ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА
 Tom 107

ANNUAL OF SOFIA UNIVERSITY "ST. KLIMENT OHRIDSKI"
FACULTY OF MATHEMATICS AND INFORMATICS
Volume 107

EXAMPLES OF HNN-EXTENSIONS WITH NONTRIVIAL QUASI-KERNELS

NIKOLAY A. IVANOV

Abstract

We introduce some examples of HNN-extensions motivated by the problems of C^{*} simplicity and unique trace property. Moreover, we prove that our examples are not inner amenable and identify a relatively large, simple, normal subgroup in each one.

Keywords: C^{*}-simplicity, HNN-extensions, inner amenability.
2020 Math. Subject Classification: Primary: 22D25, 20E06; Secondary: 46L05, 43A07, 20 E 08.

1. INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

The questions of C^{*}-simplicity and unique trace property for a discrete group have been studied extensively. By definition, a discrete group G is C^{*}-simple if the C^{*}-algebra associated to the left regular representation, $C_{r}^{*}(G)$, is simple; likewise it has the unique trace property if $C_{r}^{*}(G)$ has a unique tracial state. An extensive introduction to that topic was given by de la Harpe ([6]). Recently, Kalantar and Kennedy ([10]) gave a necessary and sufficient condition for C^{*}-simplicity in terms of action on the Furstenberg boundary of the group in question. Later, Breuillard, Kalantar, Kennedy, and Ozawa ([2]) studied further the question of C^{*}-simplicity
and also showed that a group has the unique trace property if and only if its amenable radical is trivial. They also showed that C^{*}-simplicity implies the unique trace property. The reverse implication was disproven by examples given by Le Boudec ([11]). In the case of group amalgamations and HNN-extensions, the kernel controls the uniqueness of trace, and the quasi-kernels control the C^{*}-simplicity.

The notion of inner amenability for discrete groups was introduced by Effros ([5]) as an analogue to Property Γ for $I I_{1}$ factors that was introduced by Murray and von Neumann ([12]). By definition, a discrete group G is inner amenable if there exist a conjugation invariant, positive, finitely additive, probability measure on $G \backslash\{1\}$. Effros showed that Property Γ implies inner amenability, but the reverse implication doesn't hold, as demonstrated by Vaes ([14]).

Our examples (all of which being HNN-extensions) stem from the questions of C^{*}-simplicity and the unique trace properties for groups. In particular, all of our examples have the unique trace property, and we also determine the C^{*}-simple ones and the non- C^{*}-simple ones. The examples of section 2 generalize the example given in $[3$, Section 5$]$ (which corresponds to the group $\Lambda[\operatorname{Sym}(2)$, Sym (2)] of section 2). There is a resemblance to the groups introduced by Le Boudec in [11] since they all act on trees. The main benefit is that our groups are given concretely by generators and relations, which makes them more tractable to investigate some further properties they possess.

We study some additional analytic properties of our examples. We show that they are all non-inner-amenable by showing that they are finitely fledged - a property that we introduce in [8].

We also explore some of the group-theoretical properties of our groups. We remark that they are not finitely presented. Also, under some mild natural assumptions, we show that each group has a relatively large, simple, normal subgroup.

1.2. PRELIMINARIES

For a group Γ acting on a set X, we denote the set-wise stabilizer of a subset $Y \subset X$ by

$$
\Gamma_{\{Y\}} \equiv\{g \in \Gamma \mid g Y=Y\}
$$

and the point-wise stabilizer of a subset $Y \subset X$ by

$$
\Gamma_{(Y)} \equiv\{g \in \Gamma \mid g y=y, \forall y \in Y\}
$$

For a point $x \in X$, we denote its stabilizer by

$$
\Gamma_{x}=\{g \in \Gamma \mid g x=x\}
$$

Note that, $\Gamma_{\{Y\}}, \Gamma_{(Y)}$, and Γ_{x} are all subgroups of Γ. Also note that,

$$
g \Gamma_{\{Y\}} g^{-1}=\Gamma_{\{g Y\}}, g \Gamma_{x} g^{-1}=\Gamma_{g x}, \text { and } g \Gamma_{(Y)} g^{-1}=\Gamma_{(g Y)}
$$

For a group G and its subgroup H, by $\langle\langle H\rangle\rangle_{G}$ or by $\langle\langle H\rangle\rangle$, we denote the normal closure of H in G.

For some general references on group amalgamations and HNN-extensions see, e.g., [1], [4], [13], [7], etc.

Let $G=\langle X \mid R\rangle$ be a group; let H be a subgroup of G; and let $\theta: H \hookrightarrow G$ be a monomorphism. Then an HNN-extension of this data (named after G. Higman, B. Neumann, H. Neumann) is the group

$$
H N N(G, H, \theta) \equiv G *_{\theta} \equiv\left\langle X \sqcup\{\tau\} \mid R \sqcup\left\{\theta(h)=\tau^{-1} h \tau \mid h \in H\right\}\right\rangle
$$

It is convenient to denote $H_{-1} \equiv H$ and $H_{1} \equiv \theta(H)$. Every element $\gamma \in H N N(G, H, \theta)$ can be written in reduced form as

$$
\begin{array}{r}
\gamma=g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1}, \text { where } n \in \mathbb{N}, g_{1}, \ldots, g_{n+1} \in G, \varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1 \\
\text { and where if } \varepsilon_{i+1}=-\varepsilon_{i} \text { for } 1 \leq i \leq n-1, \text { then } g_{i+1} \notin H_{\varepsilon_{i}}
\end{array}
$$

If S_{ε} is a set of left coset representatives for G / H_{ε}, where $\varepsilon= \pm 1$, satisfy $S_{-1} \cap$ $S_{1}=\{1\}$, then every element $\gamma \in \operatorname{HNN}(G, H, \theta)$ can be uniquely written in normal form as

$$
\begin{array}{r}
\gamma=s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} g, \text { where } n \in \mathbb{N}_{0}, g \in G, \varepsilon_{i}= \pm 1, s_{i} \in S_{-\varepsilon_{i}}, \forall 1 \leq i \leq n \\
\text { and where if } \varepsilon_{i-1}=-\varepsilon_{i} \text { for } 2 \leq i \leq n, \text { then } s_{i} \neq 1
\end{array}
$$

The HNN-extension $\operatorname{HNN}(G, H, \theta)$ is called nondegenerate if either $H \neq G$ or $\theta(H) \neq G$ and is called non-ascending if $H \neq G \neq \theta(G)$.
The Bass-Serre tree $T(H N N(G, H, \theta))$ of $H N N(G, H, \theta)$ is the graph, that can be shown to be a tree, consisting of a vertex set

$$
\begin{aligned}
& \operatorname{Vertex}(H N N(G, H, \theta))= \\
& \{G\} \cup\left\{s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} G \mid n \in \mathbb{N}, \quad s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} \text { is in normal form }\right\}
\end{aligned}
$$

and an edge set

$$
\operatorname{Edge}(H N N(G, H, \theta))=
$$

$$
\{H\} \cup\left\{s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} H \mid n \in \mathbb{N}, s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} \text { is in normal form }\right\}
$$

The group $H N N(G, H, \theta)$ acts on $T(H N N(G, H, \theta))$ by left multiplication.
The vertex $v=s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} G$ is adjacent to the vertex $w=s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} \tau^{\varepsilon_{n+1}} G$ with connecting edge

$$
e=\left\{\begin{array}{l}
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} \tau^{\varepsilon_{n+1}} H \text { if } \varepsilon_{n+1}=-1 \\
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} H \text { if } \varepsilon_{n+1}=1
\end{array}\right.
$$

To see the reason for this, we need to look at the stabilizers. The stabilizer of v is

$$
H N N(G, H, \theta)_{v}=s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} G\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}}\right)^{-1}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
and the stabilizer of w is

$$
H N N(G, H, \theta)_{w}=s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} \tau^{\varepsilon_{n+1}} G\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} \tau^{\varepsilon_{n+1}}\right)^{-1}
$$

Therefore the stabilizer of e is

$$
\begin{gathered}
H N N(G, H, \theta)_{e}=H N N(G, H, \theta)_{v} \cap H N N(G, H, \theta)_{w}= \\
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1}\left[G \cap \tau^{\varepsilon_{n+1}} G \tau^{-\varepsilon_{n+1}}\right]\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1}\right)^{-1}= \\
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} H_{-\varepsilon_{n+1}}\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1}\right)^{-1}= \\
\left\{\begin{array}{l}
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} H\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1}\right)^{-1} \text { if } \varepsilon_{n+1}=1, \\
s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1} \tau^{\varepsilon_{n+1}} H \tau^{-\varepsilon_{n+1}}\left(s_{1} \tau^{\varepsilon_{1}} s_{2} \tau^{\varepsilon_{2}} \cdots s_{n} \tau^{\varepsilon_{n}} s_{n+1}\right)^{-1} \text { if } \varepsilon_{n+1}=-1
\end{array}\right.
\end{gathered}
$$

Finally, since $H N N(G, H, \theta)$ can be expressed as

$$
H N N(G, H, \theta)=(G *\langle\tau\rangle) /\left\langle\left\langle\tau^{-1} h \tau \theta\left(h^{-1}\right) \mid h \in H\right\rangle\right\rangle
$$

it has the following universal property (see, e.g., [4], page 36):
Remark 1.1. Let C be a group; let $\alpha: G \longrightarrow C$ be a group homomorphism; and let $t \in C$ be an element for which the following holds: $t^{-1} \alpha(h) t=\alpha(\theta(h))$ for each $h \in H$. Then there is a unique group homomorphism $\beta: H N N(G, H, \theta) \longrightarrow C$ satisfying $\left.\beta\right|_{G}=\alpha$ and $\beta(\tau)=t$.

To conclude this section, we recall that we called a group amenablish if it has no nontrivial C^{*}-simple quotients ([9, Definition 7.1]). We showed in [9] that the class on amenablish groups is a radical class, so every group has a unique maximal normal amenablish subgroup, the amenablish radical. Also, the class of amenablish groups is closed under extensions. The amenablish radical "detects" C^{*}-simplicity the same way as the amenable radical "detects" the unique trace property (see [9, Corollary 7.3] and [2, Theorem 1.3]).

2. HNN-EXTENSIONS

2.1. NOTATION, DEFINITIONS, QUASI-KERNELS

We use the following notations, some of which appear in [3]:

$$
\begin{gathered}
T_{\varepsilon}=\left\{\gamma=g_{0} \tau^{\varepsilon} g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \mid n \geq 0, \gamma \in \Lambda \text { is reduced }\right\} \\
T_{\varepsilon}^{\dagger}=\left\{\gamma=\tau^{\varepsilon} g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \mid n \geq 0, \gamma \in \Lambda \text { is reduced }\right\}
\end{gathered}
$$

For $\varepsilon= \pm 1$, consider also the quasi-kernels defined in [3]:

$$
\begin{equation*}
K_{\varepsilon} \equiv \bigcap_{r \in \Lambda \backslash T_{\varepsilon}^{\dagger}} r H r^{-1} \tag{1}
\end{equation*}
$$

They satisfy the relation $\operatorname{ker} \Lambda=K_{1} \cap K_{-1}$, where, by definition,

$$
\operatorname{ker} \Lambda \equiv \bigcap_{r \in \Lambda} r H r^{-1}
$$

It follows from [3, Theorem 4.19] that Λ has the unique trace property if and only if ker Λ has the unique trace property. It also follows from [3, Theorem 4.20] that Λ is C^{*}-simple if and only if K_{-1} or K_{1} is trivial or non-amenable provided Λ is a non-ascending HNN-extension and $\operatorname{ker} \Lambda$ is trivial.

We need the following results.
Remark 2.1. Consider the Bass-Serre tree $\Theta=\Theta[\Lambda]$ of the group

$$
\left.\Lambda=\operatorname{HNN}(G, H, \theta)=\langle G, \tau| \tau^{-1} h \tau=\theta(h) \text { for all } h \in H\right\rangle
$$

and consider the edge H connecting vertices G and τG. Denote by Θ_{1} the full subtree of Θ consisting of all vertices $v \in \Theta$ satisfying $\operatorname{dist}(v, G)<\operatorname{dist}(v, \tau G)$. Also, denote by $\bar{\Theta}_{1}$ the full subtree of Θ consisting of all vertices $v \in \Theta$ satisfying $\operatorname{dist}(v, G)>\operatorname{dist}(v, \tau G)$. Likewise, consider the edge $\tau^{-1} H$ connecting vertices G and $\tau^{-1} G$. Then, denote by Θ_{-1} the full subtree of Θ consisting of all vertices $v \in \Theta$ satisfying $\operatorname{dist}(v, G)<\operatorname{dist}\left(v, \tau^{-1} G\right)$, and denote by $\bar{\Theta}_{-1}$ the full subtree of Θ consisting of all vertices $v \in \Theta$ satisfying $\operatorname{dist}(v, G)>\operatorname{dist}\left(v, \tau^{-1} G\right)$.

It is easy to see that $\bar{\Theta}_{\varepsilon}=\tau^{\varepsilon} \Theta_{-\varepsilon}$,

$$
\Theta_{\varepsilon}=\{G\} \cup\left\{t_{\varepsilon} G \mid t_{\varepsilon} \in \Lambda \backslash T_{\varepsilon}^{\dagger}\right\}, \text { and } \bar{\Theta}_{\varepsilon}=\left\{t_{\varepsilon}^{\dagger} G \mid t_{\varepsilon}^{\dagger} \in T_{\varepsilon}^{\dagger}\right\}
$$

Proposition 2.2. With the notation from the previous Remark, the following hold for each $\varepsilon= \pm 1$:
(i) $K_{\varepsilon}=\Lambda_{\left(\Theta_{\varepsilon}\right)}$.
(ii) $K_{\varepsilon}<H \cap \theta(H)$.
(iii) $\gamma K_{\varepsilon} \gamma^{-1}=\Lambda_{\left(\gamma \Theta_{\varepsilon}\right)}$ for every $\gamma \in \Lambda$.

In particular $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}=\tau^{\varepsilon} K_{-\varepsilon} \tau^{-\varepsilon}$.

Proof. (i)

$$
\begin{aligned}
g \in K_{\varepsilon} & \Longleftrightarrow r^{-1} g r \in H, \quad \forall r \in \Lambda \backslash T_{\varepsilon}^{\dagger} \Longleftrightarrow g r \in r H, \quad \forall r \in \Lambda \backslash T_{\varepsilon}^{\dagger} \\
& \Longleftrightarrow g r H=r H, \quad \forall r \in \Lambda \backslash T_{\varepsilon}^{\dagger} \Longleftrightarrow g \text { fixes every edge of } \Theta_{\varepsilon} \\
& \Longleftrightarrow g \in \Lambda_{\left(\Theta_{\varepsilon}\right)} .
\end{aligned}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
(ii) From (i), we know that every element $g \in K_{\varepsilon}$ fixes all vertices adjacent to G except for the vertex $\tau^{\varepsilon} G$, eventually. Therefore it also fixes $\tau^{\varepsilon} G$, so g fixes all edges around G. In particular, g fixes the edge H, so $g \in H$. Likewise, g fixes the edge $\tau^{-1} H$, so $g \in \tau^{-1} H \tau=\theta(H)$.
(iii) As in (i), we have

$$
\begin{aligned}
g \in \gamma K_{\varepsilon} \gamma^{-1} & \Longleftrightarrow \gamma^{-1} g \gamma \in K_{\varepsilon} \Longleftrightarrow \gamma^{-1} g \gamma \in \Lambda_{\left(\Theta_{\varepsilon}\right)} \\
& \Longleftrightarrow g \in \gamma \Lambda_{\left(\Theta_{\varepsilon}\right)} \gamma^{-1} \Longleftrightarrow g \in \Lambda_{\left(\gamma \Theta_{\varepsilon}\right)} .
\end{aligned}
$$

Lemma 2.3. For $\varepsilon= \pm 1, K_{\varepsilon}$ is a normal subgroup of $H_{-\varepsilon}$, and a normal subgroup of $H \cap \theta(H)$. Moreover, if $\operatorname{ker} \Lambda$ is trivial, then K_{-1} and K_{1} have a trivial intersection and mutually commute.

Proof. From Proposition 2.2 (ii), it follows that K_{1} and K_{-1} are subgroups of $H \cap \theta(H)$. Take $h \in H_{-\varepsilon}$. Then

$$
\begin{aligned}
& h \cdot T_{\varepsilon}^{\dagger}=\left\{h \tau^{\varepsilon} g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \mid n \geq 0, \tau^{\varepsilon} g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \text { is reduced }\right\}= \\
& \left\{\tau^{\varepsilon} \theta^{\varepsilon}(h) g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \mid n \geq 0, \tau^{\varepsilon} g_{1} \tau^{\varepsilon_{1}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \text { is reduced }\right\}=T_{\varepsilon}^{\dagger}
\end{aligned}
$$

This gives the first assertion. For the second assertion, take $k_{\varepsilon} \in K_{\varepsilon}$ for each $\varepsilon= \pm 1$. Then, from $K_{\varepsilon} \triangleleft H \cap \theta(H)$, it follows that $k_{-1} k_{1}^{-1} k_{-1}^{-1} \in K_{1}$ and $k_{1} k_{-1} k_{1}^{-1} \in K_{-1}$. Thus

$$
K_{-1} \ni\left(k_{1} k_{-1} k_{1}^{-1}\right) k_{-1}^{-1}=k_{1}\left(k_{-1} k_{1}^{-1} k_{-1}^{-1}\right) \in K_{1}
$$

and therefore $k_{1} k_{-1} k_{1}^{-1} k_{-1}^{-1} \in K_{1} \cap K_{-1}=\operatorname{ker} \Lambda=\{1\}$.

Lemma 2.4.

(i) Let $\gamma=\tau^{\varepsilon_{n}} g_{n} \cdots g_{2} \tau^{\varepsilon_{1}} g_{1} \tau^{\varepsilon} \in \Lambda$ be reduced. Then $\gamma \cdot T_{-\varepsilon}^{\dagger} \supset T_{-\varepsilon_{n}}^{\dagger}$. In particular, $K_{-\varepsilon_{n}}<\gamma K_{-\varepsilon} \gamma^{-1}$.
(ii) Let $\gamma \in G \backslash H_{\varepsilon}$. Then $\gamma T_{-\varepsilon}^{\dagger} \cap T_{-\varepsilon}^{\dagger}=\emptyset$. In particular, $\gamma K_{-\varepsilon} \gamma^{-1} \cap K_{-\varepsilon}=\operatorname{ker} \Lambda$.
(iii) Let $\gamma \in \Lambda$ be a reduced word starting and ending with τ^{ε}. Then $T_{-\varepsilon}^{\dagger} \cap \gamma T_{\varepsilon}^{\dagger}=\emptyset$. In particular, $K_{-\varepsilon} \cap \gamma K_{\varepsilon} \gamma^{-1}=\operatorname{ker} \Lambda$.

Proof. (i) Observe that

$$
\gamma \cdot T_{-\varepsilon}
$$

$$
\begin{aligned}
\supset & \left\{\gamma \cdot \tau^{-\varepsilon} g_{1}^{-1} \tau^{-\varepsilon_{1}} \cdots g_{n}^{-1} \tau^{-\varepsilon_{n}} \cdot \tau^{-\varepsilon_{n}} \cdot g_{n+1} \tau^{\varepsilon_{n+1}} g_{n+2} \tau^{\varepsilon_{n+2}} \cdots g_{n+m} \tau^{\varepsilon_{n+m}} g_{n+m+1} \mid\right. \\
& \left.m \geq 0, \tau^{-\varepsilon_{n}} g_{n+1} \tau^{\varepsilon_{n+1}} g_{n+2} \cdots g_{n+m} \tau^{\varepsilon_{n+m}} g_{n+m+1} \text { is reduced }\right\} \\
= & \left\{\lambda=\tau^{-\varepsilon_{n}} g_{n+1} \tau^{\varepsilon_{n+1}} g_{n+2} \cdots g_{n+m} \tau^{\varepsilon_{n+m}} g_{n+m+1} \mid m \geq 0, \lambda \text { is reduced }\right\} \\
= & T_{-\varepsilon_{n}}
\end{aligned}
$$

The second statement follows from the observation

$$
\gamma \cdot\left(\Lambda \backslash T_{-\varepsilon}^{\dagger}\right)=\Lambda \backslash \gamma T_{-\varepsilon}^{\dagger} \subset \Lambda \backslash T_{-\varepsilon_{n}}^{\dagger}
$$

(ii) and (iii) follow easily.

Lemma 2.5. Let $\gamma=g_{n+1} \tau^{\varepsilon_{n}} g_{n} \cdots g_{2} \tau^{\varepsilon_{1}} g_{1} \tau^{\varepsilon}, \gamma^{\prime}=g_{n+1}^{\prime} \tau^{\varepsilon_{n}^{\prime}} g_{n}^{\prime} \cdots g_{2}^{\prime} \tau^{\varepsilon_{1}^{\prime}} g_{1}^{\prime} \tau^{\varepsilon}$, and $\gamma^{\prime \prime}=g_{n+1}^{\prime \prime} \tau^{\varepsilon_{n}^{\prime \prime}} g_{n}^{\prime} \cdots g_{2}^{\prime \prime} \tau^{\varepsilon_{1}^{\prime \prime}} g_{1}^{\prime \prime} \tau^{-\varepsilon}$ be reduced, where $n \geq 0$ and $\varepsilon= \pm 1$. Then:
(i) If $\left(\gamma^{\prime}\right)^{-1} \gamma \in H_{-\varepsilon}$, then $\gamma K_{\varepsilon} \gamma^{-1}=\gamma^{\prime} K_{\varepsilon}\left(\gamma^{\prime}\right)^{-1}$.
(ii) If $\operatorname{ker} \Lambda$ is trivial and if $\left(\gamma^{\prime}\right)^{-1} \gamma \notin H_{-\varepsilon}$, then $\gamma K_{\varepsilon} \gamma^{-1}$ and $\gamma^{\prime} K_{\varepsilon}\left(\gamma^{\prime}\right)^{-1}$ have a trivial intersection and mutually commute.
(iii) If $\operatorname{ker} \Lambda$ is trivial, then $\gamma K_{\varepsilon} \gamma^{-1}$ and $\gamma^{\prime \prime} K_{-\varepsilon}\left(\gamma^{\prime \prime}\right)^{-1}$ have a trivial intersection and mutually commute.

Proof. (i) $\left(\gamma^{\prime}\right)^{-1} \gamma K_{\varepsilon} \gamma^{-1} \gamma^{\prime}=K_{\varepsilon}$ by Lemma 2.3.
(ii) If $\left(\gamma^{\prime}\right)^{-1} \gamma$ is an element of $G \backslash H_{-\varepsilon}$, then the assertion follows from Lemma 2.4 (ii). If $\left(\gamma^{\prime}\right)^{-1} \gamma$ starts with $\tau^{-\varepsilon}$ and ends with τ^{ε}, then, by Lemma 2.4 (i), it follows that

$$
\left(\gamma^{\prime}\right)^{-1} \gamma K_{\varepsilon} \gamma^{-1} \gamma^{\prime}<K_{-\varepsilon}
$$

which, combined with $K_{\varepsilon} \cap K_{-\varepsilon}=\operatorname{ker} \Lambda=\{1\}$, proves the assertion.
(iii) Observe that the reduced form of $\left(\gamma^{\prime \prime}\right)^{-1} \gamma$ starts and ends with τ^{ε}, therefore the assertion follows from Lemma 2.4 (iii).

Assume that $\operatorname{ker} \Lambda=\{1\}$. Let S_{ε} be a left coset representatives of G / H_{ε} for $\varepsilon= \pm 1$.

It follows from Lemma 2.5 that, for two reduced words

$$
\gamma=s_{n+1} \tau^{\varepsilon_{n}} s_{n} \cdots s_{2} \tau^{\varepsilon_{1}} s_{1} \tau^{\varepsilon} \text { and } \gamma^{\prime}=t_{n+1} \tau^{\varepsilon_{n}^{\prime}} t_{n} \cdots t_{2} \tau^{\varepsilon_{1}^{\prime}} t_{1} \tau^{\varepsilon}
$$

with $s_{i}, t_{i} \in S_{-1} \cup S_{1}$ and $\varepsilon, \varepsilon_{i}, \varepsilon_{i}^{\prime} \in\{-1,1\}$,

$$
\gamma K_{\varepsilon} \gamma^{-1}=\gamma^{\prime} K_{\varepsilon}\left(\gamma^{\prime}\right)^{-1}
$$

if and only if $\gamma=\gamma^{\prime}$, and this happens if and only if $\varepsilon_{i}=\varepsilon_{i}^{\prime}$ and $s_{i}=t_{i}, \forall i$. In the case $\gamma \neq \gamma^{\prime}, \gamma K_{\varepsilon} \gamma^{-1}$ and $\gamma^{\prime} K_{\varepsilon}\left(\gamma^{\prime}\right)^{-1}$ have a trivial intersection and mutually commute.
If $\gamma^{\prime \prime}=r_{n+1} \tau^{\varepsilon_{n}^{\prime \prime}} r_{n} \cdots r_{2} \tau^{\varepsilon_{1}^{\prime \prime}} s_{1} \tau^{-\varepsilon}$ is another reduced word, where $r_{i} \in S_{-1} \cup S_{1}$ and $\varepsilon_{i}^{\prime \prime} \in\{-1,1\}$, then $\gamma K_{\varepsilon} \gamma^{-1}$ and $\gamma^{\prime \prime} K_{-\varepsilon}\left(\gamma^{\prime \prime}\right)^{-1}$ have a trivial intersection and mutually commute.

From these considerations, it follow that

$$
\begin{equation*}
\mathcal{K}(0) \equiv \bigoplus_{s \in S_{-1}} s K_{1} s^{-1} \oplus \bigoplus_{t \in S_{1}} t K_{-1} t^{-1} \tag{2}
\end{equation*}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
and, for $n \geq 0$,

$$
\begin{equation*}
\mathcal{K}(n+1) \equiv \bigoplus_{\substack{\varepsilon= \pm 1}} s_{n+1} \tau^{\varepsilon_{n}} s_{n} \cdots s_{2} \tau^{\varepsilon_{1}} s_{1} \tau^{\varepsilon} K_{\varepsilon} \tau^{-\varepsilon} s_{1}^{-1} \tau^{-\varepsilon_{1}} s_{2}^{-1} \cdots s_{n}^{-1} \tau^{-\varepsilon_{n}} s_{n+1}^{-1} \tag{3}
\end{equation*}
$$

are normal subgroups of G. Also, consider the groups

$$
\mathcal{K}(0, \varepsilon) \equiv \bigoplus_{s \in S_{-\varepsilon}} s K_{1} s^{-1} \oplus \bigoplus_{t \in S_{\varepsilon}^{\prime}} t K_{-1} t^{-1}
$$

which are normal in H_{ε} for $\varepsilon= \pm 1$.
Remark 2.6. The group G acts transitively on the vertices $s \tau G$, where $s \in S_{-1}$. It also acts transitively on the vertices $s \tau^{-1} G$, where $s \in S_{1}$. This fact is an important ingredient in the examples below.

Remark 2.7. It follows from Lemma 2.4 that K_{-1} is isomorphic to a subgroup of K_{1} and vice-versa. Consequently, $K_{-1}=\{1\}$ if and only if $K_{1}=\{1\}$. In this situation, $\mathcal{K}(n)=\{1\} \forall n \geq 0$.

2.2. A FAMILY OF EXAMPLES

For $\varepsilon= \pm 1$, consider nonempty sets I_{ε}^{\prime}, and let $I_{\varepsilon} \equiv I_{\varepsilon}^{\prime} \sqcup\left\{\iota_{\varepsilon}\right\}$. Also, let Σ_{ε} be transitive permutation groups on I_{ε}, and let $\Gamma=\Sigma_{-1} \cdot \Sigma_{1}$ be the corresponding permutation group on $I_{-1} \sqcup I_{1}$. Let $\Sigma_{\varepsilon}^{\prime} \equiv\left(\Sigma_{\varepsilon}\right)_{\iota_{\varepsilon}}$ be the respective stabilizer groups, and define $\Gamma_{\varepsilon} \equiv \Gamma_{\iota_{\varepsilon}}=\Sigma_{\varepsilon}^{\prime} \cdot \Sigma_{-\varepsilon}$. Define

$$
\begin{aligned}
\Lambda\left[\Sigma_{-1}, \Sigma_{1}\right] & \equiv \Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right] \\
& \left.\equiv \operatorname{HNN}(G, H, \theta)=\langle G, \tau| \tau^{-1} h \tau=\theta(h) \text { for all } h \in H\right\rangle
\end{aligned}
$$

where

$$
\begin{gathered}
\underline{H} \equiv\left\langle\left\{ h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \mid n \in \mathbb{N}, \varepsilon_{t} \in\{-1,1\}, i_{t} \in I_{-\varepsilon_{t}}, \text { and } \sigma_{n} \in \Gamma_{\varepsilon_{n}}\right.\right. \\
\text { satisfy } \left.\left.i_{t} \in I_{-\varepsilon_{t}}^{\prime} \text { whenever } \varepsilon_{t} \varepsilon_{t-1}=-1 ;\right\}\right\rangle \text { and } \\
H_{\varepsilon}=\left\langle\underline{H} \cup\left\{h\left(\sigma_{\varepsilon}\right) \mid \sigma_{\varepsilon} \in \Gamma_{\varepsilon}\right\}\right\rangle, \varepsilon= \pm 1 .
\end{gathered}
$$

Finally, define

$$
G=\left\langle H_{-1}, H_{1}\right\rangle=\langle\underline{H} \cup\{h(\sigma) \mid \sigma \in \Gamma\}\rangle
$$

where the following relations hold (there are redundancies):
(R1) Elements $h\left(\sigma_{-1}\right)$'s and $h\left(\sigma_{1}\right)$'s commute for all $\sigma_{\varepsilon} \in \Sigma_{\varepsilon}$, where $\varepsilon= \pm 1$.
(R2) Let $1 \leq m<n, \sigma_{n} \in \Gamma_{\varepsilon_{n}}$, and $\sigma_{m}^{\prime} \in \Gamma_{e_{m}}$. If $\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right) \neq$ $\left(j_{1}, e_{1} \ldots, j_{m}, e_{m}\right)$, the elements

$$
h\left(j_{1}, e_{1} \ldots, j_{m}, e_{m} ; \sigma_{m}^{\prime}\right) \text { and } h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)
$$

commute.
(R3) For $1 \leq m<n$ and $\sigma_{t} \in \Gamma_{\varepsilon_{t}}$, the following holds
$h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}, i_{m+1}, \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right)^{-1}$
$=h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}, \sigma_{m}\left(i_{m+1}\right), \varepsilon_{m+1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$. $=h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}, \sigma_{m}\left(i_{m+1}\right), \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$.
(R4) For $\sigma_{m}, \sigma_{m}^{\prime} \in \Gamma_{\varepsilon_{m}}$, the following holds

$$
h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}^{\prime}\right)=h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m} \sigma_{m}^{\prime}\right)
$$

(R5) For $\sigma, \sigma^{\prime} \in \Gamma$, the following holds

$$
h(\sigma) h\left(\sigma^{\prime}\right)=h\left(\sigma \sigma^{\prime}\right)
$$

(R6) For $n \in \mathbb{Z}, \sigma \in \Gamma$, and $\sigma_{n} \in \Gamma_{\varepsilon_{n}}$, the following holds

$$
h(\sigma) h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h(\sigma)^{-1}=h\left(\sigma\left(i_{1}\right), \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)
$$

(R7) For $\varepsilon= \pm 1$ and $\sigma_{\varepsilon} \in \Gamma_{\varepsilon}$, the following holds

$$
\theta^{-\varepsilon}\left(h\left(\sigma_{\varepsilon}\right)\right)=\left(\tau^{\varepsilon} h\left(\sigma_{\varepsilon}\right) \tau^{-\varepsilon}\right)=h\left(\iota_{-\varepsilon}, \varepsilon ; \sigma_{\varepsilon}\right)
$$

(R8) For $\varepsilon= \pm 1, n \in \mathbb{N}$, and $\sigma_{n} \in \Gamma_{\varepsilon_{n}}$, the following holds

$$
\begin{aligned}
\theta^{-\varepsilon}\left(h\left(i_{1}, \varepsilon, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)\right) & =\left(\tau^{\varepsilon} h\left(i_{1}, \varepsilon, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \tau^{-\varepsilon}\right) \\
& =h\left(\iota_{-\varepsilon}, \varepsilon, i_{1}, \varepsilon, i_{2}, \varepsilon_{2} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)
\end{aligned}
$$

(R9) For $\varepsilon= \pm 1, n \in \mathbb{N}$, and $\sigma_{n} \in \Gamma_{\varepsilon_{n}}$, the following holds

$$
\begin{aligned}
\theta^{\varepsilon}\left(h\left(i_{1}, \varepsilon \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)\right) & =\left(\tau^{-\varepsilon} h\left(i_{1}, \varepsilon \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \tau^{\varepsilon}\right) \\
& =\left\{\begin{array}{l}
h\left(i_{2}, \varepsilon_{2} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right), \text { if } i_{1}=\iota_{-\varepsilon} \\
h\left(\iota_{\varepsilon},-\varepsilon, i_{1}, \varepsilon \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right), \text { if } i_{1} \neq \iota_{-\varepsilon}
\end{array}\right.
\end{aligned}
$$

2.3. SOME BASIC PROPERTIES OF THE EXAMPLES AND THEIR QUASI-KERNELS

In this subsection we fix a group $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$.
First, let's note that $\operatorname{Index}\left[G: H_{\varepsilon}\right]=\#\left(I_{\varepsilon}\right)$ for $\varepsilon= \pm 1$. To see this, recall that Σ_{ε} acts transitively on I_{ε}, and for $i \in I_{\varepsilon}$, choose $\mu_{\varepsilon}^{i} \in \Sigma_{\varepsilon}$ satisfying $\mu_{\varepsilon}^{i}\left(\iota_{\varepsilon}\right)=i$. Let's denote $\lambda_{\varepsilon}^{i}=h\left(\mu_{\varepsilon}^{i}\right)$. If $\sigma \in \Sigma_{\varepsilon} \backslash \Sigma_{\varepsilon}^{\prime}$ satisfies $\sigma\left(\iota_{\varepsilon}\right)=i$, then $\left(\mu_{\varepsilon}^{i}\right)^{-1} \circ \sigma\left(\iota_{\varepsilon}\right)=\iota_{\varepsilon}$. Therefore $\left(\mu_{\varepsilon}^{i}\right)^{-1} \circ \sigma \in \Sigma_{\varepsilon}^{\prime}$, so $h\left(\left(\mu_{\varepsilon}^{i}\right)^{-1} \circ \sigma\right) \in H_{\varepsilon}$. It follows that $h(\sigma) \in h\left(\mu_{\varepsilon}^{i}\right) H_{\varepsilon}=\lambda_{\varepsilon}^{i} H$. Consequently, for each $\varepsilon= \pm 1$,

$$
\begin{equation*}
G=H_{\varepsilon} \sqcup \bigsqcup_{i \in I_{\varepsilon}^{\prime}} \lambda_{\varepsilon}^{i} H_{\varepsilon} \tag{4}
\end{equation*}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.

It is easy to see in these notations that for $\varepsilon= \pm 1$, the set

$$
S_{\varepsilon}=\left\{\lambda_{\varepsilon}^{i} \mid i \in I_{\varepsilon}^{\prime}\right\} \cup\{1\}
$$

is a left coset representative of H_{ε} in G.
Next, consider the action of Λ on its Bass-Serre tree $\Theta=\Theta[\Lambda]$. The set of all adjacent vertices to the vertex G is

$$
\{\tau G\} \cup\left\{\lambda_{-1}^{i} \tau G \mid i \in I_{-1}^{\prime}\right\} \cup\left\{\tau^{-1} G\right\} \cup\left\{\lambda_{1}^{i} \mid i \in I_{1}^{\prime}\right\}
$$

This set can be indexed by the set $I_{-1} \cup I_{1}$ in the obvious way: Denote by $v(\emptyset)$ the vertex G, by $v\left(\iota_{-1}, 1\right)$ the vertex τG, by $v\left(\iota_{1},-1\right)$ the vertex $\tau^{-1} G$, by $v\left(i_{-1}, 1\right)$ the vertex $\lambda_{-1}^{i_{-1}} \tau G$, where $i_{-1} \in I_{-1}^{\prime}$, and by $v\left(i_{1},-1\right)$ the vertex $\lambda_{1}^{i_{1}} \tau^{-1} G$, where $i_{1} \in I_{1}^{\prime}$. Denote a general vertex

$$
\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G
$$

by $v\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right)$ for an element $\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} \in \Lambda$ in its normal form, i.e., $i_{t} \in I_{-\varepsilon_{t}}$ and if $\varepsilon_{t-1} \cdot \varepsilon_{t}=-1$, then $i_{t} \in I_{-\varepsilon_{t}}^{\prime}$.

With the notation of Remark 2.1, for $\varepsilon= \pm 1, \Theta_{\varepsilon}$ is the full subtree of Θ containing the vertex $v(\emptyset)=G$ and vertices $v\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right)$, where $n \geq 1$ and $\left(i_{1}, \varepsilon_{1}\right) \neq\left(\iota_{-\varepsilon}, \varepsilon\right)$, and $\bar{\Theta}_{\varepsilon}$ is the full subtree of Θ containing the vertices $v\left(\iota_{-\varepsilon}, \varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right)$, where $n \geq 0$.

Remark 2.8. It follows from [1, Exercise VI.3] that our examples are never finitely presented since H is never finitely generated.

We continue with
Lemma 2.9. (i) Let $m \geq 1, \sigma_{m} \in \Gamma_{\varepsilon_{m}}$, $i_{t} \in I_{-\varepsilon_{t}}$, and $\varepsilon \in\{-1,1\}$ satisfy $\varepsilon_{t} \varepsilon_{t-1}=-1 \Rightarrow i_{t} \in I_{-\varepsilon_{t}}^{\prime}$. Then

$$
\begin{aligned}
& h\left(i_{1}, e p s_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\sigma_{m}\right) \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} .
\end{aligned}
$$

(ii) Every element h of G can be written as

$$
h=h(\sigma) \prod_{k=1}^{m} h\left(i_{1}^{k}, \varepsilon_{k, 1}, \ldots, i_{n_{k}}^{k}, \varepsilon_{k, n_{k}} ; \sigma_{k}\right)
$$

where $m \geq 1, \sigma_{k} \in \Gamma_{\varepsilon_{k, n_{k}}}, 1 \leq n_{1} \leq \cdots \leq n_{m}$, and $\sigma \in \Gamma$ satisfy the condition: if $n_{k}=n_{k+a}$ for some $1 \geq k \geq m$ and some $a \geq 1$, then

$$
\left(i_{1}^{k}, \varepsilon_{k, 1}, \ldots, i_{n_{k}}^{k}, \varepsilon_{k, n_{k}}\right) \neq\left(i_{1}^{k+a}, \varepsilon_{k+a, 1}, \ldots, i_{n_{k+a}}^{k+a}, \varepsilon_{k+a, n_{k+a}}\right)
$$

(ii) Every element $g \in T_{\varepsilon}$ can be written as

$$
g=\lambda_{-\varepsilon}^{i} \tau^{\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h,
$$

where $h \in G$ and $m \geq 0$.
Proof. (i) follows by repeated applications of relations (R7), (R8), and (R6).
(ii) follows by repeated applications of relations (R3) and (R6).
(iii) follows by equation (4) and the structure of HNN-extensions.

Lemma 2.10. Let $n>m \geq 1$ and $\sigma_{k} \in \Gamma_{\varepsilon_{k}}$. Then the following hold
(i) $h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) v\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i_{m+1}, \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n}\right)$

$$
=v\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, \sigma_{m}\left(i_{m+1}\right), \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n}\right)
$$

(ii) $h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \in \Lambda_{v\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right)}$ and $h(\sigma) \in \Lambda_{v(\emptyset)}$ for $\sigma \in \Gamma$.
(iii) If $\sigma_{\varepsilon} \in \Gamma_{\varepsilon}$, then $h\left(\sigma_{\varepsilon}\right) \in \Lambda_{\left(\bar{\Theta}_{-\varepsilon}\right)}=\tau^{-\varepsilon} K_{\varepsilon} \tau^{\varepsilon}$.
(iv) Let $m \leq n$ and let $h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right), h\left(j_{1}, e_{1} \ldots, j_{m}, e_{m} ; \delta_{m}\right) \in \Lambda$. If $\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right) \neq\left(j_{1}, e_{1} \ldots, j_{m}, e_{m}\right)$, then $h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \in \Lambda_{v\left(j_{1}, e_{1} \ldots, j_{m}, e_{m}\right)}$ and $h\left(j_{1}, e_{1} \ldots, j_{m}, e_{m} ; \delta_{m}\right) \in \Lambda_{v\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)}$.
(iv) $h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \in \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \Longleftrightarrow\left(i_{1}, \varepsilon_{1}\right) \neq\left(\iota_{-\varepsilon}, \varepsilon\right)$.

Proof. (i) First, note that

$$
\sigma \equiv\left(\lambda_{-\varepsilon_{m+1}}^{\sigma_{m}\left(i_{m+1}\right)}\right)^{-1} \circ h\left(\sigma_{m}\right) \lambda_{-\varepsilon_{m+1}}^{i_{m+1}} \in \Gamma_{-\varepsilon_{m+1}}
$$

since it fixes $\iota_{-\varepsilon_{m+1}}$. It follows by Lemma 2.9 (i) and (iii) that there are $k_{t} \in I_{\varepsilon_{t}}$ and a $\chi \in H_{\varepsilon_{n}}$ that satisfy $\left(\tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}}\right)^{-1}=\chi \tau^{-\varepsilon_{n}} \lambda_{\varepsilon_{n-1}}^{k_{n-1}} \cdots \lambda_{\varepsilon_{m+1}}^{k_{m+1}} \tau^{-\varepsilon_{m+1}}$. Therefore

$$
\begin{aligned}
\left(\tau^{\varepsilon_{m+1}}\right. & \left.\cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}}\right)^{-1} h(\sigma) \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} \\
& =\chi \tau^{-\varepsilon_{n}} \lambda_{\varepsilon_{n-1}}^{k_{n-1}} \cdots \lambda_{\varepsilon_{m+1}}^{k_{m+1}} \tau^{-\varepsilon_{m+1}} h(\sigma) \tau^{\varepsilon_{m+1}}\left(\lambda_{\varepsilon_{m+1}}^{k_{m+1}}\right)^{-1} \cdots\left(\lambda_{\varepsilon_{n-1}}^{k_{n-1}}\right)^{-1} \tau^{\varepsilon_{n}} \chi^{-1} \\
\quad= & \chi h\left(\iota_{\varepsilon_{n}},-\varepsilon_{n}, k_{n-1},-\varepsilon_{n-1}, \ldots, k_{m+2},-\varepsilon_{m+2}, \iota_{\varepsilon_{m}+1},-\varepsilon_{m+1} ; \sigma\right) \chi^{-1} .
\end{aligned}
$$

Then Lemma 2.9 (i) implies

$$
\begin{aligned}
& h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) v\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i_{m+1}, \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n}\right) \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\sigma_{m}\right) \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \cdot \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\sigma_{m}\right) \lambda_{-\varepsilon_{m+1}}^{i_{m+1}} \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon_{m+1}}^{\sigma_{m}\left(i_{m+1}\right)} h(\sigma) \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G
\end{aligned}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.

$$
\begin{aligned}
= & \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon_{m+1}}^{\sigma_{m}\left(i_{m+1}\right)} \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} \\
& \cdot\left(\tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}}\right)^{-1} h(\sigma) \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
= & \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon_{m+1}}^{\sigma_{m}\left(i_{m+1}\right)} \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} \\
& \cdot \chi h\left(\iota_{\varepsilon_{n}},-\varepsilon_{n}, k_{n-1},-\varepsilon_{n-1}, \ldots, k_{m+2},-\varepsilon_{m+2}, \iota_{\varepsilon_{m}+1},-\varepsilon_{m+1} ; \sigma\right) \chi^{-1} G \\
= & \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon_{m+1}}^{\sigma_{m}\left(i_{m+1}\right)} \tau^{\varepsilon_{m+1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
= & v\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, \sigma_{m}\left(i_{m+1}\right), \varepsilon_{m+1}, \ldots, i_{n}, \varepsilon_{n}\right)
\end{aligned}
$$

(ii) The second claim is obvious. For the first claim,

$$
\begin{aligned}
& h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) v\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right) \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\sigma_{m}\right) \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \cdot \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{m}} \tau^{\varepsilon_{m}} G \\
& \quad=\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\sigma_{m}\right) G=v\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right) .
\end{aligned}
$$

(iii) The fact $\Lambda_{\left(\bar{\Theta}_{-\varepsilon}\right)}=\tau^{-\varepsilon} K_{\varepsilon} \tau^{\varepsilon}$ is stated in Proposition 2.2. Let $n \geq 0$ and let $v\left(\iota_{\varepsilon},-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right) \in \bar{\Theta}_{-\varepsilon}$. By the argument at the beginning of the proof of (i), there are $k_{t} \in I_{\varepsilon_{t}}$ and a $\chi \in H_{\varepsilon_{n}}$ satisfying

$$
\begin{aligned}
&\left(\tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}}\right)^{-1} h\left(\sigma_{\varepsilon}\right) \tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}} \\
&=\chi h\left(\iota_{\varepsilon_{n}},-\varepsilon_{n}, k_{n-1},-\varepsilon_{n-1}, \ldots, i_{\varepsilon_{1}},-\varepsilon_{1}, \varepsilon, \iota_{-\varepsilon} ; \sigma_{\varepsilon}\right) \chi^{-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& h\left(\sigma_{\varepsilon}\right) v\left(\iota_{\varepsilon},-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right)=h\left(\sigma_{\varepsilon}\right) \tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
& =\tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{n}} \tau^{\varepsilon_{n}} \cdot\left(\tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{n}} \tau^{\varepsilon_{n}}\right)^{-1} h\left(\sigma_{\varepsilon}\right) \tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{n}} \tau^{\varepsilon_{n}} G \\
& =\tau^{-\varepsilon} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{n}} \tau^{\varepsilon_{n}} \cdot \chi h\left(\iota_{\varepsilon_{n}},-\varepsilon_{n}, k_{n-1},-\varepsilon_{n-1}, \ldots, i_{\varepsilon_{1}},-\varepsilon_{1}, \varepsilon, \iota_{-\varepsilon} ; \sigma_{\varepsilon}\right) \chi^{-1} G \\
& =v\left(\iota_{\varepsilon},-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right) .
\end{aligned}
$$

Consequently $h\left(\sigma_{\varepsilon}\right) \in \bar{\Theta}_{-\varepsilon}$.
(iv) Note that the element $\gamma=\tau^{-e_{m}}\left(\lambda_{-e_{m}}^{j_{m}}\right)^{-1} \cdots \tau^{-e_{1}}\left(\lambda_{-e_{1}}^{j_{1}}\right)^{-1} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n}}$ belongs to $T_{-e_{m}}^{\dagger}$ because of the condition $\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m}\right) \neq\left(j_{1}, e_{1} \ldots, j_{m}, e_{m}\right)$. It follows from Lemma 2.9 (iii) that $\gamma=\tau^{-e_{m}} \lambda_{-l_{1}}^{k_{1}} \tau^{l_{1}} \lambda_{-l_{2}}^{k_{2}} \tau^{l_{2}} \cdots \lambda_{-l_{s}}^{k_{s}} \tau^{l_{s}} h$, where $h \in G$ and where $k_{t} \in I_{-l_{t}}, \forall t$. Then

$$
\begin{aligned}
& h\left(j_{1}, e_{1} \ldots, j_{m}, e_{m} ; \delta_{m}\right) \in \Lambda_{v\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)} \\
& \Longleftrightarrow \Longleftrightarrow \lambda_{-e_{1}}^{j_{1}} \tau^{e_{1}} \cdots \lambda_{-e_{m}}^{j_{m}} \tau^{e_{m}} h\left(\delta_{m}\right) \tau^{-e_{m}}\left(\lambda_{-e_{m}}^{j_{m}}\right)^{-1} \cdots \tau^{-e_{1}}\left(\lambda_{-e_{1}}^{j_{1}}\right)^{-1} \in \Lambda_{v\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)} \\
& \Longleftrightarrow h\left(\delta_{m}\right) \in \tau^{-e_{m}}\left(\lambda_{-e_{m}}^{j_{m}}\right)^{-1} \cdots \tau^{-e_{1}}\left(\lambda_{-e_{1}}^{j_{1}}\right)^{-1} \Lambda_{v\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)} \lambda_{-e_{1}}^{j_{1}} \tau^{e_{1}} \cdots \lambda_{-e_{m}}^{j_{m}} \tau^{e_{m}} \\
& \Longleftrightarrow h\left(\delta_{m}\right) \in \Lambda_{\tau^{-e_{m}}\left(\lambda_{-e_{m}}^{j_{m}}\right)^{-1} \ldots \tau^{-e_{1}}\left(\lambda_{-e_{1}}^{j_{1}}\right)^{-1} v\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)} \\
& \Longleftrightarrow h\left(\delta_{m}\right) \in \Lambda_{\tau^{-e_{m}}\left(\lambda_{-e_{m}}^{j_{m}}\right)^{-1} \ldots \tau^{-e_{1}}\left(\lambda_{-e_{1}}^{j_{1}}\right)^{-1} \lambda_{-\varepsilon_{1}}^{i_{1}} \tau_{1}^{\varepsilon_{1} \ldots \lambda_{-\varepsilon_{n}}^{i_{n}} \tau^{\varepsilon_{n} G}}} \\
& \Longleftrightarrow h\left(\delta_{m}\right) \in \Lambda_{\tau^{-e_{m}}} \lambda_{-l_{1}}^{k_{1}} \tau_{1}^{l_{1}} \lambda_{-l_{2}}^{k_{2}} \tau^{l_{2} \ldots \lambda_{-l_{s}}^{k_{s}} \tau^{l_{s}} h G} \\
& \left.\Longleftrightarrow h\left(\delta_{m}\right) \in \Lambda_{v\left(\iota_{e}\right.},-e_{m}, k_{1}, l_{1}, \ldots, k_{s}, l_{s}\right) .
\end{aligned}
$$

The last equivalence holds according to (iii). The inclusion $h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \in$ $\Lambda_{v\left(j_{1}, e_{1} \ldots, j_{m}, e_{m}\right)}$ is proven analogously.
(v) Every vertex of $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$ is of the form $v\left(\iota_{-\varepsilon}, \varepsilon, j_{1}, e_{1}, \ldots, j_{m}, e_{m}\right)$, so if tuples $\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n}\right)$ and $\left(\iota_{-\varepsilon}, \varepsilon, j_{1}, e_{1}, \ldots, j_{m}, e_{m}\right)$ satisfy the assumptions of (iv), then $h\left(i_{1}, \varepsilon_{1} \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \in \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$. By (i), h($\left.\iota_{-\varepsilon}, \varepsilon, j_{1}, e_{1}, \ldots, j_{m}, e_{m} ; \sigma_{m}\right) \notin \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$, and the statement follows.

Proposition 2.11. For a group $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$ and for $\varepsilon= \pm 1$, the following hold
(i) $\quad \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}=\left\langle\left\{h\left(\sigma_{-\varepsilon}\right) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}\right\} \cup\right.$

$$
\begin{aligned}
& \left\{h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \mid m \geq 1, h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \in H_{-\varepsilon}\right. \\
& \left.\left.\quad \text { and }\left(i_{1}, \varepsilon_{1}\right) \neq\left(\iota_{-\varepsilon}, \varepsilon\right)\right\}\right\rangle
\end{aligned}
$$

(ii) $\quad\left|K_{\varepsilon}\right|=\left\langle\left\{h\left(\iota_{\varepsilon},-\varepsilon ; \sigma_{-\varepsilon}\right) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}\right\} \sqcup\right.$

$$
\left.\left\{h\left(\iota_{\varepsilon},-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \mid n \geq 1, \sigma_{n} \in \Gamma_{\varepsilon_{n}}\right\}\right\rangle ;
$$

(iii) $\operatorname{ker} \Lambda=\{1\}$.

Proof. (i) Denote the group on the right-hand-side by Δ. The inclusion $\Delta<\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$ follows from Lemma 2.10 (iii) and (v). Take an element $h \in \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$. Proposition 2.2 (iv) implies that $h \in H_{-\varepsilon}$. If we assume $h=h(\sigma)$, then $\sigma \in \Gamma_{-\varepsilon}$, and therefore $h(\sigma) \in \Delta$. If h is not of the form $h(\sigma)$, Lemma 2.9 (ii) can be applied to $h^{-1} \in H_{-\varepsilon}$. It follows that

$$
h=\prod_{k=1}^{m} h\left(i_{1}^{k}, \varepsilon_{k, 1}, \ldots, i_{n_{k}}^{k}, \varepsilon_{k, n_{k}} ; \sigma_{k}\right) \cdot h\left(\sigma_{-\varepsilon}\right)
$$

where $m \geq 0, \sigma_{k} \in \Gamma_{\varepsilon_{k, n_{k}}}, n_{1} \geq n_{2} \geq \cdots \geq n_{m} \geq 1$, and $\sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}$. Assume $h\left(i_{1}^{l}, \varepsilon_{l, 1}, \ldots, i_{n_{l}}^{l}, \varepsilon_{l, n_{l}} ; \sigma_{l}\right) \notin \Delta$ for some $1 \leq l \leq m$ and that l is the biggest number with this property. We will derive a contradiction below. Then it is clear that $i_{1}^{l}=\iota_{-\varepsilon}$ and $\varepsilon_{l, 1}=\varepsilon$. Also, $\sigma_{l} \in \Gamma_{\varepsilon_{l, n_{l}}}$ is not the identity, so there exist two different elements $\kappa, \rho \in I_{-1} \sqcup I_{1}$, such that $\sigma_{l}(\kappa)=\rho$. Let h act on

$$
v=v\left(i_{1}^{l}, \varepsilon_{l, 1}, \ldots, i_{n_{l}}^{l}, \varepsilon_{l, n_{l}}, \kappa, \varepsilon_{l, n_{l}}, \alpha_{1}, e_{1}, \ldots, \alpha_{n_{1}}, e_{n_{1}}\right)
$$

where α 's and e 's are arbitrary and allowed. The terms $h\left(\sigma_{-\varepsilon}\right)$ and $\prod_{k=l+1}^{m} h\left(i_{1}^{k}, \varepsilon_{k, 1}, \ldots, i_{n_{k}}^{k}, \varepsilon_{k, n_{k}} ; \sigma_{k}\right)$ leave v fixed by the choice of l. From the final condition of Lemma 2.9 (ii) and from Lemma 2.10 (iv), it follows that the terms with length equal to n_{l} also leave v fixed. Finally, from Lemma 2.10 (i), it follows that the remaining terms act on v by eventually changing only the α 's. Therefore we conclude that

$$
\begin{aligned}
& h v\left(i_{1}^{l}, \varepsilon_{l, 1}, \ldots, i_{n_{l}}^{l}, \varepsilon_{l, n_{l}}, \kappa, \varepsilon_{l, n_{l}}, \alpha_{1}, e_{1}, \ldots, \alpha_{n_{1}}, e_{n_{1}}\right) \\
& \quad=v\left(i_{1}^{l}, \varepsilon_{l, 1}, \ldots, i_{n_{l}}^{l}, \varepsilon_{l, n_{l}}, \rho, \varepsilon_{l, n_{l}}, \beta_{1}, e_{1}, \ldots, \beta_{n_{1}}, e_{n_{1}}\right)
\end{aligned}
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
for some β 's. This shows that $h \notin \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$, a contradiction that proves (i).
(ii) From Proposition 2.2 (iii), it follows that

$$
K_{\varepsilon}=\tau^{-\varepsilon} K_{\varepsilon}\left(\tau^{-\varepsilon}\right) \tau^{\varepsilon}=\tau^{-\varepsilon} \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \tau^{\varepsilon}=\theta^{\varepsilon}\left(\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}\right)
$$

The assertion follows from relation (R7) and Lemma 2.9 (i).
(iii) is obvious.

Now, we want to explore the structure of the quasi-kernels of $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$, in particular, that of $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$.

First, we note that Proposition 2.11 (ii) and relation (R6) imply that for $i \in I_{\varepsilon}$,

$$
\begin{aligned}
& \lambda_{\varepsilon}^{i} \tau^{-\varepsilon} \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \tau^{\varepsilon}\left(\lambda_{\varepsilon}^{i}\right)^{-1}=\lambda_{\varepsilon}^{i} K_{\varepsilon}\left(\lambda_{\varepsilon}^{i}\right)^{-1} \\
& \quad=\left\langle\left\{h\left(i,-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \mid m \geq 0, h\left(i,-\varepsilon, i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \in \underline{H}\right\}\right\rangle
\end{aligned}
$$

It is clear that
$\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$

$$
\begin{aligned}
& =\left\langle\left\{h\left(\sigma_{-\varepsilon}\right) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}\right\} \cup \underset{i \in I_{\varepsilon}}{\cup} \lambda_{\varepsilon}^{i} \tau^{-\varepsilon} \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \tau^{\varepsilon}\left(\lambda_{\varepsilon}^{i}\right)^{-1} \cup_{i \in I_{-\varepsilon}^{\prime}}^{\cup} \lambda_{-\varepsilon}^{i} \tau^{\varepsilon} \Lambda_{\left(\bar{\Theta}_{-\varepsilon}\right)} \tau^{-\varepsilon}\left(\lambda_{-\varepsilon}^{i}\right)^{-1}\right\rangle \\
& =\left\langle\left\{h\left(\sigma_{-\varepsilon}\right) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}\right\} \cup \mathcal{K}(0,-\varepsilon)\right\rangle
\end{aligned}
$$

In other words,

$$
\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \cong \mathcal{K}(0,-\varepsilon) \rtimes \Gamma_{-\varepsilon}
$$

This can be written "recursively" as

$$
\begin{equation*}
K_{\varepsilon} \cong\left[\bigoplus_{\#\left(S_{-\varepsilon}^{\prime}\right)} K_{-\varepsilon} \oplus \bigoplus_{\#\left(S_{\varepsilon}\right)} K_{\varepsilon}\right] \rtimes \Gamma_{-\varepsilon} \tag{5}
\end{equation*}
$$

This is in a sense a "wreath product" representation.
Let's denote

$$
\mathcal{H}_{\varepsilon}(0)=\left\langle\left\{h\left(\sigma_{-\varepsilon}\right) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}\right\}\right\rangle .
$$

For $n \geq 1$, let
$\mathcal{H}_{\varepsilon}(n)=\left\langle\left\{h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \mid h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \in H_{-\varepsilon}\right.\right.$ and $\left.\left.\left(i_{1}, \varepsilon_{1}\right) \neq\left(\iota_{-\varepsilon}, \varepsilon\right)\right\}\right\rangle$.
Note that, each $\mathcal{H}_{\varepsilon}(n)$ is isomorphic to a direct sum of copies of Γ_{1} and Γ_{-1}. Let us also denote

$$
\mathcal{H}_{\varepsilon}[n]=\left\langle\mathcal{H}_{\varepsilon}(0) \cup \mathcal{H}_{\varepsilon}(1) \cup \cdots \cup \mathcal{H}_{\varepsilon}(n)\right\rangle
$$

Relation (R3) implies that $\mathcal{H}_{\varepsilon}(n) \triangleleft \mathcal{H}_{\varepsilon}[n]$ and that there is an extension

$$
\begin{equation*}
\{1\} \longrightarrow \mathcal{H}_{\varepsilon}(n) \longrightarrow \mathcal{H}_{\varepsilon}[n] \longrightarrow \mathcal{H}_{\varepsilon}[n-1] \longrightarrow\{1\} \tag{6}
\end{equation*}
$$

The natural embeddings $\mathcal{H}_{\varepsilon}[m] \hookrightarrow \mathcal{H}_{\varepsilon}[n]$ give a representation of $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$ as a direct limit of groups

$$
\begin{equation*}
\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}=\underset{n}{\lim } \mathcal{H}_{\varepsilon}[n] . \tag{7}
\end{equation*}
$$

Lemma 2.12. K_{-1} is amenable if and only if K_{1} is amenable, if and only if Γ_{-1} and Γ_{1} are both amenable, and if and only if Σ_{-1} and Σ_{1} are both amenable.

Proof. Assume that Γ_{ε} is not amenable for some $\varepsilon= \pm 1$. Then, by equation (5), it follows that $K_{-\varepsilon}$ is not amenable, so equation (5), applied once more, gives the nonamenability of K_{ε}.

Conversely, assume that Γ_{-1} and Γ_{1} are both amenable. Then $\mathcal{H}_{\varepsilon}(n)$ is amenable as a direct sum of copies of Γ_{-1} and Γ_{1}. Also, $\mathcal{H}_{\varepsilon}[0]=\mathcal{H}_{\varepsilon}(0) \cong \Gamma_{-\varepsilon}$ is amenable for $\varepsilon= \pm 1$. Therefore an easy induction based on the extension (6), gives the amenability of $\mathcal{H}_{\varepsilon}[n]$ for each $\varepsilon= \pm 1$ and each $n \geq 0$. Finally, the direct limit representation (7) of $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$ implies the amenability of $\Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)}$ for and therefore that of $K_{\varepsilon}=\tau^{-\varepsilon} \Lambda_{\left(\bar{\Theta}_{\varepsilon}\right)} \tau^{\varepsilon}$ for $\varepsilon= \pm 1$.

2.4. GROUP-THEORETIC STRUCTURE

We give a result about the structure of our groups.
Theorem 2.13. Take $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$. Let's assume that:
(i) Σ_{-1} and Σ_{1} are 2-transitive, that is, all stabilizers $\left(\Sigma_{\varepsilon}\right)_{i_{\varepsilon}}$ are transitive on the sets $I_{\varepsilon} \backslash\left\{i_{\varepsilon}\right\}$ for all $i_{\varepsilon} \in I_{\varepsilon}$ and $\varepsilon= \pm 1$;
(ii) For each $\varepsilon= \pm 1$, either $\Sigma_{\varepsilon}=\left\langle\left(\Sigma_{\varepsilon}\right)_{i_{\varepsilon}} \mid i_{\varepsilon} \in I_{\varepsilon}\right\rangle$ or $\Sigma_{\varepsilon}=\operatorname{Sym}(2)$.

Then Λ has a simple normal subgroup Ξ for which there is a group extension

$$
1 \longrightarrow \Xi \longrightarrow \Lambda \xrightarrow{\eta}(\Gamma /[\Gamma, \Gamma]) \imath_{\mathbb{Z}} \mathbb{Z} \longrightarrow 1
$$

where η is defined on the generators by

$$
\begin{gathered}
\eta(h(\sigma))=((\ldots, 0, \ldots, 0,([\sigma], 0), 0, \ldots, 0, \ldots), 0), \quad \eta(\tau)=((\ldots, 0, \ldots), 1), \quad \text { and } \\
\eta\left(h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)\right)=\left(\left(\ldots, 0, \ldots, 0,\left(\left[\sigma_{n}\right], \varepsilon_{1}+\cdots+\varepsilon_{n}\right), 0, \ldots, 0, \ldots\right), 0\right)
\end{gathered}
$$

Here $[\sigma]$ denotes the image of the permutation $\sigma \in \Gamma$ in $\Gamma /[\Gamma, \Gamma]$.
Proof. It follows from relations (R7), (R8), and (R9) that the action of θ on an element $h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$ is consistent with the definition of η and the multiplication in the wreath product, that is,

$$
\begin{aligned}
& \eta\left(\theta\left(h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)\right)\right)=\eta\left(\tau^{-1} h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \tau\right) \\
& \quad=\left(\left(\ldots, 0, \ldots, 0,\left(\left[\sigma_{n}\right], \varepsilon_{1}+\cdots+\varepsilon_{n}-1\right), 0, \ldots, 0, \ldots\right), 0\right)
\end{aligned}
$$

It is easy to see that, since the commutant is in the kernel, the homomorphism $\eta: G \rightarrow(\Gamma /[\Gamma, \Gamma]) \imath_{\mathbb{Z}} \mathbb{Z}$ is well defined by

$$
\eta(g)=\left(\left(\ldots,\left(\prod_{\varepsilon_{1}+\cdots+\varepsilon_{n}=m}\left[\sigma_{n}\right], m\right), \ldots\right), 0\right)
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
where the products are taken over all the factors $h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$ of g. These two observations together with the universal property of the HNN-extensions (Remark 1.1) enable us to extend η to the entire group Λ.

Now, notice that if $\lambda=g_{1} \tau^{\varepsilon_{1}} g_{2} \tau^{\varepsilon_{2}} g_{3} \tau^{\varepsilon_{3}} \cdots g_{n} \tau^{\varepsilon_{n}} g_{n+1} \in \Xi$, then $\varepsilon_{1}+\cdots+\varepsilon_{n}=0$. Thus

$$
\lambda=g_{1}\left(\tau^{\varepsilon_{1}} g_{2} \tau^{-\varepsilon_{1}}\right)\left(\tau^{\varepsilon_{1}+\varepsilon_{2}} g_{3} \tau^{-\varepsilon_{1}-\varepsilon_{2}}\right) \cdots\left(\tau^{\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n-1}} g_{n} \tau^{-\varepsilon_{1}-\varepsilon_{2}-\cdots-\varepsilon_{n-1}}\right) g_{n+1}
$$

can be represented as products of τ-conjugates of elements from G.
Using Lemma 2.9 (ii), we see that every $\lambda=\tau^{n} g \tau^{-n}$ can be written as a product of elements of the form $\tau^{n} h(\sigma) \tau^{-n}$ and $\tau^{n} h\left(i_{1}, \varepsilon_{1} \ldots, i_{m}, \varepsilon_{m} ; \sigma_{m}\right) \tau^{-n}$. The second element equals either $\tau^{n-m} h\left(\sigma_{m}\right) \tau^{m-n}$ or $h\left(j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{k}, \varepsilon_{k}^{\prime} ; \sigma_{m}\right)$ for some j_{p} 's and ε_{p}^{\prime} 's. Therefore, it is easy to see that Ξ is generated by the following set

$$
\begin{align*}
& \left\{h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n} ; \sigma_{n}^{-1}\right) \mid \varepsilon_{k}= \pm 1, i_{k}, i_{k}^{\prime} \in I_{-\varepsilon_{k}}, \forall k ; n \geq 2, \sigma_{n} \in \Gamma_{\varepsilon_{n}}\right\} \\
& \cup\left\{i, \varepsilon, i_{0},-\varepsilon, i_{1}, \varepsilon, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(\bar{i}, \varepsilon, i_{2}^{\prime}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}^{-1}\right) \mid \\
& \left.\quad n \geq 2,, i_{0} \in I_{\varepsilon}, i_{2}^{\prime} \in I_{-\varepsilon_{2}}, i, \bar{i} \in I_{-\varepsilon} ; i_{k} \in I_{-\varepsilon_{k}}, \varepsilon, \varepsilon_{k}= \pm 1, \forall k\right\} \\
& \cup\left\{h\left(\sigma_{\varepsilon}\right) h\left(i_{\varepsilon},-\varepsilon, i_{-\varepsilon}, \varepsilon ; \sigma_{\varepsilon}^{-1}\right) \mid \sigma_{\varepsilon} \in \Gamma_{\varepsilon}, i_{-\varepsilon} \in I_{\varepsilon}^{\prime}, i_{\varepsilon} \in I_{-\varepsilon}, \varepsilon= \pm 1\right\} \\
& \cup\left\{h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, j,-\varepsilon, j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right)\right. \\
& \quad \cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, i^{\prime}, \varepsilon, j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right) \mid \\
& \left.\quad m, n \in \mathbb{N}_{0}, i, i^{\prime}, \in I_{-\varepsilon}, j, j^{\prime} \in I_{\varepsilon}, \sigma \in \Gamma_{\varepsilon_{n}^{\prime}} ; \varepsilon, \varepsilon_{k}, \varepsilon_{k}^{\prime}= \pm 1, i_{k} \in I_{-\varepsilon_{k}}, j_{k} \in I_{-\varepsilon_{k}^{\prime}}, \forall k\right\} \\
& \cup\{\tau^{\varepsilon n} h\left(\sigma_{-\varepsilon}\right) \tau^{-\varepsilon n} h(\underbrace{\left(\iota_{-\varepsilon}, \varepsilon, \ldots, \iota_{-\varepsilon}, \varepsilon ;\right.}_{n \text { times }} ; \sigma_{-\varepsilon}^{-1}) \mid \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon}, \varepsilon= \pm 1, n \in \mathbb{N}\} \\
& \cup\left\{\tau^{\varepsilon n} h\left(\sigma_{-\varepsilon}\right) \tau^{-\varepsilon n} \mid n \in \mathbb{N}, \sigma_{-\varepsilon} \in \Gamma_{-\varepsilon} \cap[\Gamma, \Gamma], \varepsilon= \pm 1\right\} \cup\{h(\sigma) \mid \sigma \in[\Gamma, \Gamma]\} . \tag{8}
\end{align*}
$$

Take any element $a \in \Xi \backslash\{1\}$. It remains to show that $\langle\langle a\rangle\rangle_{\Xi}=\Xi$. Relations (R3), (R8), and (R9) and Lemma 2.9 (iii) imply that we can find a big enough n and i_{k} 's so that the element $h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$ does not commute with a and does not modify a. Moreover, if we take

$$
v \equiv h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n} ; \sigma_{n}^{-1}\right) \in \Xi \backslash\{1\}
$$

for any i_{k}^{\prime} 's (not all equal to i_{k} 's), we will have

$$
\begin{aligned}
\langle\langle a\rangle\rangle_{\Xi} \ni b & \equiv a v a^{-1} v \\
& =h\left(p_{1}, l_{1}, \ldots, p_{m}, l_{m} ; \sigma_{n}\right) h\left(p_{1}^{\prime}, l_{1}^{\prime}, \ldots, p_{d}^{\prime}, l_{d}^{\prime} ; \sigma_{n}^{-1}\right) \\
& \cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n} ; \sigma_{n}^{-1}\right)
\end{aligned}
$$

for some m, d, p_{k} 's, p_{k}^{\prime} 's, l_{k} 's, and l_{k}^{\prime} 's.
Now, it is clear that we can find big enough s and appropriate e_{k} 's, $e_{k}^{\prime \prime}$'s, j_{k} 's, and $j_{k}^{\prime \prime}$'s, so that $h\left(j_{1}^{\prime \prime}, e_{1}^{\prime \prime}, \ldots, j_{s}^{\prime \prime}, e_{s}^{\prime \prime} ; \sigma^{-1}\right)$ commutes with b and $h\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s} ; \sigma\right)$
does not. Then,

$$
\begin{aligned}
\langle\langle a\rangle\rangle_{\Xi} \ni b^{\prime} \equiv & b h\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s} ; \sigma\right) h\left(j_{1}^{\prime \prime}, e_{1}^{\prime \prime}, \ldots, j_{s}^{\prime \prime}, e_{s}^{\prime \prime} ; \sigma^{-1}\right) b^{-1} \\
& h\left(j_{1}^{\prime \prime}, e_{1}^{\prime \prime}, \ldots, j_{s}^{\prime \prime}, e_{s}^{\prime \prime} ; \sigma\right) h\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s} ; \sigma^{-1}\right) \\
= & h\left(j_{1}^{\prime}, e_{1}, \ldots, j_{s}^{\prime}, e_{s} ; \sigma\right) h\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s} ; \sigma^{-1}\right) \neq 1
\end{aligned}
$$

for some j_{k}^{\prime} 's, from relation (R3). We can take s to be big enough and adjust the 'tail' of $\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s}\right)$ so that $e_{1}+\cdots+e_{n}=0$. Since the tuples $\left(j_{1}, e_{1}, \ldots, j_{s}, e_{s}\right)$ and $\left(j_{1}^{\prime}, e_{1}, \ldots, j_{s}^{\prime}, e_{s}\right)$ are different, it follows from Lemma 2.9 (i) and from the assumption $\varepsilon_{1}+\cdots+\varepsilon_{n}=0$ that

$$
\beta b^{\prime} \beta^{-1}=h\left(p_{1}^{\prime \prime}, e_{1}^{\prime \prime \prime}, \ldots, p_{k}^{\prime \prime}, e_{k}^{\prime \prime \prime}, p^{\prime \prime}, e_{s} ; \sigma\right) h\left(\sigma^{-1}\right) \in\langle\langle a\rangle\rangle_{\Xi}
$$

for some $k \in \mathbb{N}, p_{l}^{\prime \prime}$'s, and $e_{l}^{\prime \prime \prime}$'s, where

$$
\begin{aligned}
& \Xi \ni \beta=\tau^{-e_{s}}\left(\lambda_{-e_{s}}^{j_{s}}\right)^{-1} \cdots \tau^{-e_{1}}\left(\lambda_{-e_{s}}^{j_{1}}\right)^{-1} \\
& \prod_{e_{k}=-1} h\left(\rho_{1}^{k}, w_{1}^{k}, \ldots, \rho_{t_{k}}^{k}, w_{t_{k}}^{k}, w, 1 ; \mu_{-e_{k}}^{j_{k}}\right) \cdot \prod_{e_{k}=1} h\left(\bar{\rho}_{1}^{k}, \bar{w}_{1}^{k}, \ldots, \bar{\rho}_{t_{k}^{\prime}}^{k}, \bar{w}_{t_{k}^{\prime}}^{k}, \bar{w},-1 ; \mu_{-e_{k}}^{j_{k}}\right),
\end{aligned}
$$

and where the last two factors are chosen appropriately to bring β into Ξ. This argument does not depend on the 'tail' of $\left(p_{1}, e_{1}, \ldots, p_{s}, e_{s}\right)$, therefore we can take e_{s} to be either 1 or -1 .

We conclude that the following are elements of $\langle\langle a\rangle\rangle_{\Xi}$:

$$
\begin{aligned}
& c=h\left(\sigma_{1}\right) h\left(\iota_{1},-1, p_{1}, e_{1}, \ldots, p_{k}, e_{k}, p, 1 ; \sigma_{1}^{-1}\right) \text { and } \\
& d=h\left(\sigma_{-1}\right) h\left(\iota_{-1}, 1, q_{1}, l_{1}, \ldots, q_{k}, l_{k}, q,-1 ; \sigma_{-1}^{-1}\right)
\end{aligned}
$$

for any big enough even number k, for any $\sigma_{1} \in \Gamma_{1}$ and $\sigma_{-1} \in \Gamma_{-1}$, and for some p_{m} 's, q_{m} 's, e_{m} 's, and l_{m} 's.

We claim that, in the tuples $\left(\iota_{1},-1, p_{1}, e_{1}, \ldots, p_{k}, e_{k}, p, 1\right)$ and $\left(\iota_{-1}, 1, q_{1}, l_{1}, \ldots, q_{k}, l_{k}, q,-1\right)$, the indices p, q, p_{t} 's, and q_{t} 's can be chosen arbitrary. To see this, consider

$$
\Xi \ni f=h\left(\iota_{1},-1, p_{1}, e_{1}, \ldots, p_{t}, e_{t} ; \omega_{t}\right) h\left(q_{0},-1, q_{1}, o_{1}, \ldots, q_{r}, o_{r}, q, e_{t} ; \omega_{t}^{-1}\right)
$$

where $q_{0} \neq \iota_{1}$ and where the second factor is chosen appropriately. Then by relation (R3),

$$
f c f^{-1}=h\left(\sigma_{1}\right) h\left(\iota_{1},-1, p_{1}, e_{1}, \ldots, \omega_{t}\left(p_{t+1}\right), \ldots, p_{k}, e_{k}, p, 1 ; \sigma_{1}^{-1}\right) \in\langle\langle a\rangle\rangle_{\Xi}
$$

Because of the transitivity and 2-transitivity of Σ_{-1} and Σ_{1}, the claim is proven. The element d can be manipulated similarly.

Now, consider

$$
\Xi \ni s=h\left(\iota_{-1}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}\right) h\left(\iota_{1},-1, q_{1}^{\prime}, o_{1}^{\prime}, \ldots, q_{r}^{\prime}, o_{r}^{\prime}, q^{\prime}, e_{t} ; \omega_{t}^{-1}\right)
$$

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.
for an appropriate choice of $q_{l}^{\prime \prime}$ s and p_{l} 's so it commutes with $h\left(\iota_{1},-1, p_{1}, e_{1}, \ldots, p_{k}, e_{k}, p, 1 ; \sigma_{1}^{-1}\right)$. Therefore
$s c s^{-1} c^{-1}=h\left(\iota_{-1}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}\right) h\left(\sigma_{1}\left(\iota_{-1}\right), 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}^{-1}\right) \in\langle\langle a\rangle\rangle_{\Xi}$, so by the transitivity of the group Σ_{-1}, we see that every element of the form

$$
h\left(\iota_{-1}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}\right) h\left(i_{1}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}^{-1}\right)
$$

belongs to $\langle\langle a\rangle\rangle_{\Xi}$. Products of such elements yield

$$
h\left(i_{1}^{\prime}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}\right) h\left(i_{1}, 1, i_{2}, \varepsilon_{2}, \ldots, i_{t}, \varepsilon_{t} ; \omega_{t}^{-1}\right) \in\langle\langle a\rangle\rangle_{\Xi}
$$

for any $i_{1}, i_{1}^{\prime} \in I_{-1}$. By making the same argument that uses transitivity and 2transitivity, we see that we can change the i_{l} indices of the first factor, so we infer that the first set of (8) belongs to $\langle\langle a\rangle\rangle_{\Xi}$.

Consider an integer $n \geq 2$, an even number $k \geq 2$, and an appropriate $h\left(j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{k}, \varepsilon_{k}^{\prime} ; \sigma\right)$ that commutes with $h\left(i_{1}, \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right)$ and with $h\left(\iota_{-\varepsilon_{1}}, \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}^{-1}\right)$ and has the property that

$$
\delta^{\prime} \equiv \tau^{\varepsilon_{1}} h(\sigma) \tau^{-\varepsilon_{1}} h\left(j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{k}, \varepsilon_{k}^{\prime} ; \sigma^{-1}\right)
$$

belongs to Ξ. Then

$$
\begin{gathered}
\delta^{\prime} h\left(i_{1}, \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) h\left(\iota_{-\varepsilon_{1}}, \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}^{-1}\right)\left(\delta^{\prime}\right)^{-1} \\
=h\left(\iota_{-\varepsilon_{1}}, \varepsilon_{1}, \sigma\left(\iota_{\varepsilon_{1}}\right),-\varepsilon_{1}, i_{1}, \varepsilon_{1}, i_{2}, \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}\right) \\
h\left(\iota_{-\varepsilon_{1}}, \varepsilon_{1}, \sigma\left(i_{2}\right), \varepsilon_{2}, \ldots, i_{n}, \varepsilon_{n} ; \sigma_{n}^{-1}\right) \in\langle\langle a\rangle\rangle_{\Xi} .
\end{gathered}
$$

Products of those elements with elements from the first set give all the elements from the second set of (8), so it is included in $\langle\langle a\rangle\rangle_{\Xi}$.

The third set of (8) belongs to $\langle\langle a\rangle\rangle_{\Xi}$ since its elements are products of the elements c and d above with elements from the second set.

A generic element of the fourth set of (8) can be written as

$$
\begin{align*}
& h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, j,-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \\
& \quad h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, i^{\prime}, \varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right) \tag{9}
\end{align*}
$$

where we have written $\varepsilon_{1}^{\prime}=\varepsilon$. We must show that this element belongs to $\langle\langle a\rangle\rangle_{\Xi}$.
First, we start with the following element from the first set of (8)

$$
\begin{gathered}
\langle\langle a\rangle\rangle_{\Xi} \ni z=h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, \iota_{-\varepsilon}, \varepsilon, q,-\varepsilon, j,-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \\
h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, \iota_{-\varepsilon}, \varepsilon, q,-\varepsilon, \iota_{\varepsilon},-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right)
\end{gathered}
$$

where $q \in I_{\varepsilon}^{\prime}$.

Next, using Lemma 2.9 (i) and adopting the notations thereof, we define

$$
\begin{aligned}
\Xi \ni \gamma= & \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon}^{i} \tau^{2 \varepsilon}\left(\lambda_{\varepsilon}^{q}\right)^{-1} \tau^{-2 \varepsilon}\left(\lambda_{-\varepsilon}^{i}\right)^{-1} \\
& \cdot \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \cdot h\left(r_{1}, e_{1}, \ldots, r_{2 l-1}, e_{2 l-1}, \bar{r}_{-\varepsilon}, \varepsilon ; \mu_{\varepsilon}^{q}\right)
\end{aligned}
$$

for appropriate r_{k} 's and e_{k} 's satisfying $e_{1}+\cdots+e_{2 l-1}+\varepsilon=0$ and for which the last factor commutes with everything in the next expressions. Then

$$
\gamma z \gamma^{-1}=h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, j,-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \cdot \bar{h}
$$

where

$$
\begin{aligned}
& \bar{h} \equiv \gamma h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, \iota_{-\varepsilon}, \varepsilon, q,-\varepsilon, \iota_{\varepsilon},-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right) \gamma^{-1} \\
&= \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon}^{i} \lambda_{-\varepsilon}^{i} \tau^{\varepsilon} \cdots \lambda_{-\varepsilon_{n}^{\prime}}^{j_{n}} \tau^{\varepsilon_{n}} h\left(\sigma^{-1}\right) \\
& \cdot \tau^{-\varepsilon_{n}^{\prime}}\left(\lambda_{-\varepsilon_{n}^{\prime}}^{j_{n}}\right)^{-1} \cdots \tau^{-\varepsilon}\left(\lambda_{-\varepsilon}^{\bar{i}}\right)^{-1}\left(\lambda_{-\varepsilon}^{i}\right)^{-1} \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \\
&= \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{-\varepsilon}^{i} h\left(\bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right)\left(\lambda_{-\varepsilon}^{i}\right)^{-1} \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \\
&= \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right) \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} .
\end{aligned}
$$

Likewise, we consider the following element from the first set of (8)

$$
\begin{aligned}
\langle\langle a\rangle\rangle_{\Xi} \ni z^{\prime}= & h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, \iota_{\varepsilon},-\varepsilon, p, \varepsilon, \iota_{-\varepsilon}, \varepsilon, \mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \\
& \cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, \iota_{\varepsilon},-\varepsilon, p, \varepsilon, i^{\prime}, \varepsilon, \mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right)
\end{aligned}
$$

where $p \in I_{-\varepsilon}^{\prime}$ and define

$$
\begin{aligned}
\Xi \ni \gamma^{\prime}= & \lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{\varepsilon}^{j^{\prime}} \tau^{-2 \varepsilon}\left(\lambda_{-\varepsilon}^{p}\right)^{-1} \tau^{2 \varepsilon}\left(\lambda_{\varepsilon}^{j^{\prime}}\right)^{-1} \\
& \cdot \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \cdots h\left(r_{1}^{\prime}, e_{1}, \ldots, r_{2 l-1}^{\prime}, e_{2 l-1}, \bar{r}_{-\varepsilon}, \varepsilon ; \mu_{-\varepsilon}^{p}\right)
\end{aligned}
$$

for appropriate r_{k}^{\prime} 's. Then,

$$
\gamma^{\prime} z^{\prime}\left(\gamma^{\prime}\right)^{-1}=\overline{\bar{h}} \cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, i^{\prime}, \varepsilon, \mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right)
$$

where

$$
\begin{aligned}
\overline{\bar{h}} & \equiv \gamma^{\prime} h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, \iota_{\varepsilon},-\varepsilon, p, \varepsilon, \iota_{-\varepsilon}, \varepsilon, \mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right)\left(\gamma^{\prime}\right)^{-1} \\
& =\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} \lambda_{\varepsilon}^{j^{\prime}} h\left(\mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right)\left(\lambda_{\varepsilon}^{j^{\prime}}\right)^{-1} \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \\
& =\lambda_{-\varepsilon_{1}}^{i_{1}} \tau^{\varepsilon_{1}} \cdots \lambda_{-\varepsilon_{m}}^{i_{m}} \tau^{\varepsilon_{m}} h\left(\mu_{\varepsilon}^{j^{\prime}}\left(\mu_{-\varepsilon}^{i}(\bar{i})\right), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \tau^{-\varepsilon_{m}}\left(\lambda_{-\varepsilon_{m}}^{i_{m}}\right)^{-1} \cdots \tau^{-\varepsilon_{1}}\left(\lambda_{-\varepsilon_{1}}^{i_{1}}\right)^{-1} \\
& =(\bar{h})^{-1}
\end{aligned}
$$

since $\mu_{\varepsilon}^{j^{\prime}}\left(\mu_{-\varepsilon}^{i}(\bar{i})\right)=\mu_{-\varepsilon}^{i}(\bar{i})$, due to relation (R6) and $\mu_{-\varepsilon}^{i}(\bar{i}) \in I_{-\varepsilon}$. Finally,

$$
\begin{array}{r}
\langle\langle a\rangle\rangle_{\Xi \ni \gamma} \ni \gamma^{-1} \cdot \gamma^{\prime} z^{\prime}\left(\gamma^{\prime}\right)^{-1}=h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, i, \varepsilon, j,-\varepsilon, \bar{i}, \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \\
\cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j^{\prime},-\varepsilon, i^{\prime}, \varepsilon, \mu_{-\varepsilon}^{i}(\bar{i}), \varepsilon, j_{2}, \varepsilon_{2}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma^{-1}\right)
\end{array}
$$

and after a multiplication with an element from the first set of (8), we get the element (9).

Ann. Sofia Univ., Fac. Math and Inf., 107, 2020, 107-129.

Therefore the fourth set of (8) is in $\langle\langle a\rangle\rangle_{\Xi}$.
Repeating almost verbatim the corresponding part of the proof of Theorem [8, Theorem 3.16] gives us that the seventh set of (8) belongs to $\langle\langle a\rangle\rangle_{\Xi}$. Note that if $\Sigma_{\varepsilon}=\operatorname{Sym}(2)$, then $\left[\Sigma_{\varepsilon}, \Sigma_{\varepsilon}\right]$ is the trivial group.

Next, we take numbers $m>n$ and

$$
\gamma^{\prime \prime}=\tau^{\varepsilon m} h\left(\sigma_{-\varepsilon}^{\prime}\right) \tau^{-\varepsilon m} h\left(j_{1}, \varepsilon, \ldots, j_{m+1}, \varepsilon, j,-\varepsilon ;\left(\sigma_{-\varepsilon}^{\prime}\right)^{-1}\right) \in \Xi
$$

where $\sigma_{-\varepsilon}^{\prime} \in \Gamma_{-\varepsilon}, j_{k} \in I_{-\varepsilon}^{\prime}, \forall k$, and $j \in I_{\varepsilon}^{\prime}$, with the relation $\left(\sigma_{-\varepsilon}^{\prime}\right)^{-1}\left(\iota_{\varepsilon}\right)=q$ for some $q \in I_{\varepsilon}^{\prime}$.
After that, we take the following element of $\langle\langle a\rangle\rangle_{\Xi}$ (it is a product of elements from the second and fourth set)

$$
\begin{aligned}
& x \equiv h(\underbrace{\iota_{-\varepsilon}, \varepsilon, \ldots, \iota_{-\varepsilon}, \varepsilon}_{m \text { times }}, q,-\varepsilon, \underbrace{\iota_{\varepsilon},-\varepsilon, \ldots, \iota_{\varepsilon},-\varepsilon ; \sigma_{-\varepsilon}}_{m-n-1 \text { times }}) . \\
& \cdot h(\underbrace{\iota_{-\varepsilon}, \varepsilon, \ldots, \iota_{-\varepsilon}, \varepsilon}_{m \text { times }}, q,-\varepsilon, \underbrace{\iota_{\varepsilon},-\varepsilon, \ldots, \iota_{\varepsilon},-\varepsilon}_{m \text { times }}, p, \varepsilon, \underbrace{\iota_{-\varepsilon}, \varepsilon, \ldots, \iota_{-\varepsilon}, \varepsilon}_{n-1 \text { times }} ; \sigma_{-\varepsilon}),
\end{aligned}
$$

where $p \in I_{-\varepsilon}^{\prime}$. Then

$$
\gamma^{\prime \prime} x\left(\gamma^{\prime \prime}\right)^{-1}=\tau^{\varepsilon n} h\left(\sigma_{-\varepsilon}\right) \tau^{-\varepsilon n} \cdot h(p, \varepsilon, \underbrace{\iota_{-\varepsilon}, \varepsilon, \ldots, \iota_{-\varepsilon}, \varepsilon}_{n-1 \text { times }} ; \sigma_{-\varepsilon}) \in\langle\langle a\rangle\rangle_{\Xi} .
$$

Therefore upon a multiplication by an element from the first set of (8), we infer that the fifth set of (8) belongs to $\langle\langle a\rangle\rangle_{\Xi}$.

Finally, the argument from Theorem [8, Theorem 3.16] can be used for the sixth set of (8) the same way it was used for the seventh set.

This completes the proof.

Remark 2.14. The example introduced in [3, Section 5] corresponds to the case $\Sigma_{-1} \cong \Sigma_{1} \cong \operatorname{Sym}(2)$. Theorem 2.13 corresponds to [3, Proposition 5.11] in this particular case.

2.5. ANALYTIC STRUCTURE

In this section, we use some results from [8, Section 2].
Lemma 2.15. The group $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$ is a non-ascending $H N N$-extension and its action on its Bass-Serre tree is minimal and of general type.

Proof. Since the action is transitive, it is minimal. Since $H \neq G \neq \theta(H)$, then Λ is nondegenerate and non-ascending. The result now follows from [7, Proposition 20].

Theorem 2.16. The $H N N$-extension $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$ has a unique trace. It is C^{*}-simple if and only if either one of the groups Σ_{-1} and Σ_{1} is non-amenable.

Proof. Lemma 2.15 enables us to apply [3, Theorem 4.19] to conclude that Λ has the unique trace property since ker Λ is trivial. It also enables us to apply [3, Theorem 4.20] to conclude that Λ is C^{*}-simple if and only if K_{-1} and K_{1} are non-amenable, which, by Lemma 2.12, is equivalent to the requirement that some of the groups Σ_{-1} and Σ_{1} is non-amenable.

Finally, we prove
Theorem 2.17. The $H N N$-extension $\Lambda=\Lambda\left[\Sigma_{-1}, \Sigma_{1}\right]$ in not inner amenable.
Proof. Lemma 2.15 allows us to apply [8, Proposition 2.3], so we need to show that the action of $\Lambda=\Lambda\left[I_{-1}, I_{1}, \iota_{-1}, \iota_{1} ; \Sigma_{-1}, \Sigma_{1}\right]$ on its Bass-Serre is finitely fledged.

For this, take any elliptic element $g \in \Lambda \backslash\{1\}$. Since g fixes some vertex, it is a conjugate of an element of G. The finite fledgedness property is conjugation invariant, so we can assume $g \in G \backslash\{1\}$.

From Lemma 2.9 (ii), we can write $g=h(\sigma) h_{-1} h_{1}$, where $\sigma \in \Gamma$,

$$
\begin{aligned}
& h_{-1}=\prod_{k=1}^{m} h\left(i_{1}^{k},-1, i_{2}^{k}, \varepsilon_{k, 2}, \ldots, i_{n_{k}}^{k}, \varepsilon_{k, n_{k}} ; \sigma_{k}\right) \\
& h_{1}=\prod_{l=m+1}^{r} h\left(i_{1}^{l}, 1, i_{2}^{l}, \varepsilon_{l, 2}, \ldots, i_{n_{l}}^{l}, \varepsilon_{l, n_{l}} ; \theta_{l}\right)
\end{aligned}
$$

$r \geq m \geq 0, \sigma_{k} \in \Gamma_{\varepsilon_{k, n_{k}}}, \theta_{l} \in \Gamma_{\varepsilon_{l, n_{l}}}$, and $i_{z}^{p} \in I_{\varepsilon_{p, z}}^{\prime}$. We also require $0 \leq n_{1} \leq \ldots \leq n_{m}$ and $0 \leq n_{m+1} \leq \cdots \leq n_{r}$.

Let us assume that g fixes a vertex $v=v\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}\right)$, where $n \geq \max \left\{n_{m}, n_{r}\right\}+1$, and let's take $w=v\left(i_{1}, \varepsilon_{1}, \ldots, i_{n}, \varepsilon_{n}, \ldots, i_{n+d}, \varepsilon_{n+d}\right)$ for any $d \geq 1$. We note that $h_{-\varepsilon_{1}}$ fixes w and $h(\sigma) h_{\varepsilon_{1}}$ modifies only indices with numbers no greater than $\left\{n_{m}, n_{r}\right\}+1 \leq n$. Therefore

$$
\begin{aligned}
& h(\sigma) h_{\varepsilon_{1}} v=v\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n}\right) \text { and } \\
& h(\sigma) h_{\varepsilon_{1}} w=v\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n}, i_{n+1}, \varepsilon_{n+1}, \ldots, i_{n+d}, \varepsilon_{n+d}\right)
\end{aligned}
$$

for some $i_{k}^{\prime} \in I_{-\varepsilon_{k}}^{\prime}$. By our assumption, it follows that

$$
v=g v=h(\sigma) h_{\varepsilon_{1}} v=v\left(i_{1}^{\prime}, \varepsilon_{1}, \ldots, i_{n}^{\prime}, \varepsilon_{n}\right)
$$

Thus $i_{k}^{\prime}=i_{k}$ for all $1 \leq k \leq n$, and therefore $g w=w$.
This concludes the proof.

Corollary 2.18. Theorems 2.16 and 2.13 imply:
If either Σ_{-1} or Σ_{1} is non-amenable, then the amenablish radical of Λ is trivial. If Σ_{-1} and Σ_{1} are both amenable, then Λ is amenablish.

Proof. If we show that the centralizer $C_{\Lambda}(\Xi)$ is trivial, [2, Theorem 4.1] will imply that Λ is C^{*}-simple if and only if Ξ is C^{*}-simple. Since Ξ is simple, if it is not C^{*}-simple, then it is amenablish, and therefore Λ is also amenablish because $(\Gamma /[\Gamma, \Gamma]) \imath_{\mathbb{Z}} \mathbb{Z}$ is amenable. If Ξ is C^{*}-simple, then so is Λ, thus both of their amenablish radicals are trivial.

To illustrate that $C_{\Lambda}(\Xi)$ is trivial, assume that there is a nontrivial $g \in C_{\Lambda}(\Xi)$. Then g can be written as in Lemma 2.9 (iii), and using relations (R3), (R7), and (R8), we can find a non-trivial element of Ξ
$h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j_{1}, \varepsilon_{1}^{\prime}, \ldots, j_{n}, \varepsilon_{n}^{\prime} ; \sigma\right) \cdot h\left(i_{1}, \varepsilon_{1}, \ldots, i_{m}, \varepsilon_{m}, j_{1}^{\prime}, \varepsilon_{1}^{\prime \prime}, \ldots, j_{n}^{\prime}, \varepsilon_{n}^{\prime \prime} ; \sigma^{-1}\right)$
that does not commute with g, a contradiction.

3. REFERENCES

[1] Baumslag, G.: Topics in Combinatorial Group Theory, Birkhäuser, 1993.
[2] Breuillard, E., Kalantar, M., Kennedy, M., and Ozawa, N.: C^{*}-simplicity and the unique trace property for discrete groups. Publications mathématiques de l'IHÉS, 126 (2017), 35-71.
[3] Bryder, R. S., Ivanov, N. A., and Omland, T.: C^{*}-simplicity of HNN-extensions and groups acting on trees. Annales de L'Institut Fourier, 70, no. 4, (2020), 1497-1543.
[4] Cohen, D.: Combinatorial Group Theory: a Topological Approach, Cambridge University Press, 1989.
[5] E. Effros, E.: Property Γ and inner amenability. Proc. Amer. Math. Soc., 47, no. 2 (1975), 483-486.
[6] de la Harpe, P.: On simplicity of reduced C^{*}-algebras of groups. Bull. Lond. Math. Soc., 39, no. 1 (2007), 1-26.
[7] de la Harpe, P., and Préaux, J.-P.: C^{*}-simple groups: amalgamated free products, HNN-extensions, and fundamental groups of 3 -manifolds. J. Topol. Anal., 3, no. 4 (2011), 451-489.
[8] Ivanov, N. A.: Examples of group amalgamations with nontrivial quasi-kernels. Serdica Math. J., 46, no. 4 (2020), 357-396.
[9] Ivanov, N. A. and Omland, T.: C^{*}-simplicity of free products with amalgamation and radical classes of groups. J. Funct. Anal., 272, no. 9 (2017), 3712-3741.
[10] Kalantar, M. and Kennedy, M.: Boundaries of reduced C^{*}-algebras of discrete groups. J. Reine Angew. Math., 2017, Issue 727, 247-267.
[11] Le Boudec, A.: C^{*}-simplicity and the amenable radical. Invent. Math., 209, no. 1 (2017), 159-174.
[12] F. J. Murray, F. J. and von Neumann, J.: On rings of operators. IV. Ann. Math. (2), 44 (1943), 716-808.
[13] Jean-Pierre Serre, J.-P.: Trees (translation of "Arbres, Amalgames, $S L_{2}$ "), Springer, 2003.
[14] Vaes, S.: An inner amenable group whose von Neumann algebra does not have property Gamma. Acta Math., 208, no. 2 (2012), 389-394.

Received on April 14, 2021

Nikolay A. Ivanov
Faculty of Mathematics and Informatics
Sofia University "St. Kliment Ohridski"
5 James Bourchier Blvd.
1164 Sofia
BULGARIA
E-mail: nivanov@fmi.uni-sofia.bg

