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The planar problem of two centers of gravitation was studied by Euler, who found a
second “momertum-like” integral and thus the problem turned out to be completely
integrable. We present some effective solutions of the motion of the free particle under
the influence of the two centers. These solutions are expressed by elliptic theta func-
tions. We also classify all types of such motions from topological point of view. There
exist exactly 16 types of motions. Ten of them are unbounded and six are bounded.
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1. INTRODUCTION

One of the famous integrable problems of classical mechanics is the problem of
two centers of gravitation, i.e. the problem of determining the motion of a particle
in a plane, attached by two fixed centers of force in the plane. Its integrability was
discovered by Euler in 1760 [4].

In his “Vorlesungen iiber Dynamik” [5], Jacobi separated the variables and
integrated the equations of motion in terms of elliptic coordinates. Solution in
four Jacobi’s theta functions is due to Koningsberger [6]. However, both above
mentioned solutions contain complete Abelian integrals and that’s why they are
not convenient for use.

In Theorem 2 below we present effective solutions of the problem of two cen-
ters of gravitation. These solutions are expressed in terms of four Jacobi’s theta
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functions and depend on six arbitrary complex constants of motion, including the
masses of the centers.

The present article is devoted to the topological classification of the real mo-
tions. They depend on six real constants of motion. This problem was studied by
Charlier [1] and later by Deprit [2], see also [8, 9]. The case of equal masses of the
centers was studied in [3].

In order to define topological invariants of each real solution, it is necessary to
define the so—called bifurcation set B. This set B includes all singular solutions and
separates the phase space into connected parts, namely into topologically different
types of solutions.

According to our definition, a solution is singular if and only if some Jacobi’s
theta function' degenerates, i.e. became exponent, sinh or cosh. We shall con-
sider a solution u(t) to be topologically equal to the solution u(—t), t being the
time. Indeed, the change t — —t just turns on the opposite the direction on each
trajectory.

We also should not make difference between any two solutions, symmetrical
according to the line, joining the centers.

The main result of the article is those from Theorem 1: there exist exactly
16 topologically different solutions. Let us remark that any clear definition of
topologically equal or different solutions could not be found in the relevant articles,
which makes impossible to compare in details our with others’ results.

Acknowledgements. This paper was partially supported by NSRF Grant
MI-1504/2005.

2. SEPARATION OF VARIABLES

Let 2¢ denote the distance between the two centers. Take the point in the
middle of the interval between them as origin and the line joining them as axis of
x, so their coordinates will be (¢, 0) and (—c,0).

Denote also by (z,y) = (z(t), y(t)) the coordinates of the particle. According
Newton’s law, the motion of the particle is governed by the equations

m dz_.’B - Gnlml (T —_— C) B G'mm.g (1‘ + c)
w [(z =) +y?] : [(z +¢)? +9?] :
Py Gmmyy Gmmay

m d_t}- - ] - ) —3 >

(@=e?+y*]" [z +e)?+y%)

where my, my, m are the masses of the centers and the particle respectively, G is
the constant of gravity.

Which takes part on that solution.
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By properly choosing the units of distance and mass, we can achieve ¢ = 1 and
G =1, so that Newton’s equations become

Pr -1 pp(z+])

de (z - 1) +y? ; [(z+1)2+ yz]% |
dy y _ j2y

de2 3

[(-12+42]7 [(@+1)2+42]

with x.y, 1y and po dimensionless.

Any ellipse or hyperbola with the two centers as foci is a possible orbit when
any of the centers acts alone. It is therefore natural, in defining the position of the
particle, to replace the rectangular coordinates (z,y) by elliptic coordinates (p, q):

z=pq, y=+/(@p*-1)(1-¢?)

and the inverse

2p = V@+1)P+y? + V(@ -1)7+y2,
2 = VEe+1)2+y - V(z-1)2+y%.
(z,y)
P—q p+q
(—1,0) (1,0

Fig.1. Elliptic coordinates (p, q)

The equations p = constant and ¢ = constant then represent respectively ellipses
and hyperbolas whose foci are at the centers (£1,0). These ellipses and hyperbolas
are a particular family of confocal orbits, namely if m; = 0 or my = 0.

In addition to the integral of the total energy

oo BAE o m
2 Vie=-12+y? - J(z+1)2+ 92
_ pz—qz( P, é )_ o 2
2 pPP—-1 1-¢? pP—q ptgq
= constant ,
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there also exists an extraordinary “momentum-like” integral [4]

(p* — ¢%)* p? 2
— — + n
g 5% - 1) hp® = (11 + p2)1
(P2 - ‘12)2 ‘12 2
—ha? - (- ‘
IO g = (= +12) g
= constant .

For details see [10]. The last equations can be rewritten as

-’ = @ -1 [hp*+ (i +p2)p+7]

L =)@ = (@~ [hg* +(~m +p2)a+7] .

b

In order to separate finally the variables p and ¢, we introduce an appropriate
scaling of time s = s(t) as follows:

dt
P2 —q?

t
dt = (p2 - qz) ds or, equivalently, § = /
0

Now the equations of motion

2\ ds

1(dg\’
2\ ds

separate into motions of p— and g-variables.

1 /dp 2 2 2 ~
_( ) = (-1 [hp*+ (+p2)p+7] .

(6> = 1) [ha* + (—p1 + p2) g +7] -

3. TOPOLOGY OF THE SOLUTIONS

We shall discuss the topological types of the solutions of (2.1) in terms of the
zeros py, P2, q1 and go of the polynomials

Lip) = hp*+(m+m)p+vy = h(p—p)p—p2),
M(g) = h@®+(~m+m)g+y = hlg—a)(g—a) .

where h and « are arbitrary real numbers, p; and po are real and positive.
Definition 3.1. Two solutions of (2.1),

**

p*(s; h»*,'}'*, u)ir 1#3) and P =p**(s; h*',")’*‘, “;t,#ét)
=q* (s; h* " ui.nsy) ¢ =q" (s A", it ust)

pt‘
q*
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are topologically equivalent provided there exist some continuous functions
h(A) s AN+ i (A)  p2(A) 5 po(A) 5 qo(A) . A€[01]

which connect respectively h* and A", v* and v**, ..., p*|,_¢ and p*" g, ¢"|s=0
and ¢** | _o. Moreover, the four-tuples (R(A),¥(A), 1 (A), p2(A)) should never be-
long to the bifurcation set

s (hoy,pip2) € RxRxRyxRy }
A -1 @3- -p2) (@ -1 (@ -1)(q—q) =0 [

Equivalently, the roots of the quartics (p? — 1)L(p) and (¢ — 1)AM(g) remain
simple when A varies from 0 to 1.

By definition, B consists of all singular solutions of the problem. We consider
each possible position of the roots p1, p2, q1, g2, as well as the initial conditions p(0)
and ¢(0) to prove the main result of the paper.

Theorem 3.1. There exist exactly 16 topologically different types of solutions -
in the problem of two centers of gravitation. Siz types of solutions are unbounded,
another ten types of solutions are bounded :

Orbits with positive energy (h > 0)

1. pr<—l<py<l 1<p @1 <~-1<g<l1 g€ ([-1,q1]
2. m<—-l<p<l 1<p ~-l<qgi<g<l gq€lq,q]
3. m<-l<p<l 1<p ~l<qg<1<q q€|g1]
4. m<-l<pp<l 1<p g <-l<l<g qe[-1,1]
5. —l<pi<py<l 1<p ~l<qgi<@<l q€{q.q]
6. P <-—-1<Il<p; p2<p G <—-1<1<q ge[—-1,1]
Orbits with negative energy (h < 0)
7. —l<pi<l<py, pe€[lps] 1 <q2< -1 q€[-1,1]
8. —~l<pi<l<ps pe[l,p] n<-1<g@<l q€|g,l1]
9. —l<pi<l<py pe[l,p] “l<q<@p<l qg€[-1,q]
10. -1<p<l<py pell,pe] ~1<q<@<1l q€[g.1]
1. —l<pi<l<ps pell,po] ~l<q@<1<q g€l-1,q]
12.  —l<p<1<ps pe|lp] 1<q1 <qo ge[-1,1]
13.  —-1<pi<1l<py pe[lp:] q12 € C\R ge[-1,1]
14. 1 <p1 <p2 p € [p1.p2] @ <g< -1 ge[~1,1]
15. 1<p1<ps p € [p1.p2] 1 <q1 <qa q€[~1,1]
16. 1<p <p2 p € [p1,p2) a2 € C\R qe[-1,1].
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4. EXPLICIT SOLUTIONS

We remind the reader that the Jacobi theta functions are given by their Fourier
series

Ooo(z.7) = 142" cos2mz + 2e*™7 cosdnz + 2" cosbmz + -,

001(z,7) = 1—2e"" cos2mz +2e'™"" cosdrz — 2™ cosbmz 4 -,
miT mir 25T

010(z,7) = 2% cosmz+2e ¢ cos3mz+2e ¢ cosbmzt---

for z € C and 7 € C, Im7 > 0. The fourth Jacobi’s theta will not take part in the
solutions. Introduce also the notations

O00(z) = 0oo(0.7) Bo(2,7) . 00(2%) = 600(0,7%) Boo(2*.77) ,

©01(2) 001(0,7) Oo1(2,7) » 05:1(z") = 001(0,77) Bo1(27,77) ,

©10(z) = 610(0,7) bro(z,7) , 10(2%) = 610(0,77) O10(2",77) .

Theorem 4.2. The general solution of the planar problem of two centers of
gravitation reads

S _ Ogo(2) +tha.B10(2) Ogp(z°) +tha”.O10(27)
= P2 = O10(2) + tha.BOgpo(2) ;O(z*)+tha*.900(z*)

y = VP -1)(1-¢)
i1601(2)05,(27)
[sh@.600(z) + ch @.010(z)] [sha*.65y(z)* + ch a*.07y(2)*]

The elliptic coordinates .

b — ©00(2) + tha.019(2) snd _ Bfp(27) +tha".O(z")
©10(2) + tha.Ogo(2) to(z%) + tha*.©go(z%)

satisfy equations (2.1).

The constants which enter in the above formulas depend on the constants of
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motion puy, us, h,v. zp and z; as follows :

2 = h—v+ (h+7)? = (11 + p2)? R h—v+(h+7)2 = (1 — p2)?
h—7y = (h+7) = (1 + p2)? h=v=(h+7)% = (1 = p2)?
/ ds . ! ds

\/(1 — 82)(1 — K2 93) Jo \/(l—sz) — K*252) '

T — b
/ \/(1—32) 1—~h292) T K / \/(1-—92) l—n*z 52)
2 = 20+ 25 ’ tanh2a = _____111111112 ;
Ky/h=7= V72— (s + i) ’
2.
2t = z5+ - , tanh2a* = £ F2

Ko \Jh = = 1)~ (a2 — P hty

The proof of the theorem above reduces to a straightforward check of certain
relations between elliptic theta functions. These relations are in fact well-known,
see for example [7].

In general, the solution are complex for A, v, u1 2, 20, 25 € C.
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