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1. INTRODUCTION

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is an
answer to the question ”What is the actual message?” In the identification problem
we deal with the question how many possible messages the receiver of a noisy
channel can identify? Identification means there is an answer to the question "Is
the actual message u?”. Here u can be any member of the set of possible messages.

Let (U, P) be a source, whered = {1,2,... N}, P ={P,, P»,..., Py}, and let

C = {c1,c2,...,cn} be a binary prefix code (PC) for this source with ||c,|| as length
of ¢,. Introduce the random variable U with Prob(U = u) =p, foru=1,2,...,N
and the random variable C with C = ¢y, = (¢1,¢2,...,¢ylc, ) if U = u.

We nse the PC for noiseless identification, that is user © wants to know whether
the source output equals u, that is, whether C equals ¢, or not. The user iteratively
checks whether C' coincides with ¢, in the first, second, etc. letter and stops when
the first different letter occurs or when C = ¢,,.

What is the expected number L¢(P,u) of checkings?

In order to calculate this quantity we introduce for the binary tree T¢, whose
leaves are the codewords ¢y, co,...,cn, the sets of leaves Cix(1 < i < N;1 < k),
where Cir, = {c € C : ¢ coincides with ¢; exactly until the k’th letter of ¢;}. If C
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takes a value in Cyx,0 < k < ||cy|| — 1, the answers are k times "Yes” and 1 time
"No”. For C' = ¢, the

lleall=1

Le(Pu)= Y P(C€Cuk)(k +1)+ |lcu]lPa.

k=0

For a code C

Le(P) = max Le(Pu)

is the expected number of checkings in the worst case and

L(P) = mcin L¢(P)

is this number for the best code.

2. RESULTS FOR UNIFORM DISTRIBUTION

Let PN = {+,..., & }. We construct a prefix code C in the following way. In
each node (starting at the root) we split the number of remaining codewords in
proportion as close as possible to (3, 3).

It is known [1] that

lim Le(PN) =2 (2.1)
N—no

Also, in [2] was stated the problem to estimate an universal constant A =
sup L(P) for general P = (Py,...,Py). We compute this constant for uniform
distribution and this code C. .

Using decomposition formula for trees, we obtain the following recursion

N
Le(PN) = I]%—]LC(P“}]) +1,Lc(P?) =1 (2.2)

From (2) follows that the worst case for L¢(PV) is when N = 2% 4+ 1, for any
integer k. We compute the exact value for L¢(P) in this case and obtain

loga(N — 1) —2
N

supLe(PY) =2+
N

Also, we consider the case where not only the source outputs but the users
occur at random. In addition to the source (U, P) and random variable U, we
are given (V,Q),V = U with random variable V independent of U and defined by
Prob(V =v) = @, for v € V. The source encoder knows the value u of U but not
that of V, which chooses the user v with probability Q,. Againlet C = {¢c;,...,cn}
be a binary prefix code and let L¢(P,u) be the expected number of checkings on
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code C for user u. Instead of L¢(P) = max,ey Le(P,u) we can consider the average
number of expected checkings (also called average identification length):

Le(P.Q) =) _QuLe(Pv) L(P,Q) =min Le(P,Q)

veEVY

Special case is the case Q = P. Here

Le(P,P) =) P,Lc(Pu); L(P,P)= min Le(P, P)
uel

and for uniform distribution we have

Le(PN, PNy = % Z Le(PN  u)
uel

We calculate exact values of Le(P™N) and Le(PVN, PY) for some N and sum-
marize them in Table 1 (for N = 2% Le(PN) = Le(PN, PN) =2 - £ [1]).

TABLE 1 - some exact values for uniform distribution, 2 < N < 281 k> 3

N LC(PN) LC(PN,PN)

_ L 2N+2
k k—1 1 5

9k 4 ok=1 11 gy le(5F) | o _ (5N —2)—3loga (%7*)

N 3NZ2
k+1 _ _ 1 __ 2N-—logz2(N+1)+1

3. EXTENSION TO LIAR MODELS

Suppose that when user u iteratively checks whether C' coincides with ¢, in
the first, second, etc. letter, for some reasons he obtains wrong information in any
position. Then there is a lie(error) in this position of the codeword. In this model
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with lies, the user knows only that the general number of lies is at most e and no
information for the positions of lies.

Let Le(P,u) = Le(P) for any u € U. In this case, we denote by L¢(P;e)
the expected number of checkings if there are at most ¢ lies. Then, to be sure
for the correct answer in any position the user needs of ¢ + 1 the same answers
("Yes” or "No”). If the user has done 2e + 1 questions for any position he gets
exact information for the value in this position. Therefore, there exists trivial upper

bound
Le(Pie) < (2e+ 1)Le(P)

Clearly, this upper hound can be improved by decreasing the number of re-
maining lies. The following algorithmm can be used for any u € U:

Step 0: BEGIN 7 := 1, Checkings := 0, actual message := v;

Step 1: If ¢ > ||e,|| then Step 3. Otherwise, check codeword position i until
e + 1 the same answers. Let £ be the number of obtained answers ”Yes” and f be
the number of obtained answers "No”:

Step 2: Checkings := Checkings+(t+ f). If t > f,thene:=e—~f,1:=1+1,
Step 1. Otherwise, the actual message v # u;

Step 3: END.
Let v be the current checked codeword and let ¢ be the first position in which
¢y and ¢, differ (if ¢, = ¢, then i = ||ey]|). We can see that the worst case with

respect by e is when all lies(errors) occur in position i. In this case

Checkings=(e+1)(i = 1)+ (2e+ 1)1 =e(i + 1) +1.

If there is a lie in any position m (1 < m < i — 1), for every position j
(m + 1 < j < 1) the user needs of e the same answers. Then

Checkings = (m~1)(e+1)+(e+2)+(i—m—-1)e+(2e-1)=e(i+1)+m <
e(i+1)+1

Therefore, if k£ = ||c,|| and P,; = P(C € C,;), for the worst case we obtain the
following upper bound

k-1
Le(Pie) < Puile(i+2) + i+ 1) + (e(k + 1) + k)P,
1=kf)—l k-1
=e) Pu(i+2)+e(k+1)Pu+ Y Puli+1) + kP,
o =0
=eY (Pu(i+1)+Py) +e(k +1)P, + Le(P)
1=k(')-1 k-1
=e (Z Pui(i+1) + kPu) +e (Z P + Pu) + Le(P)
i=0 1=0

=eLc(P)+ e+ Le(P)=(e+1)Le(P) + e
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Let Mc(Pie) = (e + 1)L¢(P) + €. Then from (1) follows that for uniform
distribution PN
lim Mc(PN:e)=3e+2
N—x

Let consider other distribution P when all individual probabilities are powers
of 5
1
P, = ‘-27:, nuel = {1,2,...,N}
We know that there is a prefix code C with codeword lengths ||cy|| = ¢, and
for such code Le(P.u) = 2(1— Pu) [2]. Therefore

Jim Le(P) =2

and again for Mc(P;e) we obtain

lim Mc(P;e)=3e+2
N—x
Also, for general distribution P = (Py, Py, ..., Py) we know that L(P) < 3([1],
Theorem 3). Therefore, for L(P; e) (the expected number of checkings for the best
code C and at most e lies) we obtain that

L(P;e) < de+3
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