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This paper presents some sufficient conditions for the validity of the comparison prin-
ciple for the weak solutions of non - cooperative weakly coupled systems of elliptic
second-order PDE.
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In this paper are considered weakly coupled elliptic systems of the form
Laru = 0 in a bounded domain Q2 € R™ (1)

where Ly = L + M, L is a matrix operator with null off-diagonal elements
L = diag. (L, Lo, ...Ly),

Lyup ==5"._ D, (a;;j(:r)D.:uk) +3 0 bi(x)Diug +ckuy in Q, for k = 1,2, ...N,

ij=1%7

and M = {mz’j(m)}:{tlj=l'

Operators Ly, are supposed to be uniformly elliptic ones, i.e. there are constants
A, A > 0 such that

MeP < 37y @ (@)€:; < AJgS? (2)

for every k and any £ = (&,...6n) € R"™.
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As for the smoothness of the coefficients a )(x),bi(x),cx and mij, We suppose
a) ()b, (x) € WH(Q), ¢x and m;; are continuous in €.

Hereafter by f~(z) = min(f(x),0) and f*(z) = max(f(z),0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrixes as well. For instance, we denote by At the

non-negative part of Af, i.e. A/ = {m. (:r)}NJ_:l.
This paper concerns the validity of the comparison principle for weakly-coupled °
elliptic systems. Let us briefly recall the definition of the comparison principle in -
a weak sense.

The comparison principle holds in a weak sense for the operator L g ;
if (Lasu,v) <0 and ulpg < 0 imply (u,v) <0 in Q for every v € W1>(Q2).  (3)

As it is well-known, there is no comparison principle for an arbitrary elliptic E
system (see Theorem 5 below). On the other hand, there are broad classes of
elliptic systems, such that the comparison principle holds frue. One of these classes
is constructed using condition (4) (see Theorem 1 below):

There is an eigenvalue A of Ly and its adjoint operator Lx g and the cor-
responding eigenfunctions &, w € ( W2™M9) N Col Q)) are positive ones. (4)

lr)(

Note. By adjoint operator we mean L*y; = L*+ 3", L* = diag (L}, L3, ..., L},),
and L} are L*-adjoint operators to Ly.

More precisely, the class is C* = {Las satisfies (4) and A > 0}, i.e. (" con-
tains linear elliptic systems possessing a positive principal eigenvalue with positive
corresponding eigenfunction. In C'* the necessary and sufficient condition for the
validity of the comparison principle for systems (Theorem 1 below) is the same as
the one for a single equation (See [1]). '

Theorem 1. Assume that (2). (3) and ({) are satisfied. The comparison
principle holds for system (1) if and only if A > 0.

Proof. 1. Assume that the comparison principle does not hold for L,s. Let
u,u € W'°() be an arbitrary weak sub- and super-solution of L. Then u =
u—u € WH*(Q) is a weak sub-solution of Ly; as well, i.e. (Las(u),v) <0 in Q
for any v € W™ v > 0 and u = 0 on 9. Suppose u* # 0. Then

0> (Lyut,w) = (ut, Lyw) = A(ut,w) >0

for A, w defined in (4).
Therefore u™ = 0, i.e for an arbitrary couple sub- and super-solution of L
we obtain u < 7.
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2. Suppose A < 0 and w is the corresponding positive eigenfunction of Lj;.
Then Ly(w) = Auw < 0 but w > 0. Therefore there is no comparison principle for
(1). 0

Unfortunately, the application of this general theorem faces some odds, all
about the fact that condition (4) is uneasy to check. First of all, the existence of
the principal eigenvalue does not hold for every system (1) (See [9]). The second
obstacle is related to the computation of A even when it exists.

Another broad class, such that the comparison principle holds true, is the class
of so-called cooperative elliptic systems, i.e. the systems with m;;(z) > 0 for i # j
(See [8]). Most results on the positivity of the classical solutions of linear elliptic
systems with non-negative boundary data are obtained for the cooperative systems
(See [5,5,12,13,14,16,17,19]). Comparison principle for the diffraction problem for
weakly coupled elliptic and parabolic systems is proved in [2].

The spectrum properties of the cooperative Ly are studied as well. A powerful
tool in the cooperative case is the theory of the positive operators (See [15]) since the
inverse of the cooperative operator L;;- is positive in weak sense. Unfortunately,
this approach cannot be applied to the general case M # M~ since Ly, is not a
positive operator at all. Nevertheless in [18] is given a prove for the validity of the
comparison principle for non-cooperative systems obtained by small perturbations
of cooperative ones.

In [11] are studied existence and local stability of positive solutions of systems
with L = —di A, linear cooperative and non-linear competitive part, and Neumann
boundary conditions. Theorem 2.4 in [*| is similar to Theorem 2 in the present
article for the case Ly = —d;A and shares the same idea in the proof of adding a
big constant.

Let us recall that the comparison principle was proved in [10] for the viscosity
sub-and super-solutions of general fully non-linear elliptic systems

Gl (x,ut, . N, Du, D>ty =0, 1=1,.N

(see also the references there). The systems considered in [10] are degenerate elliptic
ones and satisfy the same structure-smoothness condition as the one for a single
equation. The first main assumption in [10] guarantees the quasi-monotonicity of
the system. Quasi-monotonicity in the non-linear case is an equivalent condition
to the cooperativeness in the linear one.

The second main assumption in [10] comes from the method of doubling of the

variables in the proof.

Note. For linear equations the positiveness and the comparison principle
are equivalent. As for the non-linear case, the positiveness of the solutions is an
weaker statement than the comparison result for arbitrary sub-and super-solutions:
positiveness can hold without comparison and uniqueness of the solutions at all.

This work extends the results obtained for cooperative systems to the non-
cooperative ones. The general idea is the separation the cooperative and com-
petitive part of system (1). Then using the appropriate spectral properties of the
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cooperative part are derived conditions on the general system. In particular we em-
ployee the fact that irreducible cooperative system possesses a principal eigenvalue
and the corresponding eigenfunction is a positive one, i.e. condition (4) holds. This
way we derive some sufficient conditions for validity of the comparison principle for
non-cooperative systems as well. :

As a preliminary statement we need the following extension of Theorem 1.1.1
[16]:

Theorem 2. FEvery cooperative system Ly, has unique principal eigenvalue
with positive corresponding eigenfunction.

Proof. Let us consider the operator L. = Ljs- + ¢l where ¢ is a real constant
and I is the identity matrix in R". Then L. satisfies the conditions of Theorem
1.1.1 [16] if ¢ is large enough, namely

1. L. is a cooperative one;

2. L. is a fully coupled;

3. There is a super-solution ¢ of L. = 0.

Conditions 1 and 2 above are obviously fulfilled by L., since Ly~ is a cooper-
ative and a fully coupled one, and L. inherits this properties from L /- .

As for the condition 3, we construct the super solution ¢ using the principal
eigenfunctions of the operators Ly — cx. More precisely, ¢ = (1, ¢2,,¥n), Where
(L — &) ok = Ak, and Ak, x> 0 in 2. Existence of gy is a well - known fact.

We claim thatn<p is a super solution of L. if ¢ is large enough, ie. ¢ €
(Wz’"(Q) ﬂC(ﬁ)) and ¢ > 0, L.p > 0 and ¢ is not identical to null in .

loe
Since we have chosen g being the principal eigenfunctions of Ly — ¢x, we have

Yk € (C’z(Q)ﬂC’(_Q-)) and @x > 0. The last (remaining) condition to prove is
Lep 2 0.
Let

n

Ac = (Leg)y = = 3 D5 (@l (@)Digpe) +3_ b @)Digut Y. mui(z)pit{en+edpn =

i,j=1 =1 1=]
: n
= (Ar + ¢k + C)or + Z mri(T)p;
1=1

We claim that A, > 0 for every .
First of all, if we denote by n the the outer unitary normal vector, then

dAy, dor | L dp;
dn on = (/\k + Cr + C) dn + kaz(m)%

i=

since @;|lan = 0. Therefore %ﬁ‘lafz < 0 for ¢ > ¢’ since i‘d% < 0 on 9 (See [14],
Theorem 7, p.65) and ); is independent on e.
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Hence there is a neighbourhood Q. = {x € Q : dist(x,98) < ¢} for some £ > 0,
such that
dAk

—ka <0
o lo, <

Since Ar = 0 on 0%, then Ax > 0 in §2;

The set 2\ Q2. is compact, therefore there is ¢” > 0 such that Ax > 0 in the
compact set 2\ 2. for ¢ > ¢”, since g > 0in 2\ Q.

Considering ¢ > maz(c’,¢”) we obtain Ax > 0 in Q, therefore ¢ is indeed a
super - solution of L..

The rest of the proof follows the proof of Theorem 1.1.1 [16]. O

Theorem 3. Let (1) be a weakly coupled system with irreducible cooperative
part of L,. such that (2) and (3) are satisfied. Then the comparison principle
holds for system (1) if

(A + S mi(@)) >0 forj = L.n and z € Q. (5)
A+m (a:)>0for]—l .n and x € (2, (5°)

where X is the principal eigenvalue of the operator Lys-.

Proof. Suppose all conditions of Theorem 3 are satisfied by Las but the com-
parison principle does not hold for Lys. Let u,u € W'>°(£2) be an arbitrary weak
sub- and super-solution of Lys. Thenu =u—-u € W1>(Q) is a weak sub-solution
of L as well, i.e. (Laz(u),v) <0 in Q for any v € W v > 0 and u =0 on 9.

Assume ut # 0. Then for any v > 0, v € W'>°(Q)

0> (Lyut,v) = (ut,L},-v) + (MHut,v) (6)

is satisfied since Lps(u™) <0.
As L~ is a cooperative operator, such is (Ly-)" = L* + (M ™)' as well.
Accordmg to Theorem 2 above, there is a unique positive eigenfunction

€ ( (. ﬂCo(Q)) such that w > 0 and L},.w = Aw for some A > 0.
Then w is a suitable test-function for (6). Inequality (6) reads for v = w as

0> (ut, Ly -w) + (Mtut,w) = (u*, dw) + (M*u®,w)
or componentwise
0> (u:, Awy) + (E?ﬂm:ju;,wk) . ' (7)

for k=1,..n.
The sum of inequalities (7) is

0> 5 (s Frn) + (St ) =
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= Yy () + 355 () mign) =
= Z;’l:] (u;» ZZ=1 (d‘jkA + mz-]) u'k) >0
since ut > 0, wi > 0, (5) and (5").

The above contradiction proves that u* =.0 and therefore the comparison principle
holds for operator Las. O

Since in [17] are considered only systems with irreducible cooperative part, the
ones with reducible Lj,- are excluded of the range of Theorem 3. Nevertheless the
same idea is applicable to such systems as well, as it is given it Theorem 4.

Theorem 4. Assume m;; =0 for i # j and (2), (3) are satisfied. Then the
comparison principle holds fo'r system (1) if

(,\,- +30 mgj(x)) >0 forj=1..n and z € Q, (8)
Aj + m;j(x) >0 for j=1..n and x € Q2. (9) |

where A; s the principal eigenvalue of the operator L;.

Proof. Let all conditions of Theorem 4 be satisfied by Lj; but the comparison
principle does not hold for Ly+. Let w4 € W1>(Q) be an arbitrary weak sub-
and super-solution of Ly;+. Then u = u — 7 € WH>*(Q) is a weak sub-solution of
Lys+ as well, ice. (Lpg+(u),v) <0in § for any v € WH>, v > 0 and u = 0 on 95

Suppose that ut # 0. Then for any v > 0, v € W, ()

0> (LA,,+u+,z!) = (u*,L*v) + (M*ut,v) (10)

is satisfied since Ly+ut < 0.

According to Theorem 2.1 in (1], there is a positive principal eigenfunction for
the operator Lk, ie. 3 wi(z) € C*(Q N RY) such that Lku' () = Apwy(x) and
wk(x) > 0. Note that wy are even classical solutions.

Then the vector-function w(z) = (w1(x), ..., w,(x)), composed of the principal
eigenfunctions wg (), is suitable as a test-function in (10).

Componentwise, inequality (10) reads for v = w as

0> (uf, L) + (Sioimi s wn) "

for k =1,..n.
The sum of inequalities (11) is

0> 3% (("k , l:wk) + (Z;;Imigu;swk)) =
=2 k=r (s Meww) + 325y (uf ,m.,jjwk) -
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= Z_:"zl (‘ll.j, ZZ.—.] ((S]'k/\j -+ m;\:) urk) >0
since ut > 0, wy > 0, (8) and (9).

The above contradiction proves that u™ = 0 and therefore the comparison principle
holds for operator L7,. O

Condition (9) is useful for construction of contra-example for the non-validity
of comparison principle in general.

Theorem 5. Let (1) be a weakly coupled system with reducible cooperative part
Ly~ such that (2) and (3) are satisfied. Suppose that (9) is not true. i.e there is
some j € {1..n} such that (\; +m.jj(:1:)) < 0 for any x € Q2. and -mfl =0 forl # 1,
[ =1,..n. Then the comparison principle does not hold for system (1).

Note. In Theorem 5 we need violation of the condition (9) in all Q.

Proof. Let us suppose for simplicity that 7 = 1. We consider vector-function
w(r) = wi(x),0,...,0, where w,(x) is the principal eigenfunction of L,.
Then for the first component (Las), of L is valid

(Larw)y = dun(x) + mjwy(z) <0 in Q

where \; is the principal eigenvalue of L;, and (Ljw)g = 0 for k = 1,...n. There-
fore, Lysw <0 but w(z) > 0 and comparison principle fails. 0

Analogous to Theorem 5 statement. is valid for for irreducible systems as well.

Theorem 6. Let (1) be a weakly coupled system with irreducible cooperative
part Ly~ such that (2) and (3) are satisfied. Suppose that (5) is not true, i.e there
is some j € {1..n} such that (A +m;j(;1:)) < 0 for any xz € §QQ, and mj*l = 0 for
l#1.1=1,..n. Then the comparison principle does not hold for system (1).

Note. In Theorem 5 we need violation of the condition (5) in all €.

The proof of Theorem 6 follows the proof of Theorem 5 with the obvious
corrections.

The sufficient conditions in Theorems 3 and 4 are derived from the spectral
properties of the cooperative part of (1) - the operator Ly,-, or, in other words,
comparing the principal eigenvalue of L,s+ with the quantities in M*. In fact the
positive matrix M+ causes a migration of the principal eigenvalue of L,,- to the
left.

Theorems 3 and 4 provide a huge class of non-cooperative systems such that
the comparison principle is valid for. The idea of migrating the spectrum of a
positive operator on the right works in this case, though the spectrum itself is not
studied in this article. The results for non-cooperative systems in this paper are
not sharp and the validity of the comparison principle is to be determined more
precisely in the future.
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