 3y
v = U(217€l,17 s alnlagl,nlaK/7El7nz7ala€17 e 7an156n1)a
where a’s and e’s are arbitrary and allowed. The terms h(o_.) and
H;n:lﬂ h(i%, ex,- .. ,iﬁk,ak}nk;ak) leave v fixed by the choice of I. From the final

condition of Lemma 2.9 (ii) and from Lemma 2.10 (iv), it follows that the terms
with length equal to n; also leave v fixed. Finally, from Lemma 2.10 (i), it follows
that the remaining terms act on v by eventually changing only the a’s. Therefore
we conclude that

-l -l
hv(zl,sl,ly .o aan,sl,nl,’iagl,n”alaelv oo 7an1aen1)

_ :l -l
= v(llvgl,lv sty Elngy P 5l,n“51,617 ce vﬂnuenl)
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for some f3’s. This shows that i ¢ A(g_), a contradiction that proves (i).
(ii) From Proposition 2.2 (iii), it follows that
Ke=71"°K (17 )1 =7 Ao 7" = 0°(Aa,))-
The assertion follows from relation (R7) and Lemma 2.9 (i).
(iii) is obvious. O
Now, we want to explore the structure of the quasi-kernels of
A= A[I_h Il, L_1,01; 2_1, 21], in particular, that of A(@E).
First, we note that Proposition 2.11 (ii) and relation (R6) imply that for i € I,
ATy (M) = ML)
= {h(i,—€,41,€1, - ylm, Em; Om) | m >0, h(i,—€,91,€1, -, im,Em; Om) € H}).
It is clear that
Ao
—({h(o-2) |0 ET_JU U XA,y (MU U Xorhie_ym* (V)7
=({ h(o_e) | o_c €T_. } UK(0,—¢) ).

In other words,
A(@E) = IC(O, —5) R

This can be written “recursively” as
= P K.o P KInT_.. (5)
#(SL,) #(Se)

This is in a sense a “wreath product” representation.
Let’s denote

He(0)=({ hlo-c) [0-c €T }).
Forn > 1, let
Hem)={{h(i1,€1, - -y in,En;0n) | R(i1, €15 - s iny En;on) € H and (i1,61) # (t—e, &) }).

Note that, each H(n) is isomorphic to a direct sum of copies of T'; and T'_;. Let
us also denote
Heln] =

Relation (R3) implies that H.
(

(H(O)UH(1)U---UH(n) ).
(n) < Hen ] and that there is an extension
{1} — He(n) — Heln] — Heln — 1] — {1}. (6)

The natural embeddings H.[m] — H.[n] give a representation of A(g_) as a direct
limit of groups
Ao,y = lii>n’H5[n]. (7)

n
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Lemma 2.12. K_1 is amenable if and only if K1 is amenable, if and only if
T'_1 and 'y are both amenable, and if and only if >_1 and X1 are both amenable.

Proof. Assume that I'; is not amenable for some ¢ = £1. Then, by equation (5),
it follows that K_. is not amenable, so equation (5), applied once more, gives the
nonamenability of K.

Conversely, assume that I'_; and T'; are both amenable. Then H.(n) is
amenable as a direct sum of copies of I'_; and I'y. Also, H.[0] = H.(0) = T'_,
is amenable for ¢ = 1. Therefore an easy induction based on the extension (6 )
gives the amenability of H.[n] for each ¢ = £1 and each n > 0. Finally, the direct
limit representation (7) of A(g_y implies the amenability of A(g_) for and therefore
that of K. =77°Ag_y7° for € = £1. 0

2.4. GROUP-THEORETIC STRUCTURE

We give a result about the structure of our groups.

Theorem 2.13. Take A = A[I_1,I1,t_1,t1;2_1,%1]. Let’s assume that:

(i) ¥_1 and 31 are 2-transitive, that is, all stabilizers (X.);. are transitive on
the sets I. \ {ic} for all ic € I. and e = £1;

(ii) For each e = £1, either . = ((X:)i. | te € Ic) or ¥ = Sym(2).
Then A has a simple normal subgroup = for which there is a group extension
1—2— A5 T/, T)Z —1,
where 1 is defined on the generators by
n(h(o))=1((...,0,...,0,([¢],0),0,...,0,...),0), n(r)=((...,0,...),1), and
n(h(i1, €1y yinyenion)) = ((-..,0,...,0,([on],e1 + - +€5),0,...,0,...),0).
Here [o] denotes the image of the permutation o € I' in T'/[T,T.

Proof. It follows from relations (R7), (R8), and (R9) that the action of § on an
element h(i1,€1,...,10n,€n; 0n) is consistent with the definition of 7 and the multi-
plication in the wreath product, that is,
n(O(h(i1, €1, inen;on))) = (T (i1, €1, . . .y in, En; 00)T)
=((...,0,...,0,([on),e1+ - +&,—1),0,...,0,...),0).

It is easy to see that, since the commutant is in the kernel, the homomorphism
n:G— (T/[I,T]) iz Z is well defined by

"7(9) = ((’( H [O'n]’m)"-'),0>7

g1t e =m
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where the products are taken over all the factors h(i1,e1, ..., 4n,&n; 0n) of g. These
two observations together with the universal property of the HNN-extensions (Re-
mark 1.1) enable us to extend 7 to the entire group A.

Now, notice that if A\ = g1 751 g27°2¢37%3 - - - g, 7" gp 41 € E, then e+ - -4€, =0.
Thus

e1tez

gsT gnT

—e1—¢€ e1teatten_
1 2),,,(7_ 1tez2+-+ 1 Gni1

A = 91(7'81927'751)(7' *61*62*"'*5”71)
can be represented as products of 7-conjugates of elements from G.

Using Lemma 2.9 (ii), we see that every A = 7"¢g7~ " can be written as a
product of elements of the form 7h(c)7~™ and 7"h(i1,€1 - - -, bm, Em; Om)T . The
second element equals either 7"~ h(op,)T™ ™ or h(j1,€,. .., jk, €} om) for some
Jp's and g’s. Therefore, it is easy to see that = is generated by the following set

{h(il,sl,...7in,sn;an)h(i'1,51, o ,i;,en;a,fl) |er==%£1, ik,i;CEI,Ek, Vk;n > 2 op€l,}
U {i,e,i0, —€,11,,02,€2, . .. in,En; 0n)h(i, e, 0,89, . . in,en;on ") |
n>2,, i€l ib €1 c,, i,i €I c;ix €1 ¢, €,6 ==+1, Vk}
U {h(o:)h(ic, —€,i—c ;0. ") | 0e €Tey i €12, ic €[, e = £1}
U {h(i1,€1,5 -5 0my Ems by €5 Jy —€, J1, €1 - -+, Jrus En; T)
~h(il,sl,...,im,sm,j',fs,i/,s,jl,sll,...,jn,sg;afl) |
m,n € No, i,i',€ Ic,j,j’ €I, 0 € Tey; €,6n, 6% = £1,in € oy, jn € I_or, K}
U {7"h(o— )T "h(t—c,e,. .. t-c,e;0_ L) | 0-c €T_.,e = %1, n € N}
U {7"h(o—e)T " |neN, o_. eT_.N[LT], e =+x1} U {h(o) | o €[[,T]}.
(8)

Take any element a € Z\{1}. It remains to show that ((a))=z = E. Relations
(R3), (R8), and (R9) and Lemma 2.9 (iii) imply that we can find a big enough n
and ix’s so that the element h(i1,e1,...,4p,,6n;0,) does not commute with a and
does not modify a. Moreover, if we take

v = (i1, €1, yin, en;on)h(i) 61, .. i, ensont) € 2\ {1},

for any i},’s (not all equal to ix’s), we will have
{{a))z 2 b=ava v

== h(plylla cee >pm7lm;0n)h(p/1al/17 ... 7piia /d;agl)

. . . -/ -/ . —1
“h(i1, €1, yin, Enyon)h(i], €1, i, Ens O )
for some m, d, px’s, p).’s, li’s, and I}’s.
Now, it is clear that we can find big enough s and appropriate e;’s, €}’s, jx’s, and

Ji’s, so that h(j7,ef,...,5”,€”;07!) commutes with b and h(ji1,e1,..., s, es;0)
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does not. Then,

<<a/>>E = b/ = bh(]la €1,... 7j87es; U)h( .1176/117 cee aj;/»€/5/5 U_l)b_l
"
)

h’(ji/? 6/1/’ s 7j.;/a €50 h(.jl? €1,.-- 7jsa €s; 0-71)
= h(ji, ety jh,es;0)h(jrs €1, .. sses;0 1) # 1
for some j}’s, from relation (R3). We can take s to be big enough and adjust the
"tail’ of (j1,€1,...,Js, €s) so that e+ - -+e, = 0. Since the tuples (j1,e1,...,js, €s)

and (ji,e1,...,]j.,es) are different, it follows from Lemma 2.9 (i) and from the
assumption €7 + - - - + £, = 0 that

BUB™Y = h(pl.el’,....pk el 0" es;o)h(0 ™) € ((a))

1

for some k € N, p/’s, and €]"’s, where

—es ()\js )71 L T—elo\jl )71_

= > 6 =T —eg —€s
k .k k k - ~k -k =k -k = ., Jk
: H h(p17w17'"aptkawtk7waluu’fek)' H h(plawla"'7pt;c,wt;caw7_1a,ufek)7
eszl ek:1

and where the last two factors are chosen appropriately to bring £ into =Z. This
argument does not depend on the ’tail’ of (py, e, ...,ps,€s), therefore we can take
es to be either 1 or —1.

We conclude that the following are elements of ((a))= :

c= h’(o—l)h(bh _171017617 -y Pky €Ky Py 170;1) and
d= h(a—l)h -1, 17Q17llv cee 7Qkalk7q7 _I,U:i)

for any big enough even number k, for any o1 € I'; and o_; € I'_;, and for some
Pm’S, Gm’S, em’s, and [,,’s.

We claim that, in the tuples (¢1,—1,p1,€e1,...,08,€5,p0,1) and
(t-1,1,q1, 01, ..., qr, Ik, g, —1), the indices p, g, pt’s, and g;’s can be chosen arbi-
trary. To see this, consider

—_

= 2 f = h<l’17_1aplaela-~-7ptaet;wt)h(q07_17ql701a"'7qT70T7Q7et;w;1)7

where gy # ¢1 and where the second factor is chosen appropriately. Then by relation
(R3),

fcf_l = h(Ul)h(Lla_17p15617"'7wt(pt+1)a"'ap/wek?apal;U;I) S <<a>>

[

Because of the transitivity and 2-transitivity of ¥_; and X1, the claim is proven.
The element d can be manipulated similarly.

Now, consider

—_ . . . ’ / / / / ., —1
=3 s = h(Lfla17127627"'7Zt76t,wt)h(L17_17Q17017'"7qr70r7q7et7wt )
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for an appropriate choice of ¢’s and p’s so it commutes with
h(Lh—l,pl,el,...7pk,ek,p71;of1). Therefore

sesTle™ = h(i_1, 1,00, 0, ..oy ig e wi)h(o1(t-1), 1,09, €0, . . .y ig, e300 ) € (@)

(1]

)

so by the transitivity of the group X _1, we see that every element of the form
h<l’71) 17 i2a E2yvvny it, Et;wt)h(ila 17 2.27 €2,... 7it7 Ety W;I)
belongs to ({a))=. Products of such elements yield

h(i/h177;27527"‘7it78t;wt)h(i1717i27‘€27"'ait76t;w;1) S <<a>>

(11

for any i1,4] € I_;. By making the same argument that uses transitivity and 2-
transitivity, we see that we can change the 4; indices of the first factor, so we infer
that the first set of (8) belongs to ((a}))= .

Consider an integer n > 2, an even number k > 2, and an appropriate

h(j1,€h, ..., jr,€f;0) that commutes with h(iy,e1,42,€2,...,9n,En;0y,) and with
h(t_c,,€1,i2,€2,...,in,En;0, ) and has the property that
§' =7 h(o)T h(jr, €y koY)

belongs to =. Then

5lh(7;17€177;27€27 v 7in7€n; O—n)h(bfslvgluinEQ? v 7in7€n; 051)(5/)_1
:h(b—aly‘gla 0’(”61)7 —€&1, 7:1,61,2’2,52, s 7ina5n; Un)
R(t_e, e1,0(i2),€2, ... yin,ensont) € ((a))=.

Products of those elements with elements from the first set give all the elements
from the second set of (8), so it is included in ({(a))= .

The third set of (8) belongs to ({(a))= since its elements are products of the
elements ¢ and d above with elements from the second set.

A generic element of the fourth set of (8) can be written as
. . . . - . / . /.
h(ll,fl, ey tmyEmy 4, E, ], —E,1,E,02,€9, - -+, Iny Eps 0')'
. . -/ -/ - . ! . /. —1
h(i1,€15 -« ylmyEmyJ s —E,0 ,€,1,€,J2,E5, - oy JnsEns o ), (9)

where we have written ¢} = e. We must show that this element belongs to ({a))= .

First, we start with the following element from the first set of (8)

. . . . - . / . /
({a)yz 2 2z = h(i1,€1, -, bmyEmy b, €y ey €40y —Ey Jy —E, 6, €, J2,E9y + « oy Jiny Eni O)

. . . - . / . r. _—1
h(ll,@h ey tmy Emy L, EL—6,E, 4, —E, Lg, _671767.]27€2a e 7.]”’57150' )7

where ¢ € I..

124 Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.



Next, using Lemma 2.9 (i) and adopting the notations thereof, we define

= 3 ’7_)‘st )\1,,1 Em)\i 25(}\(]) 1 —26()\176)—1

—Em

. T_Em (Ainém)_l . _El ()\2:61) 1 . h/(/rla €1y...,721—1,€2]—1, F*Ea &, Ng)

for appropriate r;’s and ey’s satisfying e; + -+ 4+ e9;—1 + € = 0 and for which the
last factor commutes with everything in the next expressions. Then

’yzﬁyil = h(ilvsla s 7ima5mai7€ajv —5,{,6,]&,6; cee 7jn7€;1; U) : Ba
where
Bo=Yh(i1, €1, . iy Emy €, bcy €,y —Ey Ley —E, 15 €, §2,Eny v v vy jmrEns 0 )y "
=L TN T AL N, P (o)
)T L) T ) e i ) )
N R T S NI T (=N 0= SR SIY-re s TO XA Rl O VAT R iy VA I

=AU AT TRl L (0) 6 2, Eh, o dnsEpso )T (AL )T (A )T

—€1 —€m

Likewise, we consider the following element from the first set of (8)

<<a>>59Zl:h(i17513'"7im75m3.j/3_€7L57 —&, P& l—¢,E, l’L () 8]27827"’7]‘”75:1;0-)

hi . ./ . - - . s, —1
: (117517"'717”757”7] 7_€7LE7_57p757Z,57M76(Z)787J27E27~~~7.]7L7€n70 )7

where p € I’ _ and define

23y =N r N pEe M (N )T ()
ST Em ()\l_";m)fl Y (/\1_151)7 h(ry,er, . Thy 1y €01, e 5 )

for appropriate 7,’s. Then,
' onN—1 _ 7 . . -/ -/ i [z . . 1. —1
ryz(’}/) - h'h(zhgla"'almangy.]a_aaz767,u—5(7’)a6a.72a527'"7.]n7€n7a )a
where

’:-LE’ylh(ihela"'7im7€maj/)_€ Lg,—E,p,E,Lfg,E,,LLi_ (7) &, ]’2,5/2,-”7_].77,75;;0')(7/)71
All - )‘Z—m Em)‘J ( () & j255/25"'7jn75n7 )(A]) B 75m()‘l—rzm)7l”’ - (Ailal)7

,51
>‘Z—151 - )‘lj::m Emh’(us ( (5)) 87j278/27"~7]n75n70') ()\z:,::m)—l _61(>\1_151)_1
=7,

since pd (i (7)) = pt (i), due to relation (R6) and ui _(i) € I_.. Finally,

<<a>>E 2 72771'7,2/(7/)71 = h(ilagla cee 7im76mai7€7ja 7€7g357j235/27 e 7jn’€;; J)

. . i -/ '3 ~ . / . /N —1
'h(21,51,~~-,lm,5m,] , —E,1 ,5,#_5(2),€7j2,€2,...,]n,En,U )7

and after a multiplication with an element from the first set of (8), we get the
element (9).
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Therefore the fourth set of (8) is in ({a))= .

Repeating almost verbatim the corresponding part of the proof of Theorem [8,
Theorem 3.16] gives us that the seventh set of (8) belongs to ((a))=. Note that if
Y. = Sym(2), then [3, X.] is the trivial group.

Next, we take numbers m > n and

'YI/ = Tamh(o—/—s),riamh(jlv [SP ,jerlv ‘Saja —&; (0—/75)71) S Ea

where o/ _ € T'_., ji, € I'_, Vk, and j € I/, with the relation (¢’ _)71(c.) = ¢ for
some ¢ € I/.

After that, we take the following element of ((a))z (it is a product of elements from
the second and fourth set)

T = hleey &yl €,Q, —Eyley —E, vy bey, —E;0_¢)-
m times m—n—1 times
(b €y ey €5y —E ey =€y ley, —E3 Dy Ey by €y ey b, E50—¢),
m times m times n—1 times

where p € I’ .. Then

1

m

Y'e(Y") T =1 (o )T (D, ety eyl 50-c) € {{a))
—_—

n—1 times
Therefore upon a multiplication by an element from the first set of (8), we infer

that the fifth set of (8) belongs to ({a))= .

Finally, the argument from Theorem [8, Theorem 3.16] can be used for the
sixth set of (8) the same way it was used for the seventh set.

This completes the proof. O

Remark 2.14. The example introduced in [3, Section 5] corresponds to the
case $_1 2 Yy = Sym(2). Theorem 2.13 corresponds to [3, Proposition 5.11] in
this particular case.

2.5. ANALYTIC STRUCTURE

In this section, we use some results from [8, Section 2].

Lemma 2.15. The group A = A[I_1,11,1-1,t1;2_1,%1] 48 a non-ascending
HNN-extension and its action on its Bass-Serre tree is minimal and of general type.

Proof. Since the action is transitive, it is minimal. Since H # G # 6(H), then A
is nondegenerate and non-ascending. The result now follows from [7, Proposition
20]. O
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Theorem 2.16. The HNN-extension A = A[l_1,11,t-1,t1;3-1,%1] has a
unique trace. It is C*-simple if and only if either one of the groups ¥_1 and 31 is
non-amenable.

Proof. Lemma 2.15 enables us to apply [3, Theorem 4.19] to conclude that A has the
unique trace property since ker A is trivial. It also enables us to apply [3, Theorem
4.20] to conclude that A is C*-simple if and only if K_; and K are non-amenable,
which, by Lemma 2.12, is equivalent to the requirement that some of the groups
Y _1 and X is non-amenable. O

Finally, we prove

Theorem 2.17. The HNN-extension A = A[X_1,%1] in not inner amenable.

Proof. Lemma 2.15 allows us to apply [8, Proposition 2.3], so we need to show that
the action of A = A[I_y,I1,t_1,t1;%_1,%1] on its Bass-Serre is finitely fledged.

For this, take any elliptic element g € A\ {1}. Since g fixes some vertex, it
is a conjugate of an element of G. The finite fledgedness property is conjugation
invariant, so we can assume g € G \ {1}.

From Lemma 2.9 (ii), we can write g = h(o)h_1hy, where o € T,
m
h*l = H h(llfa _17i’§7€k,27 e 7i2k78k,nk;ak) 3

k=1
r
hy = h(i, 1, " 0
1= (117 72275l,2;~~'aznl,5l,nla l);
l=m+1

r>m=>0,0, €l 0 €T, ,and i €Il . We also require 0 <ni <...< ny,
and 0 < nppq1 < -+ <y

Let us assume that g fixes a vertex v = wv(i1,€1,...,0n,6n), where
n > max{nm,,n,} + 1, and let’s take w = v(i1,€1,...,%n,En,- -, intd,Entd) fOr
any d > 1. We note that h_., fixes w and h(c)h., modifies only indices with
numbers no greater than {n,,,n,} + 1 < n. Therefore

h(o)he,v =v(i},e1,...,10,,6,) and

s b

. .t . .
h(a)haw = U(Zlv €1y 5l Enylnt1sEntls -+ 5 Intd, 5n+d)

for some i), € I’ By our assumption, it follows that

—er"

v = gv = h(o)he,v = v(i},E1,.-,00n,En)-

Thus ¢}, = i), for all 1 < k < n, and therefore gw = w.
This concludes the proof. O
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Corollary 2.18. Theorems 2.16 and 2.13 imply:
If either X_1 or X1 is non-amenable, then the amenablish radical of A is trivial.
If X1 and X1 are both amenable, then A is amenablish.

Proof. If we show that the centralizer Cy () is trivial, [2, Theorem 4.1] will im-
ply that A is C*-simple if and only if = is C*-simple. Since Z is simple, if it is
not C*-simple, then it is amenablish, and therefore A is also amenablish because
(T/IT,T)) iz Z is amenable. If = is C*-simple, then so is A, thus both of their
amenablish radicals are trivial.

To illustrate that Cy (Z) is trivial, assume that there is a nontrivial g € Cy (2).
Then g can be written as in Lemma 2.9 (iii), and using relations (R3), (R7), and
(R8), we can find a non-trivial element of =

. . . . /. . . o oo, _—1
h(zlyﬁgh--~7’Lma5m7.717€17"'7.77L7En70-)'h(zlagla---azmaamm]lagla"'7.]na5n70' )

that does not commute with g, a contradiction. O
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