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1. SOME PRELIMINARIES

According to Definition I1.1.1 in [5], a combinatory space is a 9-tuple
S=(FICI,LRET,F),

where F is a partially ordered semigroup, I is its identity, C C F, IT : F2 — F,
Y:F3— F, LR T F € F, and the following conditions are identically satisfied,
when @, ¢, 0, x range over F, and a, b, c range over C:
Ve(pe 2 ¥ic) = ¢ 29,
(a,b) € C, LT(a,b) = a, RM(a,b) = b,
(i, ¥)c = M(pc, ¥e), T(1,9c)8 = 11(8,vc), I(c, )8 = I1(c, 8),
T#F TceC, FceC,
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XT,p,v) =9, Z(F,0,9) =¥, 0Z(x,p,¥) = Z(x, 0p,00)
Z(Xv 2 Tf’)c = Z(XC, pe, ‘l/)(f), z(l’vcs wc)o = 2(9’ Pey ’ll’C),
e, 02x = X(I,9,0) > T(I,9¥,X)

(the same notion is named “semicombinatory space” in [3.4]). The definition implies
that multiplication, IT and ¥ are monotonically increasing operations. If for some
given o, x in F the equation 6 = X(y, fo, I) has a least solution @, and this solution
has certain additional nice properties, then the solution in question is called the
iteration of o controlled by x, and it is dengted by [, x]. ! In the present paper it
will be also called the S-iteration of o controlled by x, and the notation [z, x]° will
be also used for it. '

The triple (F,1,C) will be further called the kernel of the combinatory space
(F,1,C,1I, L, R, %, T, F). We shall often consider pairs of combinatory spaces hav-
ing one and the same kernel. The following statement concerning such pairs can
be obtained as an immediate corollary of the definition of iteration.

Lemma 1.1. Let S; = (F,1,C,11;, L;,R;, %;, T, F;), i = 0,1, be combinatory
spaces. let xo, x1 be elements of F such that £o(x0, @, ¥) = Z1(x1, ¢, ) for all ¢,
in F. and let 0,1 be elements of F such that v is the Sy-iteration of o controlled by
Xo- Then i is also the S, -iteration of o controlled by x;.

A combinatory space S = (F,I,C,II,L,R, X, T, F) is called iterative if the
iteration of o controlled by x exists for any o and x in F. A notion of com-
putability in iterative combinatory spaces was studied, and some versions of the
First Recursion Theorem and of the Normal Form Theorem are among the results
about it (intuitively, the elements of F play the role of functions in that theory,
ordinary computability in the set of the natural numbers and abstract first order
computability in the sense of Moschovakis 1] being particular instances). The con-
sidered computability is a relative one, namely for any subset B of F some elements
of F and some operations in F are called S-computable in B (however, mainly the
particular case of an empty B will matter for the present paper).

Numerous examples of iterative combinatory spaces are given in the books [2,5].
A class of such examples (actually the simplest ones) is indicated in Example I1.1.2
of [5], the iterativeness of the corresponding combinatory spaces being established
in Section II.4 of [5]. The construction of these examples looks as follows. We
take an infinite set A/, an injective mapping J of M? into M, partial mappings
L and R of M into M such that L(J(s,t)) = s, R(J(s,t)) = t for all s,t in
M, as well as two total mappings T and F of M into M and a partial predi-
cate H on M such that H(T(u)) is true and H(F(u)) is false for any u in M
(any 7-tuple (M, J,L,R, T, F, H) with such components is called a computational
structure). Then we consider the 9-tuple (F,I,C,II, L, R, %, T, F), where F con-
sists of all partial mappings of M into M, the multiplication in F is defined by
o = Au. p(¥(u)), the inequality ¢ > 1 means that ¢ is an extension of 1, I is

'The precise definition of iteration can be found in Section I1.3 of [5], and, up to an exchange
of the second and the third arguments of ¥, also in [3,4].
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the identity mapping of A onto itself, C consists of all total constant mappings
of M into M, Il(p,v) = Au.J(p(u),v(u)) for any ¢ and ¢ in F, and we have
S(x, o, W) (u) = v iff either H(x(u)) is true and ¢(u) = v, or H(x(u)) is false
and ¥(u) = v. It is shown that each 9-tuple constructed in such a way is an
iterative combinatory space, and the equality [0, x](u) = v holds iff there are a
non-negative integer m and a finite sequence wy, w1, . . ., Wy, of elements of M such
that wg = u, wy, = v, H(x(w;)) is true and wjy = o(w;) for j =0,1,...,m -1,
whereas H(x(w,,)) is false. The combinatory spaces of this kind will be called
here pf-spaces (combinatory spaces of partial functions). A pf-space will be called
ordinary if its last two components are constant functions. Without naming them
so, the ordinary pf-spaces are considered already in [2] — they actually form the
content of Example 1 in Section I1.1.3 there, and their iterativeness is shown in
Section II1.3.2 of the book.

The next two examples indicate certain concrete pf-spaces corresponding to
computational structures whose first component is the set N of the non-negative
integers.

Example 1.1. Let J be the bijection from N? to N defined by

Jis.1) = (s+t)(32+t+ 1) +s,

L, R, T, F be the functions from N to N defined by the equalities

L(J(s,8) = s, R(J(s,t)) =t, T(u)=1, F(u)=0,

and H be the predicate that is false at 0 and true at all other elements of N.
Then (N,J,L,R, T, F, H) is a computational structure, and we may consider its
corresponding pf-space.

Example 1.2. The same as the previous example, except that 1" is defined by
means of the equality 7'(u) = u + 1 (the corresponding pf-space is not an ordinary
one).

Let S = (F,I,C,II,L,R,E,T,F) be an iterative combinatory space. The
notion of S-computability (coinciding with S-computability in the empty set in
the terminology of [5]) is defined as follows. An element of F will be called S-
computable if this element can be obtained from the elements L, R, T, F' by means
of multiplication, the operation II and S-iteration (if B is a subset of F then an
element of F is called S-computable in B if this element can be obtained from
elements of the set {L, R,T, F} U B by means of the three operations in question).
A mapping ' of F" into F will be called S-computable if for arbitrary 6,,...,0, in
F there is an explicit expression for I'(#y,...,8,) through L, R, T, F,0,,...,0, by
means of multiplication, the operation IT and S-iteration, the form of this expression
not depending on the choice of 6,,...,86, (S-computability of I' in a given subset
B of F is defined similarly, but the expression for I'(6y,...,0,) may contain now
also notations for some fixed elements of B).
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Remark 1.1. By the equality [0, F] = I, the function [ is S-computable. The
mapping ¥ is also S-computable, since (as shown in Section IL.5 of [5])

2(x, 0 ¥) = [Ra)[R2QRIT(x, Ly,

where [o] = R[oR, L}, L. = II(T,I), R. = II(F,I). Hence adding I to the initial
elements and ¥ to the used operations in the above definitions would not enlarge the
set of the S-computable elements of F and the set of the S-computable mappings
of 7" into F.

Example 1.1 (continuation). Let & = (F,1,C,1I,L, R,~,T, F) be the com-
binatory space indicated in Example 1.1. Then all S-computable elements of F
are one-argument partial recursive functions. However, the converse statement is
not true. For instance the primitive recursive function # defined by the equality
0(u) = |u — 1| is not S-computable. To prove this, we consider the family of all
pre-images of the sets {0} and N\ {0} under products of finitely many L’s and R’s
(the function I being also regarded as such a product). Let 7 be the topology in
N having as a prebase this family. The functions J, L, R, T, F can be easily shown
to be continuous with respect to 7. It follows from here by Exercise 11.4.21 of [5]
that all functions from F have open domains and are continuous with respect to
7. On the other hand, the function 6 is not continuous with respect to 7 since
6-'{0} = {1}, and the set {1} is not open in 7 because any open set contain-
ing 1 contains also some number distinct from 1, namely some number of the form
J(0,J(0,...J(0,J(0,2))...)).

Example 1.2 (continuation). Let § = (F,I,C,II,L,R,%, T, F) be the com-
binatory space from Example 1.2. Then again all S-computable elements of F are
one-argument partial recursive functions, but now the converse statement is also
true. In view of Theorem I1.3.1 of [5] it is sufficient to show the S-computability of
the function Au.u =1, where u =1 is u — 1 for u € N\ {0} and 0 for u = 0. Its
S-computability is seen from the fact that R(J(u,u) + 1) = u — 1 for any positive
integer u, and therefore Au.u ~ 1 = X(I, RTTI(I, I), F). 2

2. REDUCIBILITY OF AN ITERATIVE COMBINATORY SPACE
TO A GIVEN ONE

We shall again be interested in pairs of combinatory spaces having one and the
same kernel (as in Lemma 1.1).

Lemma 2.1. Let (F,1,C,11;, L;, R;, £, T}, F}), i = 0,1, be combinatory spaces,
and T be such an element of F that Iy(a,b) = 711 (a, b) for all a,b € C. Then
Ho(p, ) = 7L (@, ) for all ¢, € F.

2 Actually a slight generalization of Theorem 1.3.1 of [5] holds that allows an arbitrary function
from F coinciding with the function Mu.u =1 on the positive integers to be used instead of it.
RTTI(I.1) is such a function already (the functions RT2I1(8,T) with 8 € {L,R, T, F} are also
such ones).
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Proof. Let ¢, 1 be arbitrary elements of F. Since I;{a, b) = U;(a, )b, 1 = 0,1,
we see that Ilg(a, I)b = 7II;(a, I)b for all a,b € C, hence Ilp(a,I) = 7 (a, I) for
all a € C. Therefore

o(I,c)a = My(a, ¥c) = ola, e = 711 (a, e = i (a, ye) = 7L (I, yc)a
for all a,c € C, hence Io(I,c) = 7I; (I,¢c) forallc € C. Tt follows from here that
o(p, ¥)e =To(pe, ¥e) =TI, ve)pe = 7L (1, Ye)pe =TIl (e, Ye) =TI (p,¥)c

for all ¢ € C, and this proves the equality IIy(yp, ) = 711 (@, ). O
Whenever S; = (F,I,C,11;, L;, R, £, T3, F3), i = 0,1, are combinatory spaces
with one and the same kernel, we set

P$' =T (Lo, Ro), Q3 = X1(Lo,ToRo. FoRo), Q3 = (1, Ty, Fy)-

Lemma 2.2. Let S; = (F,1,C,11;, L;, R, %, T}, F;), i = 0,1, be combinatory
spaces. Then

nl(soa d') = P:SS(: HO(‘Paw)s EI(X, {pn 12’) - 20(Q§I‘JH0(X! I)a {paw)

for all @, 0, x in F. If Ty and Fy belong to C then Qg{‘)ﬂo(x, I = Qg“,x, thus
il o) = 20(Q§(‘)x, @, ¥} in that case.

Proof. The first of the equalities follows by Lemma 2.1 from the fact that
1, (a,b) = PS'Ho(a,b)
for all a,b € C. For the general case in the rest of the proof we first observe that

QMo (x, 1) = Z1(x, To, Fo)

for all y € F (we get this equality by applying Proposition II.1.8 of [5] to the
“mixed” combinatory space (F,I,C, Iy, Lo, Ro, £1,71,F1)). In the case when T
and F belong to C, we also have the equality

Q3 x = E1(x, To, Fo),

because then, by Proposition I1.1.2 of [5], we have Ty = Toc, Fy = Foc for any
¢ € C. On the other hand, Zo(Z1(x, To, Fo), ¢, ¥) = Z1(x, ¢, ¥), since

Yo(21(x, To, Fo)s . ¥)e = Xo(E1(xe, Toc, Foc), pe,vc) =
To(I, e, ¥e) Ty (xe, Toe, Foc) = Z1(xc, Lo, ge, ve)Toc, To(1, pe, pe)Foc) =
T1(xe, Zo(Toc, pe, ), Bo(Foc, e, ye)) = Ba(x, Zo(To, ¢, ¥), Xo(Fo, 9, ¥'))e =
Z1(x, s ¥)e.
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forallceC. O

Corollary 2.1. Let Sy and &) be two combinatory spaces with one and the
same kernel (F,I1,C). and let Sy be iterative. Then S, is also iterative, and for any
o,x € F the equality

[0, X]%" = [0, Q& o (x, I)] >
holds. Thus if Ty and Fy belong to C, then [0, x|®' = [0, Qg(‘, x]%°.

Proof. By Lemma 1.1 and the above lemma. 0

IfS=(F,I,C.ILLRXET,F)and & = (F,I,C,Il'",L',R, X', T", F') are two
iterative combinatory spaces with the same kernel, then S’ will be called reducible to
S if the elements L', R',T', F’ and the mappings IT', ¥’ are S-computable. Clearly
the space S is reducible to itself (thanks to the S-computability of £). Making use
of Corollary 2.1, we see that the iteration operation in any iterative combinatory
space reducible to S is a S-computable mapping of F? into F, and therefore the
introduced reducibility of iterative combinatory spaces is transitive. The iterative
combinatory space &’ will be called equipowerful with S if 8’ is reducible to S and
S is reducible to §.

The space 8’ will be said to be quasi-reducible to the space S if all '-computable
elements of F are S-computable. Of course, if 8’ is reducible to S then &’ is quasi-
reducible to S (thanks to the S-computability of the S'-iteration). We do not know
whether the converse implication holds, however the equipowerfulness of S and &’
turns out to be equivalent to their mutual quasi-reducibility (i.e. to the equality of
the set of the S-computable elements of F and the set of the S’-computable ones).

Theorem 2.1. Let S§; = (F,I,C,11;,L;,R;, 5;,T;, F;), i = 0,1, be iterative
combinatory spaces. Then the next three conditions are equivalent:

(i) Sy s equipowerful with S;;

(ii) the set of the Sp-computable elements of F coincides with the set of the S;-
computable ones;

(iii) the elements P Qso Ly, Ry, T\, Fi of F are Sy-computable, and its ele-
ments Pf". QS" Ly, Ry, Ty, Fy are S\-computable.

In the case when Ty, Fy, Ty, Fy belong to C, the condition (iii) can be replaced by

(iii") the elements Sy 3 Qg“), Ly, Ry, T, Fy of F are Sy-computable, and its ele-
ments ng“, Qg‘:, Lo, Ry, Ty, Fy are S;-computable.

Proof. The implication (i)=>(ii) is clear from what was said in the paragraph
before the theorem. The implications (ii)=>(iii) and (ii)=(iii’) follow from the fact
that multiplication, IT; and X; preserve S;-computability for i = 0,1. The validity
of the implication (iii)=(i) in the general case and of the implication (iii')=>(i) in
the case when T', F,T', F' belong to C are seen from Lemma 2.2. ]
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Now several examples concerning the notions introduced follow (Corollary 2.1
is used in some of them for showing the iterativeness of the constructed new com-
binatory spaces).

Example 2.1. The pf-space considered in Example 1.1 is reducible to the one
considered in Example 1.2, but these two spaces are not equipowerful.

Example 2.2. Let § = (F,I.C,I1, L, R, X, T, F) be an iterative combinatory
space that is symmetric in the sense of [5], i.e. the equality II(pc, I)0 = II(yc, 6)
holds for all 9,0 € F and all ¢ € C (in particular, S can be any pf-space). Let
S, = (F,1,C,11;,R,L,%, T, F), where I, is the mapping of F? into F obtained
from I by exchanging its arguments, i.e. IT; (¢, ¥) = II(¢, p) for all ¢, € F. Then
Sy is an iterative combinatory space that is equipowerful with § (as indicated in
Exercise II.1.2 of [5], the combinatory space S; is also symmetric).

Example 2.2 (continuation). The assumption in Example 2.2 about the sym-
metry of S cannot be omitted without making other changes in the example. How-
ever, the definition of II; is equivalent to another one that makes the symmetry
assumption superfluous. In fact, an application of Lemma 2.2 in the situation from
the example shows that I, (@, ) = II;(L, R)II(¢, 1), hence the equality '

IL (0, ¥) = II(R, L)II(¢p, ¥) (2.1)

holds for all ¢,y € F. Now it is clear that we would get the same combinatory space
S = (F,I1,C,II;,R,L,E, T, F) in the considered situation if we would define II;
by means of the equality (2.1). However, such a definition of S; has the advantage
that S; turns out to be always an iterative combinatory space equipowerful with
S (no symmetry of S is already needed). Checking everything in this statement is
straightforward except for the fact that S is reducible to S;. The reducibility of S
to S; can be shown by proving the equality

H(¢a w) = Hl(La R)Hl(%lb), (22)
and this equality follows by Lemma 2.1 from the fact that, as it is easy to be
verified, I1(a, b) = I, (L, R)II;(a,b) for all a,b € C. *

Example 2.3. Let S = (F,I,C,II, L, R, %, T, F) be any iterative combinatory
space, and let
S() = (f,I,C,H,L,R,E(_),F,T),
S =(F,I,C,II,L, R, X, INT, I),II(F, I)),
82 - (fﬁ-I,C’H, Ly Ra ZQ,H(I,T),H(I, F))’

where ¥p,%; and X5 are defined by means of the equalities

3A proof of the equality (2.2) by using Lemma 2.2 is also possible, namely
I (L, R) (, %) = TI(R, L)T(L, R)TI(R, L)TI(p, %) =
(R, LYI(R, L)I(p, v) = TI(R, L)y (p,¥) = (e, ).
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Yoo, ¥) = B ¥, 0), Zilx, e %) = E(Lx, 9, %), Za2(x, 9, %) = E(Rx, ¢, ¥)

(cf. Exercise II.1.1 in [5]). Then Sy, S and S, are iterative combinatory spaces
that are equipowerful with S (the equalities

(09 @) = Ti(ll(x, 1), ¢, %) = To(I(1, X), 9, ¥),
T = LIN(T,I) = RI(I,T), F = LII(F,I) = RII(I, F)

are used in the proof of the reducibility of §; and S to S).

Example 2.4. Let A be an infinite set, mg and m; be two distinct elements of
M, and .J be a bijection from M? to M such that J(mg, mg) = mo, J(mg, m;) = my
(we may for instance set M = N, mgy = 0, m; = 1, and take J as in Example 1.1).
Let L and R be the mappings of M into M defined by means of the equalities
L(J(s,t)) = s, R(J(s.t)) = t. Then clearly L(mg) = R(my) = L(m1) = my,
R(my) = m,. We define a new mapping J’ of M? into M by means of the equality

J'(s,t) = J(L(s), J(R(s),1)).

It is easily seen that the equality J'(s,t) = u is equivalent to the pair of equalities
s = J(L(u), L(R(w))), t = R(R(u)). Therefore .J’ is also a bijection from M? to
M, and after setting

L'(u) = J(L(u), L(R(w))), R'(v) = R(R(w))

we have L'(J'(s,t)) = s, R'(J'(s,t)) =t for all s,t € M. Moreover, we have
also the equalities J'(mg, mg) = mg, J'(mo,m1) = my. Now let us consider the
computational structures (M,J,L,R,T,F,H) and (M,J',L’,R",T,F,H), where
T(u) = my, F(u) = mg for all u € M, and H is a partial predicate on M
such that H(m,) is true, H(my) is false. Let § = (F,I,C,II,L,R, %, T, F) and
S =(F,1,C,Il',L’, R",£, T, F) be the pf-spaces corresponding to these two com-
putational structures. Since II'(p, ¢} = II(Ly, II(Rp,¥)) for all p,¢ € F, and
the equalities L’ = TI(L,LR), R’ = R? hold, the pf-space S’ is reducible to S.
However, we shall show that &’ is not equipowerful with S, i.e. S is not reducible
to §’. This will be shown by proving that the S-computable element II(T', F') of
F is not 8’-computable. For that purpose, let us denote by A the smallest sub-
set of M containing the elements mgy and m, and closed under application of J'.
It is easy to show by induction that the image of A under any S’-computable
function from F is a subset of A. On the other hand, II(T, F)(u) = J(my,mp)
for all w € M, but J(my,mp) does not belong to A, because mgy # J(mi,mo),
my # J(mi,myp), and J'(s,t) # J(my,my) whenever s # J(my,my), due to the
equalities L(mg) = L{m;) = my and L'(J(my,mgp)) = J(my, mp).

Remark 2.1. The above example shows how to construct an infinite sequence
S0, 81,82, ... of pf-spaces not differing from one another out of their fourth to
sixth components and having the property that S; is reducible to S; without being
equipowerful with it, whenever j > i.
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Remark 2.2. Let S, = (F,1,C,11;,L;, R;, %;, T3, F;), i = 0,1, be iterative
combinatory spaces with one and the same kernel, and let

D= {Pg:’ g‘;,Ll,RhThFl}

(or Ty, Fy € C, D = { S(:,Qg(",Ll,Rl,Tl,Fl}). An application of Lemma 2.2
shows that the operations IT;, X, and consequently also the iteration in S; are Sp-
computable in the set D, hence all S;-computable elements of F are Sp-computable
in D. If Sy is reducible to S; then also the converse is true, hence in this case the
S;-computability of an element of F is equivalent to its Sp-computability in D.

Intuitively, an iterative combinatory space can be considered as a certain kind
of programming system. The intuitive interpretation of the reducibility of the space
S’ to the space S is as emulability of all §’-programs (including the ones that may
use oracles) by corresponding S-programs. The quasi-reducibility of &’ to S can be
interpreted similarly, but with having in view only the programs that do not use
oracles. Of course, the equipowerfulness will be interpreted as emulability in both
directions.

3. ON A STATEMENT OF JORDAN ZASHEV

If (M,J,L.R,T,F,H) is a computational structure whose component .J is a
hijection from M? to M, then the corresponding pf-space (F,[,C,II, L, R, X, T, F)
has the property that IT(L, R) = I. In a remark on page 78 of [7] Jordan Zashev
indicates a way for improving the exposition of the theory for iterative combinatory
spaces with this property (assuming that the elements 7" and F belong to C).
According to him the examples of combinatory spaces given in [2,5] do not give
reasons to consider the abandonment of the equality II(L, R) = I as essential for
the scope of the theory, since, as he writes, “all of them have more or less obvious
variants in which the last equality is true”. No definition is given in [7] for the
used notion of variant, and of course no proof or disproof of the quoted statement
can be expected without such a definition. We shall present now a refutation of
the statement in question for the case when “variant” is interpreted as an iterative
combinatory space that is quasi-reducible to the given one. Of course this will also
show the failure of the statement for the stronger interpretations as an iterative
combinatory space reducible to the given one or as an iterative combinatory space
equipowerful with it.

Let us call an iterative combinatory space (F,I,C, 11, L, R, X, T, F) a Z-space if
the equality II(L, R) = I holds. We shall indicate some ordinary pf-spaces to which
no Z-space is quasi-reducible, and this will be the promised refutation, since, as we
mentioned in Section 1, the ordinary pf-spaces and all pf-spaces are the subject of
some examples in [2] and in (5], respectively. The following lemma will be used.

Lemma 3.1. Let (M,J,L,R,T,F,H) be a computational structure. and let
the corresponding pf-space S be such that some Z-space with the same kernel is
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quasi-reducible to S. Then there is an S-computable bijection from M to the range
of J.

Proof. Let S = (F,I,C,II,L,R, X, T, F), and let (F,I,C,1I', L', R", £, T', F")
be a Z-space that is quasi-reducible to S. Then the element II(L', R’) of F is S-
computable thanks to the S-computability of L' and R’. By Lemma 2.2, the equal-
ity II'(L', R") = II'(L, R)II(L', R’) holds, hence I'(L, R)II(L', R’) = I. Therefore
II(L', R') is an injective mapping of M ‘into M. Taking into account the definition
of II, we conclude that in fact II(L’, R’) is an injective mapping of M into the
range of J. To show that any element of the range of J is a value of II(L’, R'),
let us consider such an element u. Then u = J(s,t) for some s and ¢ in M.
Denoting by a and b the elements of C with values s and ¢, respectively, we con-
sider the element I1'(a,b) of C. Let v be the value of this constant function. The
equalities L'Il'(a,b) = a, R'I'(a,b) = b imply that L'(v) = s, R'(v) = t, hence
II(L',R")(v) =u. O

Having the above lemma at our disposal, we shall proceed by indicating some
computational structures (M, J, L, R, T, F, H) such that T" and F are constant map-
pings of M into M, and, if S is the corresponding pf-space, then no S-computable
bijection from M to the range of J exists.

Example 3.1. We consider a computational structure (M,J,L,R, T, F, H)
of the following kind. The set M is the closure of A under formation of ordered
pairs, where A is some non-empty set, and none of its elements is an ordered pair,
J is the function from M? to M defined by the equality J(s,t) = (s,t), L and
R are the functions from the range of J to M defined by means of the equalities
L(J(s.t)) = s, R(J(s,t)) =, T and F are the constant functions from M to M
with values (0,0) and o, respectively, where o is some distinguished element of A,
H is the predicate on M that is false on A and true everywhere in M \ A. Let
S=(F,ICIIL R, X, T, F) be the pf-space corresponding to this computational
structure. Under the additional assumption that A is finite and has more than one
element, we shall show that no Z-space with the same kernel is quasi-reducible to S.
Let A have k elements, where k > 1. Suppose there is an S-computable bijection
By from M to the range of J. Then 8y is a computable bijection from M to M \ A.
From here a contradiction will be produced as follows. We define inductively a
family M of subsets of M by the clauses that A € M and X xY € M whenever
X,Y € M. One proves by induction that all members of M are non-empty finite
sets, and, whenever Z € M, then either Z = A, or the cardinality of Z is divisible
by k2. Another induction shows that each element of M belongs to exactly one
member of M. By means of a third induction we prove that whenever 6 is an
S-computable element of F, the image by # of any member of M is a subset of
some member of M. In particular, the mapping 6y will have this property. Since
o is a bijection from M to M \ A, each member of M different from A will be
the union of its subsets that are images by #y of members of M, and these subsets
will be pairwise disjoint. Let Z be the member of M that contains as a subset
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the image by g of the set A. Clearly Z # A, and therefore the cardinality of Z is
divisible by k®. On the other hand, this cardinality must be equal to the sum of k
and some numbers divisible by &2, and this is a contradiction.

Remark 3.1. We could reason in the same way as above if we would make the
functions L and R total by additionally setting L(u) = R(u) = u for all u € A. On
the other hand, as seen from [6], the situation would become essentially different if
we would make them total in the way from (1], namely by setting L(o) = R{0) = o,
L(u) = R(u) = (0,0) for all u € A\ {o}. Then, independently of the cardinality
of A, there would be a Z-space having the same kernel as § and reducible to it.

4. AN EXTENSION OF THE CONSIDERED REDUCIBILITY

The application of an iterative combinatory space S = (F,I,C,1I,L, R, £, T, F)
for the characterization of some concrete computability notion usually makes use
of S-computability in certain subset B of F. The intuitive interpretation of S
as a programming system can be transferred also to pairs (S, B) by replacing S-
computability with S-computability in B. The case of S-computability will then
correspond to the pair (S,0). It is natural to extend the reducibility notions intro-
duced in Section 2 for the case of two pairs (S, B) and (S8, B’), where S and &’ are
iterative combinatory spaces with one and the same kernel, and B, B’ are subsets
of their first component. Here are the corresponding definitions.

ftsS=(FI1,C,IILLLRETF)and & = (F,I,C,II', L', R, ¥, 1", F’) are it-
erative combinatory spaces, and B, B’ are subsets of F, then the pair (S, B’) will
be called reducible to the pair (S, B) if the elements L', R', T’, F', all elements of B’
and the mappings II'. ¥’ are S-computable in B. The pair (&', B’) will be said to
be quasi-reducible to the pair (S, B) if all elements of F that are S’-computable in
B’ are also S-computable in B. If each of the pairs (S, B) and (S', B’) is reducible
to the other one then these pairs will be called equipowerful.

As in Section 2 the reducibility is seen to be reflexive and transitive, and
it implies quasi-reducibility. Also, Theorem 2.1 remains valid after replacing the
combinatory spaces with pairs of the considered kind, the proof being quite similar.
Here is the result of the replacements.

_ Theorem 4.1. Let S; = (F,1,C,1L;,L;,R;,X;,T;,F;), i = 0,1, be iterative
combinatory spaces. and By, By be subsets of F. Then the next three conditions are
equivalent:

(1) (So,By) is equipowerful with (S, By);

(ii) the set of the elements of F that are So-computable in By coincides with the
set of the ones that are Sy-computable in By;

(iii) the elements of the set { Py, Qg(‘,, Ly, Ry, Th, F1 }UB; are Sp-computable in By.
and the elements of the set { Pg“, Qg'l’, Lo, Ro, Ty, Fo } U By are S,-computable
m B]_ .
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In the case when Ty, Fo, Ty, Fy belong to C. the condition (iii) can be replaced by

(iii") the elements of the set {Pg}‘ , Qg('], Ly, Ry, Ty, F, }UB, are So-computable in By.
and the elements of the set {Pg:', Qg‘l’, Lo, Ro, Ty, Fo } U By are S -computable
in B;.

The statements in Remark 2.2 can be strengthened in the following way.

Remark 4.1. Let §; = (F,I,C,11,, L, R, %;,T;, F;), i = 0,1, be iterative
combinatory spaces with one and the same kernel, and let

D= {Pg;an(l,sLlaRlaT]aFl}

(or To,Fo € C, D = {P§',Q%, L1, Ry, T1, F1}). Then the pair (S, 0) is reducible
to the pair (Sp, D). If Sy is reducible to Sy then (8, 0) and (Sp, D) are equipowerful.
The following obvious monotonicity can also be mentioned: if Sy and S, are
iterative combinatory spaces with one and the same kernel (F,I,C), and By, B;
are subsets of F such that the pair (Sp, By) is reducible to the pair (S;., B;), then
for any subset £ of F the pair (Sy, By U £) is reducible to the pair (S, B, UE).

Acnowledgements. Thanks are due to Jordan Zashev for attracting the au-
thor’s attention to such a kind of reducibility problems. especially by constructing
an iterative combinatory space (F,I,C,II,L, R, X, T, F') with II(L, R) = I (men-
tioned in Remark 3.1) that is reducible to the iterative combinatory space straight-
forwardly connected with Moschovakis’ abstract first order computability on a given
set.
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