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Let P, be the linear space of polynomials p(z) := > h—o @kz" of degree at most
n with complex coefficients. The following two polynomial inequalities have been
a subject of extensive research.

Bernstein polynomial inequality. Let P, be equipped with the norm |p|lp :=
max.cop |p(z)| with D := {z: |2| < 1}, p€ P,, . Then

1P llp < nlplin (1)

with equality only for the monomials p,(z) := Kz, where K € C.

Markov polynomial inequality. Let P,, be equipped with the norm Ipll=1 =
maxze(—1.1) [p(z)], p € Pn. Then

17" l=1.y < n® 2 llj=1,1 (2)

with equality only for multiples of the n*" Chebyshev polynomial 7, € P, defined
by T, (z) := cos(narccos(z)), r € [-1,1].

We refer the reader to the survey paper [1], and to the books 2], 19], [10] for
up-to-date references concerning (1) and (2) and their extensions. One of the most
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striking results [7] on polynomial inequalities is the following discrete improvement
of (2).

Duffin and Schaeffer polynomial inequality. Let P, be equipped with the norm
lpll{=1.1) == max_i<,<1 [p(z)|, p € P, and let x; = cos(jm/n), 0 < j < n, be the
extremal points of T}, in [—1,1]. Then

2
17 ll-1) < 2® max |p(x))| (3)

with equality only for multiples of the nt" Chebyshev polynomial 7;, € P,.

In this article we give a complete characterization of the equality cases for two
polynomial inequalities (see Theorem A and Theorem B), recently published in [5].
The proofs are based on simple interpolation and quadrature techniques. We also
discuss the meaning and the sharpness of these inequalities.

We consider the following two inequalities:
Theorem A. Letp € P,, and § € R. Then

p(e?) — p (e~
el _ -0

(4)

where the inequality is strict for each 6 ¢ {0,7} (mod 27) and any polynomial
p # 0.
Theorem B. Let p € P, and § € R. Then

p (ei(0+j1r/n)) +p (ei(a—j‘lr/n))

5 , (5)

where J, := {0} U {j:1<j < mn, jodd}.

Theorem A is a Duffin and Schaeffer type result in the spirit of (3). It gives
an upper bound for the uniform norm of the divided difference

P (eiO) —p (e—-iﬂ)
el _ o—-ib

of a polynomial p € P,.

Remark. Theorem B gives a pointwise estimate for the first derivative of a given
polynomial p € P, of degree at most n by using (n + 1) functional values of p.
Note that (n + 1) is the minimal number of functional values for which such an
estimate holds. Assume, on the contrary, that for a fixed point zo € 9D there
exist n distinct complex numbers 2;,..., 2, in D := {z : |z] < 1} such that
[P/(20) | < 35—y Belp(zk)l (Bk > 0) for any polynomial p of degree at most n.
Applying Gauss-Lucas Theorem, the polynomial p(z) = (z2—2)(z—22) -~ (2= 2p)
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satisfies p’(29) # 0 and we are led to a contradiction. Furthermore, Theorem B
contains an improvement of Bernstein’s inequality (1). Tt follows from (5) that

(ei(0+j77/n)) +p (ci(e-j'lr/n))
2

p'(¢'%)] < nmax < lpllp

jeJn

for any p € P,, and 8 € R.

Remark. The following polynomial inequality

1P llp € n o TAX lp(eij"/")

(6)

has been published in [8]. The above inequality may be thought as an analogue of
(3) on the unit disk D. It is seen from (6) that for p € P, and any vy € R,

' (2)| < n l (Z i(‘7+j7r/n))' <1
el <, max (ke (J2l < 1)

However, for a given z := re'? with |z] < 1, it is not clear at all how to choose
~ = 7(z) in order to minimize the right hand-side in the above inequality. On the
other hand, it follows from (5) that for any r € (0,1]

oD (,’.ei(0+j77/n)) +p ( r ei(G—jw/n))
2

lzp'(2)| £ n max
J€Jy

(0 + 37 /n)
S M e+ )
and, because the number of the functional values used in (5) is (n+1), hence smaller
than 2n, the estimate (5) can be considerably better than the estimate (6). We
show in this paper that (5) has many extremal polynomials including all extremals
of (6). Hence (5) is more sensitive than (6). Let us point out that the strength of
(6) lies in the fact that it gives an upper-bound for the uniform norm |[p’||p of a
polynomial. However, it is not true that for all p € P

p (eijw/n) +p (e—ijw/n)
5 .

I, <n n
P llp < b3

This can be seen by taking the polynomials pnx(2) := 2" +i2%, 0 < k < n.
Obviously ||p!, xllp = n + k while

Pk (€77/7) + pp i (€777/™)

n max
2

0<j<n

The proof of Theorem A is based on the following

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 169-181. 171



Representation Formula 1. Let # € R be fixed. Then there exist (n + 1) numbers
ao(B), a1 (0). ..., a,(#) such that

p(c”) = p(e7) i(“l)j a;(6) p (™) ‘;P(‘?'m/")

i _ o—if
e e =

holds for all p € P, and Z;l:o | (0)] < n. More precisely, we have the following
explicit expressions for the numbers ay(@), a1 (0), ..., an(0):

1 1 - cosnf (=1)"~1 1 — (=1)" cos né
@o(0) 2n 1 — cosé an(6) 2n 1 + cosf

and .
(=1)? — cos né

n (cos -%" ~ cosf)’
On the other hand, the proof of Theorem B is based on the next representation

formula which amounts to the particular case 8 = 0 in the representation formula
1.

Representation Formula 2. For all p € P,, and 6 € R,

a;(0) = 1<j<n-1.

p(ei(0+j1r/n)) + p(ei(O—j‘/r/n))

0. 100 : i0 .
e/ (e”) = o) - Z 3, 5
JeJ, 321
where 3y =n/2, 3; = (n sin2(j7r/2n))“‘, jJe€EI, 1< j<n 3, = l‘%’—: and

2ies, o1 B3 =n/2

Although the representation formula 2 follows easily from the representation
formula 1, it is an interesting result by its own. It implies for example that

p(ei(0+j7r/n)) + p(ei(()—jﬂ'/'n))
2

|€%/(e?) = Sp(e?)] < 3 max

(p € Pn, 6 € R). This is clearly a Duffin-Schaeffer type extenblon of the following
classical result:

, n n
|7/(2) = 3p(2)| < Slplle (p € Pa, 2 € D).

The representation formula 2 can be used also to obtain a refinement of Bernstein
trigonometric inequality in the form

HO + (2k — 1)7/(2n)) — £(8 — (2k — 1)7/(2n))

it'(8)] <n max i

1<k<n

for 8 € R and any trigonometric polynomial ¢ of degree < n with complex coef-
ficients. It is easily seen that 2n is the minimal number of functional values for
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which such pointwise estimate for the first derivative of a trigonometric polynomial
t of degree < n is possible (see [6, Theorem 4.1]). For any such t. we define an al-
gebraic polynomial p; € Pa, by pe(e'?) := ¢"?4(8), 6 € R. Then simple calculations
show that ¢t (8) = ie ~""?[e"p, (¢'®) — np,(¢’?]. Applying representation formula 2 to
Pt € Pop yields

/(0) = Z \, L0+ 2k = Dr/(2n) . tO-k-17/Cn)

k=1

where A\px = (=1)*"12nsin® ((2k — D7r/(4n))]" 1 < k < nwith S 0_, Akl =
n. This is a variant of M. Riesz interpolation formula that implies the above
refinement of Bernstein trigonometric inequality. '

We present a complete characterization of the equality cases in (4) and (5).
The following quadrature formula is useful in studying polynomial inequalities: Let
7,, denote the linear space of all complex trigonometric polynomials of degree at
most n, n € N. The quadrature formula (we mention (6, Theorem 2.1} as a ready
reference)

m—1 .
1 /7 1 247
- ; 1§ = — . " 7
7 | 10)d8 m;t( - +q) (YER) (7

holds for all t € T,,_;. The quadrature (7) is the unique, up to a real translation
~ of the nodes, quadrature formula based on m nodes which is exact in 7, _1. i.e.,
a quadrature formula with trigonometric degree of precision m — 1. There is no
quadrature formula with m nodes and having a trigonometric degree of precision
greater than m — 1.

The equality cases in Theorem B. Let a polynomial py, € P, be extremal
for (5) at a fixed number # = 6, € R. Then, for an arbitrarily chosen ¢; € R, the
polynomial pg, (2) := py, (¢!®92) (2 =€) is extremal for (5) at 6 = 6;.
Let Ejg, , denote the class of all polynomials from P,, extremal for (5) at 6.
Then
Eoyn = {p(e'ig"z) 1 p € qun} .

Hence, in order to determine all extremal polynomials in Theorem B, it is sufficient
to describe the class Fy_,, of all polynomials that are extremal for (5) at 6 = 0.

Now, suppose that p € Pp, p(2) := 3 p_o akz* is extremal for (5) at 6 = 0, i.e.,
p € Epn. Let h,(z) be the Lagrange interpolating polynomial of degree at most n
which is uniquely determined by the interpolation conditions

hn(1) = 2nag, h,(cos(lr/n)) =na;, (1 <1 <n-1), hy(-1) = 2na,.

Then, 7, (#) := h,, (cos @) is the unique even trigonometric polynomial of degree at
most n which satisfies the interpolation conditions

ra(0) = 2nag, ra(ln/n) =na; (1 <1 < n-1), r,(x) =2na,.
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Let -
M = max P (eU"/n) +p (e_ijw/n)
je']n 2 )

The representation formula 2 implies that equality in (5) holds for § = 0 and the
polynomial p € P, if and only if for some v € R

‘ lijvr/-u ,—ijn/n )
(-1 P )*'2” ) _ater, e (8)

The linear system (8) whose unknowns are the coefficients of the extremal poly-
nomial p is in general greatly undetermined because of the small cardinality of
Q]'l.

By using the interpolating trigonometric polynomial r,, the linear system (8)
can be represented in the following equivalent form

( 2n ma(0) + Z,_[ 7n (Im/n) cos (jlm/n) + 55 5T () cos (jnm/n)
= —Meé (jodd, j < n)

27, ra(0) + = Z, . Tn(Im/n) + rn(n) M e

| M > 0 and v € R.

Let n be even. Define Ef,, := Ep,. Then J, = {0}U{j =1,3,...,n—1}. By
using the quadrature (7) with m = 2n, the system (9) is equivalent to the following
integral system:

1‘)‘!’ [—1-1.71' T"-(g)cosjode = —Ajei‘yv J = 1132 cey n-l

31

JT ra(6)d8 = M.

S

Hence, the interpolating trigonometric polynomial r, must have the form

(n—2)/2 n/2
ra(0) = Me [1-2 )" cos((2l+1)6) +Zbgkcos(2k9) (10)
=0

where by € C.

Let us denote by Qf the class of all even trigonometric polynomials r,(¢) of
the form (10), where the parameters Al > 0, v real, ba. complex, k =0,1,...,n/2,
are arbitrary. We describe the class Ef, of all polynomials, extremal for (5) at
0 = 0, n even, through €Qf. The following holds:

E(i.n = {p € Pn : p(z) rn Z Tn (lﬂ'/n

1
+§57‘n(7f)2"', rm € 5, n even}.
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In view of this. for n cven. the class Ef,, of all polynomials that are extremal for
(5) at 8 = 0 is completely determined by the trigonometric polynomial class S, via
a simple interpolation procedure:

Let aq, ..., an, be the coefficients of an extremal polynomial p(z) = a,z" +
An_12" "1+ -+ ay from Ej,,. Then. the (n+ 1) numbers in the second row of the
table

0 w/n | 2x/n| ... | (n=2)r/n | n—-1)r/n| nx/n
(2n)ag | nay | nax | ... Nay-o R (2n) a,

are interpolation functional values at the interpolation nodes given in the first row
for the even trigonometric polynomial v, € Q. The trigonometric polynomial
rn € QF is uniquely determined by the above (n + 1) interpolation conditions.

Conversely. let r, € QF with arbitrary M > 0. ~ real. and complex by, k =
l,...,n/2. Then

_ ™m0 - _ ra(n/n)

_Ta((n=1n/n) ru(m)
1 y rery Qu—1 = Sy = —
2n n n m

are the coefficients of an extremal polynomial p(z) := an2"+an-12"" 4 Hay from
the class E§ ,,. In other words. Ey ., is in one-to-one correspondence to )5, through
(n + 1) interpolation conditions at the equally spaced points kw/n, k=0,1,...,n.

Example 1. Let n = 2. Then, the class 25 consists of only one even trigonometric
polynomial r3(8) = Me*(1 —2cos8) + by cos(20) and r9(0) = by — Me'7, ro(w/2) =
Me"™ —by, ro(m) = 3Me™ +b,. Following our description of the extremal polynomial
set E{ ,, we conclude that the class Ef , consists of the three-parametric (M, by, )
set of polynomials

"2

Patby~(2) = (3BMe" + by) % + (Me'" = by) = + (—Me /4 + by /4)

oo

where M > 0, « real, by complex, are arbitrary.

Let n = 4. Then, the class 2§ consists of the even trigonometric polynomials
r4(0) = Me*'(1 — 2 cosf ~ 2 cos(30)) + by cos(260) + by cos(40) and r4(0) = by + by —
3Me"Y, rqy(m/4) = Me™ — by, ro(7)2) = Me'Y — by + by, r4(37/4) = Me*? — by,
r4(7) = 5Me™ + by + by. Following our description of the extremal polynomial set
E§ , we conclude that the class Eg 4 consists of the four-parametric (A, b2, by, )
set of polynomials

4 3
PMbsbiA(2) = (BMe + by + by) % + (Me - by) %
: 2 : 2 by+ by —3Me
+(Me'“"—-b2+b4)f-+(Me"’—b4)z+ 2+ 48 ¢

where A > 0, « real, ba, by complex, are arbitrary.

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 169-181. 175



Example 2. By Theorem B

‘pl (eikw/n)

We take for simplicity k = 0. Let p* be extremal for the above inequality when
k = 0. By the representation formula 2, the polynomial p* € P, must satisfy
p*(eIm/m) = p*(e” /M) = ~Me (j € Jn, j > 1), p*(1) = Me' for some M >0
and v € R. Taking into account that the cardinality of {P*”"/", j € Jn}is (n+1),
we conclude that the unique polynomial of degree at most n which satisfies the
above (n + 1) interpolation conditions is p*(z) = Me!7z", i.e., the only equality
cases in the above inequality are constant multiples of 2™. It is easily seen that the
same holds for arbitrary k € Z. From here, the only extremals of the inequality

lp ( tkn’/n)

are constant multiples of z”. Now. taking into account that (5) has many extremal
polynomials including the constant multiples of z™ which are the only extremals (see
[5] for details) of (6). we conclude that (5) is @ much more sensitive estimate than
(6). Following our description for the extremal polynomials in (5), the polynomial
p* € E§ ,, corresponds to the even trigonometric polynomial

< nmax ’p (e““‘ij)"’/"))} (k € Z).
jeJ”

<n max I p (e“”") (keZ)

0<j<2n—1

; f
1 (8) = Me(—1)» ”‘“:/9 sinf/2 €
which satisfies the interpolation conditions 7}, (Ix/n) :=0,{=0,..., n=1, (%) :=

(2n)Me'" and this agrees with our description of Ef ,,.

Remark. From the fact that the monomials z¥, 0 < k < n — 1 are evidently not
extremal for (5), in other words they do not belong to Ej ,,, one may conclude that
for fixed k£, 0 < k < n — 1, there is no trigonometric polynomial r,, € €, which
satisfies the following interpolation conditions: r,(In/n) = dx4, 0 <1 < n.
Remark. It deserves to be mentioned that there are (many for n > 4) extremal
polynomials for (5) of degree strictly less than n. It is easily seen that p € E§,, N
P,_1 if and only if the trigonometric polynomial r, € €2 corresponding to p
satisfies 32772 by = —Me' (n 4+ 1) (neven). In Example 1 for n = 2, the above
equality is by = —3Me'™ and an extremal polynomial in Ef , of degree less than 2 is
p(z) = 2Me"z — Me'7. Analogously, for n = 4 we have by + by = —5Me' and the
extremal polynomials in Ef ,of degree less than 4 are given by the three-parametric
(M, bg,7) set | '

L [3MeY by 4 0 b o, (3MT | by .
p(z)_( 5 +-Z) (A[(’ +2) + 2 +E z— Me

where M > 0, « real, and by complex, are arbitrary.
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Let n be odd. Define Ep, := Ej,, and let r,(0) := t,_1(f) + A cosnf € Thes
where t,,_; € T,_,. is of degree at most n — 1. Then, applying the quadrature
(7), we see that the system (9) is equivalent to the following system:

(A T ra(0)cos k8dO = M (k=1,3,....n—2)

27
S 3 [T, ma(6)d6 = M
| 35 [0, the1(@)cosnBdf + A = —~Me™ = A = —Me?

and therefore

(n—3)/2
ra(0) = Me' (1 -2 Z cos ((21 +1)8) — cos n# (11)
1=0
(n—1)/2
+ Y by cos(256)
Jj=1

with by; € C. M > 0, and v € R. Let us denote by Q¢ the class of all even
trigonometric polynomials of the form (11). Then

n—1
1 1
Eg. = {I) € Pn : plz) = ‘2717'71(0) + n Z rn (Im/n) 2!
=1

1 , o
+ 5;;7'7&(7“)21‘ Th € Qn? n Odd}

In view of this and as in the case n even, the extremal set E§, is in one-to-one
interpolation correspondence with the class of trigonometric polynomials Q2 .

Erample 3. Let n = 3. Then E§ 4 is the three-parametric (M, by,v) set of polyno-
mials

2Me + by /2 MeY —by/2 . Me'? —by/2
przw() 5’3 2/ 3+ . 2/ Zz+ 3 2/2

B M by/2
3 )

for arbitrary M > 0, v € R and a complex number b,.

Remark. It is easily seen that p € Eg , NPy, if and only if the unique r,, € 22,
which corresponds to p, satisfies Zg';l)/ 2 byj = —Me'Y(n + 1). In the particular
case of Example 3 we have b, = —4Me™™. Hence, an extremal polynomial in F 3
of degree less than 3 is p(2) = Me' (224 2z —1). In the case n odd, the even
trigonometric polynomial r}, from Example 2 belongs to Q¢ and this agrees with
the fact that Me2" € ES .
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The equality case in Theorem A. First of all, let us mention that we have
extremal polynomials in (4) only for # € {0,7} (mod 27 ). In view of the explicit
form of (5) and (4), the class of all extremal polynomials in (4) is a sub-set of the
class of all extremal polynomials in (5) for # = 0 (mod 27 ) and § = = (mod 27 ).
Let o, denote the class of all polynomials extremal for (4) in the case & = 0.

Then, Er, = { (=2):pé€ E’o‘_n}, and all extremal polynomials in Theorem A
are given by Eo‘n U Ex.,. Hence, in order to determine the class of all extremal
polynomials in Theorem A, it is enough to describe the subclass Ej ,, of all extremal
polynomials in (5) for § = 0 satisfying the following additional inequalities on the
set {0,1,...,n}\ J,:

D (eijw/-n.) +p (e—ijff/n)
2

SM (j&dJdn,1 <j<n). (12)

Surprisingly. there are also many extremal polynomials for the inequality (4) which

amounts to
p (eijﬂ'/-n) + P (e—ijx/n)
2 b

in spite of the fact that these extremals must satisfy not only (8) but also (12).
Let n be even. Let Ef , := Ey, and let r,, € Q¢. Then, applying the quadrature
(7) we see that (12) is equivalent to

lbok| <2M, k=1,...,(n=2)/2 (n>2) and |b,| <M (n>2).

Let Q8 := {r, € ¢, |by| <2M, 1 <k < (n—2)/2, |ba] < M}. Then we have

= 1 1 n—1
Ed,n = {p € Py : p(z) — %Tn(()) -+ :,; Z Tn (171'/71.) zl
=1

1 Ae
+2—n-rn(7r)z", rm € Q. n even}.

Let n be odd. Let Eo 2= Ep, and let r, € 20 . Then (13) is equivalent
to |by;] <2M, j=1,...,(n—1)/2. In view of this we define

Q2 o= {r, € Q2. |bax| <2M, 1<k < (n—1)/2}
to conclude that

(0) 'i‘ ra(ln/n)

2n n

EO,,z{pE’P . p(z):

=1

"2( )z", ™ € Q°, n odd}.
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Remark. We point out that all extremal polynomials p # 0 in Theorem A are of
ezact degree n. Let n be even and let us assume to the contrary. If p € P,,_; N E, ,,
is extremal, then the corresponding r,, € Q¢ must satisfy 7, (7) = 0 which amounts
to 3072 by, = ~Me(n+1) together with [bax| < 2M, k=1,...,(n—=2)/2, |b,| <
M. Obviously, this is impossible for M > 0 and n > 2. Analogously, the same
conclusion holds for n > 3 odd (the case n = 1 is a trivial one).

An extension of Theorem A. Let p € P, and define a sequence of {p¢} € P,
by po := p and ppy1(2) = 2p(2), k > 0. The following generalization of Theorem
A was obtained in [3):

Theorem C. Let pe P,. k> 0. and 8§ € R. Then

i (eie) ~ > (e-io)
el _ o—if

(eijﬂ/n) + p(e—ijw/n)

5 (13)

< n'** max
0<j<n

where the inequality is strict for each 8 € {0,7} (mod 27) and for any polynomial
p#0.

Clearly, Theorem C amounts to Theorem A for kK = 0. We now discuss cases
of equality in (13) for k > 1. It is readily seen that for k& = 1, (13} is equivalent to
the Duffin and Schaeffer result and in particular [7] equality holds in (13) for k =1
if and only if # = 0,7 (mod 27) and p(2) = K2", K € C.

It has been proved in [3] that for k > 0, there exist real numbers 3.x(f). 0 <
[ < n. such that for all p € P,

2 =) !

6'0 — 6—10

ljn/n) +p (e-ijw/n)
2

with 3°1 0 1316(0)] < n*** for @ ¢ {0,7} (mod 27). Moreover, the following rep-
resentation formula (see [3] for details) holds:

( l(]+l)1l‘/n) + p (e_i(j"'l)"/n)

P;c+1(1) = Z(-I)JQJ {Zﬂlk [ 2
=0

i(j—~m/n —i(j—l)w/n
Ll ) | (¢ )} } . (14)

Let us assume that for some p € P, prs1’(1) = n***M, where

et )
: |

M := maXg<j<n
Then, by (14)

J

n i(j+O)w/n —i(j+l) 7 /n
'01(0){2 ;3,.,;(0) [p(e O/ 4 (e~ iGHIT/mY

2+kA_[ —
" 2
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+

P (es(j-z.)«/n) +p (e—i(j—i)w/'n)J }

2

p (ei(j+l)1r/n) +p (e-i(j+l):r/n)

o

<Y oy (0)] {-;- Y 18k (0)]
J=0 =0

p (ei(j—l)n'/n) +p (c—-i(j—t)w/n)
2

+ 3318 0)
=0

< AMntk

and equality must hold everywhere above. In particular, the modulus of

n D eilfr/n +p e—ilw/n
Zﬁl,k(o)l ( ) 21 ( )
(=0

must be equal to M n'** ie., |p,(1)] = M n'+* . This shows by induction on k > 1
that equality can hold in (13) for # = 0 only when p(z) = Kz" with K € C. The
case @ = 7 can be treated in a similar way. Hence, for k = 0. the inequality (13).
being equivalent to (4). has many extremal polynomials. However. for k > 1. the
only extremal polynomials in (13) are constant multiples of z".

=1
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