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1. INTRODUCTION

In 2] Soskov introduces the notion of regular enumerations. Using them he
proves the following jump inversion theorem:

Theorem (Soskov). Let k > n > 0 and By,..., B be arbitrary sets of
natural numbers. Let A C N and Q be a total set such that P(By, ..., Br) <. @
and AT <. Q. Suppose also that A €. P(Bo,...,B,). Then there exists a total
set F' having the following properties:

(i) For allt1 < k. B; € Zfﬂ;

(ii) Forallil <i<k.F% =, F®P(By,...,Bi_1)';

(iii) F® =, Q:

(iv) A £, F(™),

Here P(By,...) is the polynomial set obtained from By, By, ... as defined in
Section 2.
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In [1] Soskov and Baleva generalize the notion of regular enumeration and
obtain the following result for the infinite case:

Theorem (Soskov, Baleva) Let { By }a<¢ be a sequence of sets of natural num-
bers. Let {A,},<¢ also be a sequence of sets of natural numbers, such that for all
Y < ¢ is true that Ay L. Py. Finally, let Q be a total set such that Pe <, Q and
D, . AT <. Q. Then there is a total set F such that:

(1) For all v < ¢ it is true that By <. F uniformly in ~:

(2) Forallv < (. ify=083+1 then F(V) =. F & Pj; uniformly in v:

(3) For all Izmzf v < (it is true that FO) =, F & P<,, uniformly in ~:

(4) FO =,Q

(5) For all v < C it is true that A, £, F(,

In this paper we will prove that this result also holds if we want the target
set F to be partial, i.c., the degree d.(F) to be partial. Namely, we will prove the
following theorem:

Theorem 1.1. Let { B, }o<c be a sequence of sets of natural numbers. Let also
{Ay}<c be a sequence of sets of natural numbers, such that for all v < C it is true
that Ay £, Py. Finally let Q be a total set such that P; <, Q and ®7<C Al <. Q.
Then the7e erists a set F' such that d.(F) is partial and:

(1) For all v < ¢ 1t is true that B, <, F) uniformly in ~y:

(2) Forally < .ify=08+1 then F(’) . Ft FB'P(, uniformly in ~:

(3) For all limit ordinals v < C it is true that FO =, Ft* @ P, uniformly in

(4) FO =, Q:
(5) For all v < ¢ it is true that A, £, F.
(6) F is quasiminimal over By, i.e. for all total sets X if X <, F then

X <. By.

2. PRELIMINARIES

Let Wy,...,Wj;,... be the Godel enumeration of the r.e. sets. We define the
enumeration operator I'; for arbitrary set of natural numbers by I';(A) = {z |
(Ix,u) € W;)(D, C A)}, where D, is the finite set with canonical code u. We
define the relation <. over the sets of natural numbers by

A<, B & 3Ji(A=T;(B)).

The relation <, is reflexive and transitive and defines a equivalence relation =,.
We call the equivalence classes of =, enumeration degrees.

The composition of two enumeration operators is also an enumeration operator.
Beside this the index of the resulting operator is obtained uniformly from the
indexes of the other ones. This means that there exists a recursive function ¢ such
that I';(I';(A)) = I'¢(; jy(A) for arbitrary set A.
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We define the "join" operator & by AdB = {2z | z € A}U{2z+1 | x € B}. We
set AT = Ad® A. We say that a set A of natural numbers is total iff A =, A*. We
say that the enumeration degree a is total iff there is a total set A € A. Otherwise
we say that the enumeration degree is partial.

We define the enumeration jump to be A’ = L}, where Ly = {{x,7) | @ €
I';(A)}. Using ordinal notation we can define the infinite enumeration jump. More
precisely:

Let 7 be a recursive ordinal and let us fix an ordinal notation e € O for 7.
For every ordinal & < 1 we will use the corresponding notation which is <o then
e (for an introduction on ordinal notations see [3]). Then. not distinguishing the
ordinal from its notation, we define the o jump for @ < 1 by means of transfinite
induction:

(1) AV = A
(2) If & = 3+ 1 then Al = (AW)Y
(3) If a = lim (a(p)) then A = {(p,z) |z € AP},

Naturally the definition depends on the choice of the ordinal notation of a.
Despite this, we can prove that if a; and as are two different notations of ., then
Al =, Ale2) (gee (1], [3]). as in the casc of the turing infinite jump.

We define the "polynomials" P, of the sets By, ..., B,,... with

Definition 2.1. Let ¢ be a recursive ordinal and let {B,}a<¢ be a sequence
of sets of natural numbers. Then we define using transfinite induction the sets P,

in the following way:

(1) Po = By
(2)ifa=p3+1then P, = P;, 5 By
(3) if a = lim (a(p)) then P, = Py & By, where

Pea = {_(p,m) l T e P"(T’)}

We also introduce the following notation:
For an arbitrary sequence of sets {Co}acc we define the set €, Ca to be

@,C“ = {(a,w) I S Cr.r}-

a<(

We will consider partial functions f : N —— N. We will say that f <. A iff
(fy <. A, where (f) is the graphic of f. We will use "partial" finite parts 7 for
which 7 : [0,2¢ + 1] — N U {_L}. We definc the graphic of 7 to be (1) = {{z,y) |
r <20+ 1& 7(x) =y # L} and we say that 7 C f iff (7) C (f). We define
Ih(7) =2¢ + 2

We will assume that an effective and reversible coding of all finite sequences is
fixed. Thus we have an effective and reversible coding for all finite parts. As usual
from now on we will make no difference between a finite part and its code. Even
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more: we say that 7 < p iff the inequality holds for the codes of the finite parts p
and 7. By 7 C p we will mean the usual extension property.

Finally we will say that the statement 3iP(i,x,,...,Zn, 41,..., Ax), where
0,Ty,...,x, € N and Ay,..., A4, € N, is uniformly true in z,,...,z, for all
Ay, ... Ay iff there exists a recursive function h(zj,...,z,) such that for cvery
T1,...,xn € N and every Ay, ..., Ax C N the statement

Ph(z1,...,20), 21, .., Tn, A1, ..., Ak)

is true.

Of course the construction of h is quite difficult and uninformative. Hence,
when we have to prove that some statement is uniformly true, usually we will show
a construction in which all the choices we have to make will be effective.

3. REGULAR ENUMERATIONS

The proof of the theorem in most of its parts repeats the proof of Soskov,
Baleva theorem. A complete proof of the last onc can be found in [1].

Let us first fix a recursive ordinal { and a sequence of sets { B, }a<¢.

The following definitions of ordinal approximation and predecessor as the
proofs of their basic properties are due to Soskov and Baleva.

Definition 3.1. Let a be a recursive ordinal. We will say that @ is an ap-
proximation of «, iff @ is finite sequence of ordinals @ = (ag,a;,...,@,, @), where
ap =0, <) < - <a, <aandn > —1.

Definition 3.2. Let o be a recursive ordinal and let 8 < a. Let also @ = (ay,
@i,...,0p,) is an approximation of a. We define recursively the notion of /-
predecessor of @v:

a) if 8 = a; for some 0 < i < n then set 3 = (ap,a1,. .., 4;);

b) if a; < 8 < a4 for some 0 < i < n then set 3 to be the f-predecessor of
((l’(), Gy, ... ,Ot,;+1) |

c¢) if a,, < 3 < a then

ifa=4d+1and 3=4sect 3= (ag,ay,...,an,H):

2)ifa = d+1and 3 < J then set 3 to be the A-predecessor of {ag, a1, .. ., 0, 8):

3) if @ = lima(p), po = upla(p) > a,) and p; = ppla(p) > B] set [ to be the
g-predecessor of (ag, a1,...an,a(po), a(py +1),...,a(p)).

The following lemmas give the basic properties of the ordinal approximation
and predecessor. The full proofs can be found in [1].

Lemma 3.1. For every ordinal approzimation @ and every 3 < « there is a
unique [(3-predecessor (3 of «.
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Lemma 3.2. Let @ = (ap,aq,.. ,an,a) be an approxzmatzon of . Then:

(1) If B < a; for some 0 <i<n then Ba < [ <a;

(2) If for some 0 <i<n,a; < B <aand (0o, 5,...,0k) is the B-predecessor
of @ theni <k and oy = 3 for alll =0,...,2

(3) Let a =8+ 1. an <8 and 3 < 3. Then B <@ ¢ B = (ap,ay,...,0n,0)

(4) Let @ = lima(p) be a limit ordinal and let po = pplan < a(p)]. Let also
p1 > po be such that 8 < a(py). Then

B ﬁ'&@}? -_.< (aﬂaals""ansa(po)’a(pﬂ + 1)3"'5(1(])]))

Lemma 3.3. Let v < 8 < a be ordinals, 7 < 3 and 3 <@. Then 5 < @.

Let us fix an approximation @ of a. We define the notions of @-regular finite
part, @-rank and @-forcing by means of transfinite recursion over a.

(i) Let first & = 0. Then @ = (0). O-regular are those finite parts satisfying
the condition:

If 2€ 2N + 1, z € dom (7) and 7(2) # L, then 7(2) € By.

If dom (1) = [0 2q + 1] we set the O-rank |7]o of 7 to be ¢ + 1.

We will use the notation Ry for the set of all O-regular finite parts.

For arbitrary finite part p we define:

plko Fi(z) <= Juv((x,v) € W; & D, C (1)),
p kg —Fi(x) <= (V7 € Ro)(T 2 p = 7 Ifo Fi(x)).

Now suppose that for all 7 < a the B-regularity, S-rank and B-forcing are
defined. We will also assume that for all 3 < a the function 3-rank denoted by
AT.|7|5 has the property:

If 7 and p are two S-regular finite parts such that 7 C p, then |7|5 < |pl5. In
particular |7|z = |plz = 7 =p.

B (ii) Let now a = 3+ 1. Let 3 be the 3-predecessor of @. Denote the set of all
3-regular finite parts by ’Rﬂ. Let also

X(z]) ={peRz| otz F(5)},

S7 = RgNT;(Py),

where I'; is the j-th enumeratlon operator.
If p is an arbitrary finite part and X is a set of F-regular finite parts we define
the function uz(p, X) by:

ut(tr 2 p & 7 € X], if there is such 7 (a)
pz(p, X) =qurlr2p& € R3], if (a) is not satisfiable (b)
=l if (a) and (b) are not satisfiable (c)
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_ Definition 3.3. Let 7 be a finite part and let m > 0. We say that p is
3-regular m-omitting extension of 7, iff p is G-regular extension of 7, defined in
[0,g — 1] and there are natural numbers gy < q; < -+ < @y, < @ms1 = q such that
a)plgo =7 _
b) for all p < m, it is true that p[gy+1 = 3 (p[(q,, + 1)’X8',,q,,>)-

It is clear that if p is [—B-rcgular m-omitting extension of 7., then go, ¢1,. .., gm+
are unique. Even more: if p; and py are two 3-regular m-omitting extensions of 7
and p; C ps then p; = ps. In other case the function ji7 is not single valued.

Now we are rcady to define the notion of @-regular finite part:
Let T be a finite part defined in [0,q — 1] and let r > 0. We say that T is an
a-reqular finite part with a-rank v + 1 iff there are natural numbers

O<ny<lp<by<n <l <by <+ <np <l <bp < Npy1 =g,
such that for all 0 < j < r the following assertions hold: |
(1) 7lng is a -regular finite part of 3-rank 1:
(2) 71l =z (T [(n; + l),S_‘?) ;
(3) 71b; is B-regular j-omitting extension of T N
(4) 7(bj) € Ba:
(5) TInj41 is a B-regular extension of 7] (b; + 1) of rank |7 [ bylz + 1.

Note that directly from the definition it follows that if 7 is an @-regular finite
part, then 7 is also a (-regular finite part.
The definition of @-forcing for an arbitrary finite part p is:

p Fx Fi(z) < 3u({lv,z) € W; & (Yu € D,) ((u = (fu, 24, 0) & p k5 Fi, (z4))
V(u= (iy,24,1) & p ||*ﬁ -F;, (Q:u)))

plrg —Fi(z) < (V7 € Ra)(p C 7= 7 I¥5 Fi(x))

(iii) Finally let o« = lima(p). Let @ = ap, @1, . .., an, @ and let pg = ppla(p) >
o). Let also for all p, a(p) be the a(p)-predecessor of @. Note that for p > po
according to Lemma 3.2

a(?) = (aOval’ coey Oy a(pO)’a(pO + l)s s ,a(p)).

We say that the finite part T defined for [0,q — 1] is @-regular of G-rank r + 1
if there are natural numbers

O<ng<bp<ny <by <+ <np < b <Npy1 =g,

such that 0 < j <, it is true that:
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Tlng s a (@, @1, ..., 0,)-reqular finite part of rank 1;

(1
(2) 71b; is a a(po + 2j)-regular finite part of rank 1:

)
)

(3) 7(b;) € Ba:
)

(4) TInj41 is @ a(po + 2j + 1)-regular finite part of rank 1.

Note that in this case, T is a a(pg + 27 + 1)-regular finite part of respectivly
rank 1.

For every finite part p and every 7,z € N we define:

p k5 Fi(z)e=3v ((v r) € Wik (Vu € D,))(u = (pu, tu, Tu) & p 555 F, (-’Eu)))
p kg ~Fi(z)<= (V1 € Ra){p C 7 = 7 Vg Fi(x)).

This concludes the definition. The next Lemma gives the correctness of the
definition and the validity of the assumption for the 3-rank.

Lemma 3.4. Let a < and let T be @-regular finite part. Then the following
statements are true:

(a) Let a = B+ 1. Let also nly, U, b}, ...nL, L, b, nlyy and ng 1§, by, ... np,
L, by, an be two sequences of natural numbers satzsfymg (1)-(5) ﬁom (n) Then
r=p, n., =n.,, and for all 0 < ] < r we have ni=nj, l; = l” and b; = bj.

(b) Let o = lima(p) and let ng AN AN A andn : n” by
are two sequences of natural numbevs satisfyz’ng (1)-(4) from (iii). Then T = p.
nl, =nl,y and for all 0 < j <1 we have n; = n] and b; =1b].

(¢) Let p and T be @-reqular finite parts and let 7 C p. Then I7lz < |pla. 1

particular |T|z = |plg &= T=0p.

Proof. (a) Let a = 3+1 and let n}, 15, b}, ... ,nL, 1., bl ,n. ., and ng, I, by,
ny, Ly, by, n, 4y be two sequences of natural numbcrs satisfying (1)-(5) from (ii).
Without loss of gonerahty we may assume that 7 [ny C 7 | ng. Beside this, we
have |7 [ mylz = |7 [ ng ol = 1. Then consldermg the properties of G-rank we

obtain 7 [ nfy = 7 [ n{j. Therefore ny = n{j. Let now the equality n = n/ hold.
Then 7 [} = pz (‘r[n sf’) - u,,( rng',sj.’) = 7 1. Therefore I} = 17. Now
considering the property of the j-omitting S-regular extensions (mentioned after
the definition) we obtain 7 [b; = 7 [} and therefore b; = b/. Now again without
loss of generality we may consnder T [nJ+1 C 7 lnfy,. But|r [n;+1_|§ = |7 |
Vilg+1=|r1b]|5 Iz + 1 = |7[n|5. Therefore from the property of the f-rank we
obta.m My = n 7+1- Now the statement r = p is obvious.
(b) The proof is analogous to the previous one.

(¢c) Let 7 and p be two @-regular finite parts and let 7 C p. From the proof
of (a) we obtain that the sequence corresponding to 7 and satisfying the definition
of the @-regular finite parts is an initial part of the sequence corresponding to p.
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Therefore ||z < |pls. If 7 C p then we have |7|z < |p|s, since in the contrary case
we would obtain that the sequence of p is not monotone. O

From the definition of G-regular finite part and Lemma 3.4 we obtain

Corollary 3.1. Let « = B+ 1. @ be an approzimation of a and let 3 be
(3-predecessor of @. Then every &-regular finite part T is 3-reqular and ITlz > Irla

Lemma 3.5. Let 1 < o < ¢ and let @ = (g, 1,...,an,a). Then every G-
regular finite part is (c, ...,y )-regular and the (g, ..., a,)-rank of T is strictly
greater than |7|5.

Proof. We will use transfinite induction over . First let @ = 1. Then @& = (0, 1)
and now the statement follows from Corollary 3.1.

Let now o = B+1 and let 3 be the -predecessor of @. Then again (from Corol-
lary 3.1) we obtain that 7 is S-regular finite part and |7l > Ir]a. From Lemma 3.2
we know that 3 is of the form (g, @1,y ...Qn, Bty . Bnti), where i > 0. Then
applying ¢ times the induction hypothesis we obtain that 7 is (a9, aq,...,q,)-
regular and the (ag,aq,...,a,)-rank of 7 is greater or equal to |77 and therefore
strictly greater than |7|z.

Finally let @ = lima(p). Let also |7jz = 7 + 1 and let po = ppla(py) >
@] From the definition of @-regular finite part we obtain that 7 is a (ap, 1, ...,
@, (po), ..., a(pp + 2r + 1))-regular finite part of rank 1. From the induction
hypothesis 7 is a (ag, 1, ..., an,a(po),. .., a(po + 2r))-regular finite part of rank

at least 2 and since 7 is a (ag, @1, ..., an, a(pp))-regular finite part of rank at least
2r+2, then 7 is (ap, a1, . . ., ap)-regular of rank at least 2r+3 and therefore strictly
greater than r + 1. O

Lemma 3.6. Let o < ¢ and let @ be an approzimation of a. let also § < @.
Then there is a natural number ks 3. such that every @-regular finite part of rank

greater or equal to k_ 3 is o-regular.

Proof. We will use transfinite induction over . When a = 0 the statement is
trivial.

Now let o = 3+ 1 and let E be the B-predecessor of @. Let § < @ (which is
the interesting case). Then 0 < . According to the induction hypothesis there is
a k = k53, such that every [-regular finite part of rank greater or equal to k is

b-regular. Let us set k53 = k. Then according to Corollary 3.1 we obtain that k

«

has the desired property.

Finally let o = lima(p), @ = (ap,@1,...,an,a) and § < @. Let also py =
upla(p) > an], let pr > pg be such that a(py) > J and let us denote the a(p)-
predecessor of @ with a(p). Applying Lemma 3.2 we obtain § < @(p;). Then
according to the induction hypothesis every @(p;)-regular finite part with rank
greater or equal to kg, )5 is d-regular. It follows from the proof of the previous
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Lemma that there is a natural number r, such that every @-regular finite part of
rank at least 7 + 1 is @(p))-regular of rank greater or equal to k5, 15 - Let us set
kﬁﬁ =r+1 O

Corollary 3.2. Let a < (. @ be an approzimation of e and 3 < @. Let also T
be @-regular finite part of rank greater or equal to k5 5+ s. Then ITlz > s.

Proof. From the definition of the @ regular finite parts we obtain that there
are natural numbers ¢y < ¢; < - < g5 such that 7 [g, = 7 and for all j _the finite
parts 7; = T | ¢; are @-regular with @-rank at least ks 7 and therefore 3-regular.
But 9 C 7y C --- & 75 and therefore |7j|z < |Tj+1l5. Finally ITolz > 1, which
completes the proof. O

Lemma 3.7. Let a= lima(p). Leta = (g, @1y .- Qn, @) and
po = upla(p) > an). Let also py > po and 7 be a (ap, s, ., 0ny(po), {po +
1),...,a(py))-regular finite part of rank 1. Then for every B <@, if T 1s B-reqular
then B8 < a(p1).

Proof. In order to obt,_g.in a contradiction assume that Tisa B-regular finite
part for some 3 such that 3 < @ and a(p1) < 8 < a. Then § is the 3-predecessor
of

(a0, 1y ., amy a(po), a(po + 1), - .., a(py + k),

where k > 1. According to Lemma 3.2 3 is of the form
(@0, @15 -+ -y Qs (P0)s - - - (P1), -2 B).

As the B-rank of 7 is at least 1 then from Lemma 3.5 we obtain that the (o,
ai, ... 0n,(po),...,a(pr))-rank of 7 is greater than 1 which is a contradiction. U

Let @ be an ordinal approximation and let 7 be a finite part. We introduce
the following notation:

Reg(r,@) = {B | B <@ & 7 is B-regular }
Then the following is true:

Lemma 3.8. Let a < (. let @ = (ap, @1, ...,0n, ) be an approzimation of &
and let T be an @-regular finite part. Then:

a)ifa=48+1 and 3 is the 6-predecessor of @ then
3 € Reg(T,@) <= B=a V B € Reg(t,d);

__b)let a = lim afp). Let also pp = ppla(p) > an] and for every p 2 po let
a(p) be a(p)-predecessor of @. Let also p1 > po and let T be a(p1)-regular of rank
1. Then L

B € Reg(r,@) <= B=a Vv B € Reg(r,a(p))-
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Proof. The statement a) is obvious and the statement &) follows directly from
the previous Lemma. O

Definition 3.4. We say that the sequence Ag,...,A,,... of sets of natural
numbers is e-reducible to P iff there is a recursive function h such that for every
n Ap = Iy (P). We say that the sequence is T-reducible to P iff there is a
function x recursive in P, such that for every n Az.x(n,z) = xa,. where x4, is
the characteristic function of A,,.

From the definition of the enumeration jump, the e-reducibility and the 7-
reducibility of sequences to set we obtain the following Lemma.

Lemma 3.9. Let P be a set such that the sequence {A,} is e-reducible to P.

Then
(1) The sequence {A,} is uniformly T-reducible to P’;
(2) If R<. P then the sequences {A, NR} and {C,} for whzch
Crn={z| By((y, ) € R& y € A,} are uniformly e-reducible to P.

The full proof can be found in [2].
We introduce the following notations:

ZG 5 = {r € Ra | 7k ~F,(j)}

0% = {p | p is @-regular J-omitting extension of 7}

Proposition 3.1. For every ordinal approzimation @, where o <  the fol-
lowing are true:

(1) Ra <¢ Pa uniformly in @.

(2) The function At.|t|5 is partially recursive in P, uniformly in &;

(3) The sequences {ST} and {X &} are e-reducible to P, uniformly in a:

(4) The sequence {Z} is T-reducible to P!, uniformly in a: |

(5) the functions A1, j.uz (1, X "‘) and AT, j.piz (T, S"‘) are partially recursive in
Po uniformly in @; .

(6) The sequence {O% ]} 15 e-reducible to P!, uniformly &.

Before proving the proposition let us note some properties of the sets P,,.

Lemma 3.10. (a) If 8 < o < ( then Pg <. P, uniformly in o and 3.
(b) If 3 < a < ( then Bg <, P, uniformly in o« and 3:
(c) The sets P<, are total.

Proof. (a) We must find a recursive function g, such that if 3 < a < ¢ then
Ps =L g(a.p)(Pa). We will define g by recursion over the ordinals o < . fa=0
then ¢(0,0) = iy, where i¢ is a fixed index for the enumeration operator identity.
If @ = 3 then again g(a, 8) = 9. Now let 3 < c.
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First consider a = & + 1. Then Pg <. Ps and thercfore Ps = T',5.8(Ps). But
Ps = T, ([, (Pa)). where jo is a fixed index for which A = T';,(A’) and po is such
that A =T, (A& C) (jo and po exist and do not depend on A and C'). Then

g(, B) = ¢(g(8,3), <(jo, po))-

For the definition of ¢ see Section 2.

Finally let @ = lima(p). Then there is a recursive function pr not depending
on a, such that Py = Tpr(iy(P<a). The function m(a, 5) = ppla(p) > 3], defined
for the limit ordinals o < ¢ and all ordinals 3 < a. is partially recursive. Then
pﬂ <e Pm(a.,@) and ,Pm(aﬁ) = Fp’r(m(u,ﬁ))('p<a)' We set

g(a, ) = ¢ (g(m(a, B), B), ¢ (pr(m(a, 3)),po))-

(b) Follbws directly from (a).

(¢) Let @ = lima(p). We must show that N\Pco <. Pco- Recall that
Peo = {{p,x) | T € Po(p}- Therefore 2z € N\Pea = = g Peo & T =
(p,y) & y & Pagy). Now according to the definition of the enumeration jump we
obtain that for arbitrary set C' and every z

2@ C = 2z i) +1€C,

where ig is a fixed index for the enumeration operator identity. Now from the proof
of (a) we obtain that the sequence ’P(’I(p) is e-reducible to P, uniformly in a(p)
and therefore the condition z € N\P., is e-reducible to P<,. O

Proof of Lemma 3.1.  Transfinite induction over a. In the case a = 0 the
statements are clear. Now let the statements be true for every 4 < a. First we will
prove (1).

(1) First consider o = 8+ 1 and let 7 be an arbitrary finite part. Then we set
the number ngy to be ng = pg[rq € R;] Findi_l-lg ng or proving that such number
does not exist is recursive in P uniformly in 3, since according to the induction
hypothesis Rz <. P uniformly in B. If there is no such ng then 7 € Ry. Let n; be

defined for some j > 0. Then, if uz (7' nj, S;_’) is defined and iz (‘r Inj, S;g) cr,

we set [; = lh (Ng (T [nj, S]ﬁ)) Since the function i is partially recursive in P

uniformly in 8, defining l; isr.e. in P!’; uniformly in 3. If we have defined /; then
we set _
by =pglg>1l; & Tig€ O?ﬁij,j)]

We know from the induction hypothesis that the sets Of p.j) are e-reducible to Pj

(which is a total set) uniformly in 3 and (p, j), and therefore setting b; is again r.e.
in P} uniformly in 8. Finally if there is a g. such that 7[q € Rz, we set
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nj+1 = pglg > b; +1 & 7q € Ry

Knowing b;, defining n;4+1 is recursive in /’j uniformly in 3, and therefore is
r.e. in P} uniformly in B. ThenT € R iff there is n,.4 1, which is obtained following
the construction above, such that 7 [n,y; = 7 and for every 0 < j < r it is true
that 7(b;) € B,. The first condition is r.c. in the total set Pj. The second one is
e-reducible to B,,. The two of them are uniform in @. Therefore Rz <. ’P;, & Bg.

Now consider @ = lima(p). Let 7 be an arbitrary finite part. According to
Lemma 3.10 we obtain that the sequence {P,(p)} is e-reducible to P, uniformly

in @. Since the sets RW are e-reducible to Py, uniformly in a(p), we obtain

that the sequence { RW} is e-reducible to P<, uniformly in @. Analogously to the

case a = 4+ 1, we can find r.e. in P<, and uniformly in @ a sequence of numbers
no, bo,n1, b1, ... satisfying the conditions of the definition of the @-regularity of 7.
If for some of the numbers 1, is true that n,,1 = lh(r) and for every 0 < j < r
7(b;) € B4 then 7 € P,. These conditions are e-reducible to P, uniformly in @.

(2) Follows directly from the proof of (1).

(3) The sequence {SJ‘7 } is e-reducible to P, uniformly in @ ds SJ‘-T = RaNl';(P.)
(Lemma 3.9). In order to prove the statement for {X (51 jy} let us first assume that
a = 3+ 1. According to the definition Xg‘j) = {1 € Rz | 7 itz Fi(j)}. Also

Tls F-,(]) > 3’0((], ‘U> eW;, &

(Vu € Dy)((u = (0,iu,xu) & 7 k5 Fy, (z4)) V (u = (1, iy, 24) & 7 k5 ~F;, (2,))
According to the induction hypothesis the conditions 7 k7 Fi,(zu)) and 7 I3
—~F;, (z,)) are recursive in 7’[3 uniformly in i,, z, and /3 (the sequences {X?} and
{ ZE} are T-reducible to Pj; uniformly in B). Therefore the condition T Ik F;(j)

is e-reducible toP}; uniformly in i, j and 3. Therefore the sequence {X (ﬁ,])} is
e-reducible to P, uniformly in @.

Now let & = lima(p). Then

T lkg Fi(§) <= F((j,v) € W; & (VYu € Dy)(u = (pu,iu, 2u) & 7 F5) Fi, (24)))

But the sequence {P, ()} is e-reducible to P, uniformly in a. The sets X g(;’)) are
e-reducible to P, (,) uniformly in i. j and @(p). Therefore the sequence {X (7’; ihis
e-reducible to P, uniformly in @. As P, is a total set the sequence {X Z’:’j)} is

r.e. in Pcq uniformly in @. Then the condition 7 b5, ) Fi, (24), if 7€ X g(pv) ) i

r.e. P<o uniformly in @. Finally we obtain that the sequence {X g J.)} is e-reducible
to P, uniformly in @.

(4) Since the sequence {X g j)} is e-reducible to P, uniformly in @ then the
condition, for given 7 it is true that (3p € XZ)(p 2 7), is r.e. in P, uniformly
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in i and @. Then the question, if for given 7 is true that (Vp 2 7)(p & X7). i.c.,
if 7 € Z%, is r.e. in P/, uniformly in i and @ Therefore the sequence {Z} is
T-reducible to P), uniformly in @.

(5) Follows directly from the definition of the function iz and the proof of (4).

(6) The reasoning is analogous to the proof of (1) and uscs the fact that the
function A1, i.uz(7, XF) is partially recursive in P;, uniformly in @. O

Definition 3.5. Let 7 be @-regular finite part with rank r + 1. We define B
by:

a)if @ =0, then BZ = {z |z € dom (1) & = € 2N + 1}

b) if @ = 8+ 1 and ng,lo, b, ..., L, by, nri) are the numbers from the
definition of the regular parts, then BZ = {bg, b1,...,b,}

¢) if & = lima(p) and ng, by, - . . , Ny, by, nryq are the numbers from the defini-
tion of the regular parts, then BZ = {bg,b;,... b, }.

Definition 3.6. Let ¢ be an approximation of (. We say that the partial
function f from N in N is a regular enumeration respecting C iff:

(1) for every finite p C f there is a (-regular finite part 7 2 p such that 7 C f:

(2) if @ < ¢ and z € B, then there is an @-regular 7 C f such that z € 7(Bg).

It is clear from the definition, that if f is a regular enumeration, then f has
C-regular subparts with arbitrary large rank. Then if @ < ¢ and p C f there is an
@-regular finite part 7 C f such that p C 7. In particular there are @-regular finite
subparts of f of arbitrary rank.

If f is regular and @ < Z then with Bé we will denote the set

BL={b|(@r C f)(r € Rs & be BL)}.

It is clear that f(BL) = B,,.

Proposition 3.2. Let f be a reqular enumeration. Then:

(l) BO Sf.‘ f;

(2) if a =B+ 1< (. then Ba <. f+ & Py uniformly in o;

(3) if @ < ( is a limit ordinal, then By <., f* & P<q uniformly in «;
(4) Pa < f1 uniformly in a.

Proof. Let f be a regular enumeration. It is clear that Bg = 2N+ 1. It follows
from the regularity that By = f (B({ ). Therefore By <. f.

We will prove (2) and (3) using transfinite induction over a.

Let first @« = 8+ 1. Let @ be the a-predecessor of {, and let 3 be the (-
predecessor of @. Since f is a regular enumeration, then for every finite part p C f
there is an @-regular finite part 7 C f, such that p C 7. Therefore there is a
sequence of natural numbers

O<ng<log<by<---<n. <l <b<...,
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satisfying the conditions from the definition of the @-regular finite parts, and also
satisfying that 7. = f [ nr41 is an @-regular finite part with |7.|z = 7 + 1 for all
r > 0. Therefore B— = {bg,b1,...}. We will prove that there is a recursive in
ft& P, uniform in ,J procedure, which draws out the numbers ng, ly, bo, . . .

Wo know from the definition, that 7y = f [ ng is an @-regular finite part with
rank |79|z = 1. According to Proposition 3.1 the set Ry is recursive in Pj uniformly

in 3. Using the oracle f* we may obtain successively all the finite parts f [ ¢ for

q=20,1,--- . Lemma 3.4 guarantees that 7y is the first from the so obtained finite
parts which is in R3. Thus we obtain ny = lh(m).
Now let r 2 —1 and let the numbers ng,ly, by, ..., 70,1y, by, npy 1 have been

!

obtained. As S; is recursive in P uniformly in 3, using the oracle 3 we may

obtain f .41 = pz (f [(nrgr + 1), ) Thus we get 1.1 = Ih(f[l,4+1). We know
that flb.y1 isa B—rogular r + l-omitting extension of f [[,.;,. Therefore there are
numbers I,y = gp < q1 < -+ < gr4) < gr42 = byy1 such that for every p < r +1,
it is true that:

Flapss =z (f[(qu*' 1), Xg,q ))

Therefore, since the sets X 8 are recursive in ’Pf, uniformly in /3, using successively
the oracles f* and Pj; we may gencrate the finite parts f[(g,+1)forp=0,1,...7+
2. At the end of this proceduro we obtain the number b, 1. In order to obtam Ny 42
we generate using the oracle f* the finite parts f [ (b4 +14¢q) for g =0,1,....
Then n,yp = 1h(f [ n,42), where f[n,. 4o is the first of the generated parts Wh]Ch

is in ’R;—, .
Thus we obtain that the set Bf = {by,bs,...} is recursive in f+ & P;, and
therefore B, = f(Bf) <. f* @ P}.

Now let a =lima(p). It is clear, that the sequence {P,(,} is uniformly

e-reducible to P.,. Let @ be the a-predecessor of ¢ and let a(p) be the a(p)-
predecessor of @. Since f is a regular enumeration, we can assume that f is the
union of G-regular finite parts. Therefore there are numbers

O<np<bg<m<bhy<---<n,.<b, <...

satisfying the conditions of the definition. Since for every p the sets ’R-—~ are
uniformly e-reducible to P;(p) they are also uniformly e-reducible to P.,. Honcc
applying the procedure from above we can get the numbers ng, by, ..., 7., by, ...
recursively in f* & Pc,. Therefore B, = f(Bf) <. ft & Pa.

Thus in both cases the sets Bf arer.e. in f* & Py and f* @ Pcq. and besides
this the procedures are uniform over 3 and a. Therefore the reducibilities in points
(2) and (3) of the theorem are uniform over a.

We will prove statement (4) with transfinite induction over a.
In the case v = 0 the statement is (1). Now let o = f+1. Then Py = P& B,.

According to the induction hypothesis Py <. ) uniformly in 3 and therefore
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Py <e f (@) yniformly in o. Beside this Ba <. f* @& Pj uniformly in @ and
therefore B, <. f(® uniformly in a. Therefore Py <. f*) uniformly in a.

Finally let & = lima(p). Then P, = Pcq @ Ba. According to the induction
hypothesis Pu(p) <e f(@(P) yniformly in -(—x_(ﬁ Therefore Py py <e f (@) yniformly
in a(p) and therefore Pey <e f() uniformly in «. Beside this By <. f + @ Pea
and therefore P, <. f(® uniformly in a. O

Corollary 3.3. Let f be a regular enumeration. Then B, <. f (o),
Proof. From (5) of the proposition P, < f*. But By < P, which proves the

corollary. O

Definition 3.7. Let f be a partial function from N to N, let « be a recursive
ordinal and let i,z € N. We define the relation =, by:

a)a =0
f o Fi(x) & 3v({v,2) € W; & D, € (f)):
b)a=p3+1

f Eo Fi(x) © Fo((v,x) € Wi & (Yu € Dy)((u = (iu, T, 0) & f =5 Fi, (T0)
V(u = (ty, Tu, 1)&f =4 —F;, (Tu))))s

¢) a = lima(p)
f FQ R(.’I‘) = 31’((1),37) € VVQ'&(VU € D,,)(U = (P-:uim -Tu)&f Iza(p,,) Fiu (Til)))

d) for all other cases

[ Ea ~Fi(z) & f Fa Fi(z).
The following Lemma is true:

Lemma 3.11. There is a partial recursive function h such that for every re-
cursive ordinal o and every enumeration operator I';, it is true that

z € Ti(f) <= [ Ea Faa,i(@)

Before proving the Lemma let us note that for arbitrary set Cifa=p3+1
then

O =, {u](u = (0,iy,20) &2y € T, (CPN)V (u = (1,40, ) &2y € Ti, (CP))}
and if @ = lima(p) then
C@ =, {u| u= (Puyin: ) & 4y € Ty, (C*P)

uniformly in a.

Proof of Lemma 3.11. We will show that there is a sequence of recursive
functions {A\j.ha(j)}a<c uniform in a such that for every a < ¢ and every i the
statement

x e Ti(f) <= f Ea Fh.)(@)
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holds. We will use transfinite induction over o < ¢. First let a = 0. We sct
ho(i) = i. It is clear from the definition of k= that hy has the desired property.
Now let @ = 3+ 1. Then

z € Ty(f@)

0
Jo((z,v) € W; & D, C ()

)
37)((:17, vy e W; & (Vu € D,,)(('ll, = (O,im17u> &z, € I, (f(ﬂ)))\/

(= (1, iy, ) & 2, &5, (FP)).

Then from hg we obtain
z € Ty(f'™)

)
Fo({x,v) € Wi & (Vu € Dy)((u = (0,iu,x4) &f =g Fy i) (@u))V

(u=(Liu, @) &f Ep Fr, ) (Tu)))).

‘onsider the set W such that (z,v) € W iff there exists v’ such that (x,v') € W;
and
V(t,i,x)((t, hp(i),z) € D, <= (t,i,z) € Dy)

Since the function hg is recursive uniformly in 3, then we can obtain recursively
and uniformly in 3 the finite sets D, from the finite sets D,s. Therefore the set W
is r.c. with Godel index ¢9. Thus we obtain x € T'y1 <= f =, (). Beside this,
W is obtained uniformly from the index 7 of the r.c. set W; and the function hg.
Then iy is also obtained uniformly from 7 and hz. We set h,(2) = 1.

Finally let @ = lima(p). Then x € T;(f(%) <= Jw((z,v) € W; & (Vu €
Dy)(u = (pu,in,xy) &z, € T; (f@P))))). Then, according to the induction
hypothesis # € T;(f(*) <= Jv((z,v) € Wi & (Vu € D) (u = (Pu, Tusin) &
f Eap.) Fh, ooy (i)(@u). Let us consider the set W, for which (z,v) € W iff there
is a v’ such that (z,v') € W; and

V(p.i, 2) (s hagp) (i), 7) € Dy <= (p,i,z) € Dyr).

Then, exactly as above (as the sequence of recursive functions {h,(,)} is uniform in
a(p)), the finite sets D, are obtained recursively from the finite sets D, , uniformly
in {a(p)} and therefore uniformly in a. Then the set W is r.e. with index jg. which
is obtained uniformly from the index i and a. It is clear that z € T;(f(¥)) <
f Ea Fj,(z). We set h,(i) to be h,(i) = jo.

In both cases h,(7) is uniformly obtained in 7 and a. O

Corollary 3.4. Let f be a partial function from N to N and let o be a recursive

ordinal. Then A <. f'® iff there is an i such that for every x the condition
r €A f . Fi(x) is satisfied.
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Let us note that for every @& < /_3 the relation IFz is monotone, i.c., if 7 C p are
a-regular finite parts and 7 Iz Fi(z), then p k5 Fi(z), and also if 7 IFz ~Fi(x),
then p k5 —F;(z).

Lemma 3.12. Let f be a regular enumeration. Then:
(1) for every @ X (. f f=a Fi(z) & (37 C f)(7 € Ra & 7 kg Fi(2));
(2) for every @ < (. f o ~Fi(z) & (37 C f)(T € Rz & 75 ~Fi(x)).

Proof. We will use transfinite induction over «. First let @ = 0. Then the
validity of (1) follows from the compactness of the enumeration operators I';. Now
let us prove (2). Let f o —~F;(z). In order to obtain a contradiction assume that,
for every O-regular 7 C f, is true that 7 lff5 —~F;(z), i.c., for every O-regular 7 C f
there is p € R such that p 2 7 and p Iz Fi(x). Consider the set S = {p €
Ry | p kg Fi(z)}. It is clear that S <. Py and therefore there is an index j, for
which § = S?. Let u C f a T-regular finite part such that |ujy > j. Such one exists,
because f is regular and 1 < ¢. According to the definition of the T-regular finite
parts there is a O-regular finite part py C p such that py € S? = S. Then py C f
and from (1) f ¢ F;(x), which is a contradiction. ‘

Now suppose that (1) and (2) are true for every § < a. We will show that the
assertions are also true for a.

a) a = 3+ 1. First we show (1). Let f o Fi(x). Then there is v such that
(v,z) € W; and (Vu € D,)((v = (i, 20, & f s Fi, (2u))V (v = (tu, Tu, V&S 5
-F; (x,))). According to the induction hypothesis we obtain 79,7, C f such that
(Vu € Dv)((u = (’?.-u‘.‘I,’u,O)&T() ”’ﬁ F;, (Ilfu))\/ (u = (immuvl)&‘rl "',}j -F;, (xu)))
Since one of the finite parts is extending the other and the forcing relation is
monotone, we may assume 7o = 71 = 7. Then from the definition of the @-forcing
we obtain that 7 k5 Fi(x).

The reverse is analogous.

Let us now prove (2). The reasoning is analogous to that of the case o = 0. Let
f Ea —Fi(z). In order to obtain a contradiction assume that for every @-regular
7 C f is true that 7 ¥ =F;(z), i.e., for every @-regular 7 C f there is p € R such
that p O 7 and p I+5 Fi(z). Consider the set S = {p € Ra | p k& Fi(z)}. It is
clear that S <. P, and therefore there is an index j for which § = Sja. Let uC f
be such an a + I-regular finite part that |u| 55 > j. Such finite part exists as f is
regular and @+ 1 < ¢. According to the definition of the a 4 1-regular finite parts,
there is an @-regular finite part po C p such that po € S§ = S. Then py C f,
po IF5 5, () and form (1) we obtain f =, Fi(x), which is a contradiction.

The opposite follows directly from (1). -

b) @ = lima(p). First we prove (1). Let f k. Fi(z). Then there is a v
such that (v,z) € W; and (Vu € Dy)(u = (Pu, i, T)&f Fa(p,) Fi.(xu)). Then
according to the induction hypothesis, for every u € Dy, u = (Py, iy, Ty) there is
Tu € f such that 7, H—m F;, (zy). Since D, is finite, then there is 7 C f such
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that 7, C 7 for all u € D,.. As the forcing is monotone 7 Fo Fu (x,) for every
u € D,. Then according to the definition of the a-forcing 7 b5 Fi(x).

Now suppose that there is 7 C f such that 7 Iz Fi(z). Then there is v
such that (v,z) € W; and (Yu € D,)(u = (py,iu, T, )&T Fomm Fi (zu)). Without

loss of gencrality we may assume that 7 is «(p, )-regular for every u € D,. Then
according to the induction hypothesis f |=q(p,) Fi, (z,) for every u € D,,. Therefore

[ Fa Fi(a).

The proof of (2) repeats the proof for the case a = 3 + 1. .

Proposition 3.3. Let f be a reqular enumeration. Then f is quasiminimal
over By. i.e.. By <, f and for every total set X is true that:

XScfa)(SeB()-

Proof. First let us prove that By <, f. We know from proposition 3.2 that
By <. f. It remains to show that f £. Bp. In order to obtain a contradiction
assume that f <. By. Then the sct R = {7 € Ry | 3z3y(f(z) = y& f(x) # 7(y))}
is e-reducible to Bo Then there is an index i for which R = SU As f is regular
there is a T-regular finite part 7 C f such that |7]; > dp. Accordlng to the definition
of the T-regular finite parts. there is a number l;, such that 7y = 7 [;, cither is
in 52, or no O-regular extension of 7y is in Sﬂ). Since 79 C f it is clear that the
first case is impossible. On the other hand. we may extend 7y and obtain the finite
part 71 in such a way, that 7y C 7 and 7 € R. Therefore the second case is also
impossible. Therefore, f £, By.

Let us now prove the second part of the quasiminimality condition.

Let A be a total set such that A <. f. Since A is total, then there is a
total function v such that () =, A. Since ¥» <, f, then there is an i such that
() = i((f)). Now consider the set of O-regular finite parts

S={reRo|Ixyi3yo(n1 # y2 & 7 ko Fi((z,11)) & 7 IFo Fi((z,92))}

The condition selecting the finite parts is r.e. and thereforc S <, By. Then
there is a j such that S = S9. Let p C f be a finite part such that |p|; > j + L.
Such a p exists, because f is a regular enumeration. Let ng,lo, bo, ..., nj,1;,b;,. ..
be the numbers satisfying the definition of the l-regular finite parts for p. Then

pll; = ug (p [(n; + 1), Sja) According to the definition of u either p[[; € S? or
none of its O-regular extensions is in S?. Let us assume that the first holds. Then

plljlko (x,11) and p[l; kg (x,y2) for some z and y; # y>. Then f =y (z,y1) and
f Eo (z,y1) and therefore ¥(x) = y; # o = Y(z) which is not possible. Therefore

none of the 0-regular extensions of p is in 57
Now consider the set
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| (72 p1L;) & (361,62 € Ry)(Ih(p) > Th(d2) &
S'=TE€RG| (V2= 1) (12(2) # L=>p(z) = 1) &
| Ar3y13ya(y1 # y2&edy kg Fi({z. 1)) & 62 kg Fi({z,y2)))

As above, S’ = SJ‘._’, for some j’ and there is a finite part 79 C f such that either
Ty € S?, or no 0-regular extension of 7y is in S?. Let us assume that the first one
holds and let 8y, 8, 7, y1, y2 satisfy the condition. As ¥ is a total function, y(x) =y
for some y. Without loss of generality we may assume y # y;. Then there is a
O-regular finite part 7 C f such that 7 2 7y and 7 kg Fi({(z,y)). Thercfore
lh(m;) > 1h(d;) and §,(2) # L = 71(z) = L. The last one guarantees the existence
of a finite part 7| such that (7{) = (r) U (d;). Then 7{ 2 p|l; and 7{ k5 Fi({z.y)),
and 7 ko Fi({z,11)). Therefore 77 € S which contradicts the property of p | 1;.
Thus none of the 0-regular extensions of 7 is in S?,.
Finally consider the set

R={TER(—)’TQTI)}-

It is clear that R <, By. All O-regular finite subparts of f are in R and therefore
() C {{z,y) | (37 € R)( ko F;({x,y))}. For every two finite parts p;,p2 € R
if p1 Ik Fi((x,31)) and po k5 Fi({x,y2)). then y; = y2. In the contrary case the
O-regular extension 7; of 7y having the property th(7;) = max{lh(p;),1h(p>)} and
(Vz > th(70))(72(z) = 1) is in S’. But this contradicts the property of 79 which was
proved above. Then {{(z,y) | (31 € R)(T IFy Fi({z,y))} C (1) and therefore these
two sets coincide. But {(z,y) | (37 € R)(r ko Fi({z,y))} <c Bo and therefore
<¢’> <. Bo. O

Proposition 3.4. Let [ be a reqular enumeration and a < (. Then the

following assertions hold:
(1) if a = B+ 1. then f(® <, ft o P!;
(2) if & is a limit ordinal then f(™ <, f* @ Pcq.

Proof. First let & = 3+ 1. Recall that f(®) = L}*(,,,, where L = {(y,2) |y €

.(f)}. There is a 2o not depending on 3 such that L., = I, (f?). Therefore
[ Es Fup,z)(@) &= z € L.
Now applying Lemma 3.12, we obtain
T€Lpmy &= 3rCfIreRz& 75 Fh(.20) (7)),

€ N\Lgw <= (31 C f){7 € Rg & 75 ~Fh(s.2,)(2))-

Therefore, according to Proposition 3.1, and as the condition 7 C f is uniformly
recursive in f*, we obtain that L ;s and N\L s arc uniformly e-reducible f*&Pg.

Therefore f(® <. f+ & P}
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Now let a be a limit ordinal. Then there is a 2o not depending on «, such that
f@ =71, (f'*). Therefore

r€ f' e (3r C )1 € Rz & 7 F5 Fria.zg))-

According to Proposition 3.1 we obtain f(® < f+ & P,. According to Proposition
3.2, Py <o f1 & Pey. Therefore f(*) <, f+ @ Pe,. O

From Proposition 3.2 and 3.4 we obtain the following

Corollary 3.5. Let f be a regular enumeration and let o« < . Then:
(1) ifa = 3+ 1, then f(*) =, ft & Py
(2) if o is a limit ordinal, then f(®) =, ft & Pe,.

The following two definitions will be helpful in proving the existence of regular
enumerations.
Let us fix a total function o, such that for every a <  o(a) € B,.

Definition 3.8. Let a < { and let @ be an approximation of a. We say that
T is @-complete for o if

B € Reg(1,@) = o(f) € 7(B3).

Now let us fix a sequence of sets of natural numbers { A, },<¢ such that (Vy <

O(Ay £ Py).

Definition 3.9. let a < ¢ and let @ be an approximation of a. We say that
the finite part 7 is @-omitting in respect to {A,} iff for every 3 € Reg(r,@) the
following is true:

If 3=46+1, 0 is the & predecessor of 3 and ITl7 =7+ 1, then for every p <r
there exist a g, € dom (7) and a d-regular finite part Pp+1 € 7 such that

a) pp+1 k5 Fr(qp) & 7(gp) € As:

b) pps1 b5 ~Fplgp) & 7(gp) € As.

Note, that, as for all z the assertion z € As V & € A; holds, then the conditions
a) and b) are equivalent to

a’) T(Qp) g As = Pp+1 ”_3 Fp(Qp);
V') 1(qp) € As == ppi1 b5 2 Fp(qp).

If § = (80,61, ...,0) is an approximation of § and § < a, then we will note the
approximation (&g, d1,...,4d,a) of a with (4, a).
Now we are ready to prove that the regular enumerations exist.
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Proposition 3.5. Let a < ( and let @ be an approzimation of ««. Then the
following assertions hold:

(1) For every G-regular finite part T and every y € N there is a &-regular
extension p of v such that |plz = |r]z + 1. p(lh(7)) = y. p is @-omittimg and
a-complete.

(2) For every § < @, for every é-regular T of rank 1 and every y € N there is
a 3, a-reqular extension p of T of rank 1 such that p(th(1)) = y. p is 0, a-omitting
and &, a-complete.

Proof. We will prove simultancously (1) and (2) with transfinite induction over
Q. ‘

a) a = 0. In this case (2) is trivial. Now let us consider (1). Let 7 be O-regular
finite part and let y € N. Set p to be

(x), z <lh(T)
N )y z=Ih(r)
P =9 5(0), z=1h(r)+1
=l x> h(r)+1
Then p is a O-regular finite part satisfying all the desired properties.

b) Let @ = 8+ 1 and let 3 be the 3-predecessor of @. First we prove (1).

Let 7 be @-regular finite part and let y € N. Let also dom (1) = [0,q — 1]
and |7|z = r + 1. Note, that according to the induction hypothesis for (1), it is
true that for every -regular finite part 8, every set Z C Rz and every y € N the

function yz(8 * y, Z) has a value. Let us denote n,4y with g. As 7 is B-regular,
then p' = uz(7 * y, s? +1) is defined. Then let .41 = lh(p’). We will construct

a special J-regular r + 1-omitting extension of p/. We will define with induction
over p < r + 2 the S-regular finite parts p, and the numbers ¢,. Set go = l,4; and
po = p'. Assume that for some p < r + 2 the number g, and the finite part p, are
defined. Consider the set

={x| (Bp2pp)(p € RG & plgp) = & pltz Fp(gp)}-

Note that

2@ C < (Vp€Rz)p 2 (ppx7) = pW5 Fy(ap)).

From the definition of C' and Proposition 3.1 we obtain C <, Ps and therefore
C # Ag. Let xg be the least number such that

To GA,a&il:()gC V :L‘ogAﬁ&xo e (C.

Then set py41 = pg (pp * T, Xg,‘qp)) and gp+1 = lh(pp+1)-

Now we obtain that p” = p,y2 is a [_i-_gegular r + l-omitting extension po.
Set b,41 = lh(p”). Finally set p to be a (-regular extension of p”, such that
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lolz = 1p"|5+ 1, p(brs1) = o(a), p is a B-omitting and 3-complete. Then p satisfies
(1) from the theorem. Indeed, from the construction of p we obtain that p is an @-
regular extension of 7y and |plz = |T|a+ 1. In order to show that p is @-complete
in respect to o recall that according to Lemma 3.8

6 € Reg(p,@) <= d=a V & € Reg(p, D).

Now fix a & € Reg(p,a). If § = @ (ie.. § = a) then o(a) = p(byy1). If 6 €
Reg(p, 3). then, since p is S-complete finite part, there is a bs € dom(p), such that
o(0) = p(bs). Therefore p is @-complete.

Now let us prove that p is @-omitting. Fix § + 1 € Reg(p,@). Then again
according to Lemma 3.8 either § = 8 or § + 1 € Reg(p, 3) holds. First let § = 3.
Then as |plg = r+2, fix a p < r+ 1. Consider the finite part p,+; and the number
¢p from the construction. If p,i1(qp) € Ag, it follows from the construction that
pp+1(gp) is not in the corresponding set C'. Now according to the note made after
the definition of C'. we have p,,;1 IF5 =F,(q,). Therefore the condition (a’) from the
definition of the @-omitting holds. On the other hand, if p,+1(q,) € Az holds, then
Pps1 is the least F-regular extension of Pp * (pp+1(gp)) such that p,yy I3 Fy(gp)
and there for the condition (b") from the definition of the @-omitting is satisfied.

If § + 1 € Reg(p, 3), then we obtain the omitting conditions from the fact that
p is a S-omitting finite part.

Now let us prove (2). Let § < @ and let 7 be a -regular finite part of rank 1.
1) § = . Then § = 7 and beside this G is the F-predecessor of 8, . Let

no = lIh(r) and po = 3 (T * 1, SE ) Let also p; be a 0-omitting, 3-regular extension

of po. built as above, let b; = lh(p;), and let p be a S-complete, F-omitting extension
of p1, such that pi(b)) = o(a) and |p|l5 = |p1]7 + 1. It is clear that p is a (8, cx)-
regular finite part with rank 1, which is a-complete and a-omitting.

2) 6 < . Then according to Lemma 3.2 the 3-predecessor of (3, ) is (8, 3)
and § < 3 holds. Using the induction hypothesis extend 7 to a (3, 3)-regular finite
part p; of rank 1, such that p;(Ih(7)) = y. Then we extend p; to a (8, a)-complete
and (0, a)-omitting finite part p of rank 1 as in the prove of (1).

¢) Let o = lima(p). Let @ = (ap, a1, ..., 0, @) and let py = upla,, < a(p)].
As in the previous case, let us first prove (1).

Let 7 be an a-regular finite part with rank r+ 1 and let y € N. It is clear that
7 is an a(po + 2r + 1)-regular finite part with rank 1. According to the induction
hypothesis for (2) there is an (a(po + 2r + 1), a(po + 2r + 2))-regular extension pg
of 7 of rank 1 such that po(lh(7)) = y. Set b,.41 = Ih(pp). Again, according to the
induction hypothesis for (2), we construct a {a(po + 2r + 1), a(po + 2r + 2), a(po +
2r + 3))-regular extension p of py of rank 1, such that p(b,+1) = o(a) and p is
(a(po + 2r + 1), a(po+2r+2), a(po+ 21+ 3))-complete and (a(pg + 27 + 1), a(po +
2r +2), apo + 27 + 3))-omitting. Note that (a(py + 2r + 1), a(po + 2r + 2), apo +
2r + 3)) = a(po + 2r + 3). Therefore p is an @-regular finite part of rank r + 2. It
remains to show that p is @-complete and @-omitting. Let 3 € Reg(p,@). Then
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3 =aor 8 € Reg(t,a(py + 2r + 3)). In both cases it follows from the construction
that o(83) € p(B”)

In order to show that p is @-omitting, let us assume that 8 = § + 1. Then
B # o and therefore 3 € Reg(t,a(py + 2r + 3)). As p is a(po + 2r + 3)-omitting
then it satisfies the omitting conditions in respect to 3.

Finally let us show (2). Let § < @ and let 7 be a é-regular finite part with rank
1. Let y € N and let also ps = up[d < a(p)]. According to the induction hypothesis
for (2), there is a (J, a(ps))-regular extension p; of 7 such that p;(lh(r)) = y and
p1 has (8, a(ps))-rank 1. Then again according to the induction hypothesis for (2)
we obtain a (8, a(ps),a(ps + 1))-regular extension p of p;, which has rank 1 and
for which p(by) = o(c) holds and which also is (3, a(ps), a(ps + 1))-complete and
(3, cps), a(ps + 1))-omitting. Then p is (5, a)-regular extension of 7 with rank 1
which is (8, a)-complete and (3, @)-omitting. O

Note that from the proof we have that the construction is recursive in the set

P AL & 0 & Pa.

¥<¢

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. Let us fix an arbitrary approximation ¢ of (. We will con-
struct recursively in Q a sequence of finite regular parts {7,} such that 7. C 74,
and that the partial function f = |J, 75 is a regular enumeration. Using the pre-
vious propositions and some additional reasoning we will see that the set F (f)
has the desired properties.

As Q is total and P¢ <. Q then according to Lemma 3.2 there are a recursive in
Q function o(,1), such that for every v < ¢ the function Xi.o(7,1) is enumerating
B,. Let us fix 0. When constructing the sequence {7,}, we will ensure that every
ﬁmtc part 7, is C-regular of (-rank equal to s+ 1, and 7,41 is C-omitting in respect
to {A,} and (-complete in respect to o5 = My.o(7, (s)1) where s = ((8)o, (s)1). Let
us also fix a recursive in Q) enumeration yo, ¥1,. .., Ys,.-- of Q.

We begin by setting 7 to be an arbitrary C-regular finite part with (-rank 1.
Let 75 be constructed. Then according to Proposition 3.5 we can obtain recursively
in Q a (-regular extension 7,4 of 7y, such that 7541 (1h(75)) = ys, |7s41 12 = |TS|E+1

and 7,4, is C-omitting and {-complete in respect to o5. Note that 7,4 is strictly
extending 7.

First let us show that f is a regular enumeration.

Note that f is a partial function from N in N, and for every p C f there is an
index s, such that p C 7,. Then consider ¥ < ¢ and z € B,. Let us fix an s such
big that every -regular finite part of (-rank at least s is J-regular (such an s exists
according to Lemma 3.2). We can also choose s such that z = o(7,(s)1) holds.
Then as 744, is of (-rank s + 2 and is (-complete in respect to o5 = A\y.o(7v, (s)1)
we obtain that z e T..+1(BT"+') Therefore f is a regular enumeration.

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2008, 61-85. 83



Now we show that f(¢) =, Q.

It is clear that f* <, Q. Beside this as f is regular then, according to Propo-
sition 3.4, f© <. f* ® P; <. Q. From the proof of Proposition 3.2 we obtain a
recursive in f* @ P, procedure which gives us the sequence g; = lh(7,). It is also
true that

y€Q <= 3s(y = fqy)),

and f(q,) is always defined. Thus Q <. f(© and therefore (¢ =, Q.

It remains to prove that for every v < ¢, A, £ £ is satisfied.

To obtain a contradiction assume that for some v < ¢, Ay < f?) holds. Then
the set f~'(4,) = {z | Jy((z,y) € (f) & y € A,)} is also e-reducible to f{7).
Then there is an index 1, for which

reC «= [k, Fi(z)

Let ¥ + 1 be the v + 1-predecessor of { and let ¥ be the y-predecessor of ¥ + 1. Let
s be so big that every (-regular finite part is ¥ + I-regular of 7 + 1-rank greater or
equal to i (such an s exists according to Lemma 3.2). Then 7,4, is 7 + 1-regular
and [Typ1|557 > @ AS Teq s E—omitting finite part there is a ¢ € dom (744+1) and
a J-regular finite part p C 7,4 such that:

plts Fi(q) & 7s41(q) € Ay V plby =Fi(q) & Ts51(q) € A,
Therefore
flg) € Ay = (3 C N)lplr5 Fi(q)) & f(q) & Ay = (3p C f)(pIFy ~Fi(g))
Then according to the Truth Lemma (Lemma 3.12),
fEy Fi(g) &= q¢C,

which is a contradiction. O
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