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In [1 - 7] Degtev. Ditchev and Downey have considered how many recursively
enumerable (r.e.) m-degrees could be contained in a single r.e. tt-degree. It is
shown in [2, 5, 6] that a single r.e. tt-degree can contain finitely many m-degrees,
and in [3. 4, 7] — infinitely many r.e. m-degrees. In the case when a single r.e.
tt-degree contains infinitely many r.e. m-degrees, it is known that they can be
linearly ordered in the type of the ordinal w [7] and can be mutually incomparable
[3. 4]. In the present paper we show that a single r.e. tt-degree (cven pe-degree)
can contain infinitely many m-degrees with tvpe the ordinal w* for every natural
number % and with type (@ of the rational numbers.

In this paper we use N to denote the set of all natural numbers, Z — the set
of all integers, and Q — the set of all rational numbers. We use also w* to denote
the usual ordinal number.

If f is a partial function. we use Dom(f) to denote the domain and Ran(f) —
the range of values of the function f.

If 4 is a finite set. we use |A| to denote the cardinality of the set A.

Let us remind some definitions from [9, 10] and give some new ones.
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Let I, L, R be the usual primitive recursive functions such that Dom(Il) =
) ’ N . .
N™. Ran(Il) = Dom(L) = Dom(R) = Ran(L) = Ran(R) = N, which satisfy the
following equations for all natural numbers z. y:

L(IT(r.y)) ==, RUI(z.y)) = y. I(L(2}.R(x)) = 2.

If 3 is a Goedel function, then for every natural numbers k. py, .... D 1.
k > 0, we use the following notations:

(Pry- k) = pp[3(p,0) = k&B(p. 1) = ;& ... &B(p. k) = pi];

h(p) = 8(p,0):  (p)i = Blp,i+1);
Seq(p) <= Vz(z <p= (Ih{z) # lhip) v ili <lh(p)&(z); # (p)i));
Seq.(p) <= Seq(p)&1h(p) = k.

with code p, and Seq and Seq, are predicates, which indicate a sequence and a
sequence with length k| respectively.

A set A is said to be m-reducible to a set B (4 <,,, B) iff there exists a total
recursive function f such that the following equivalence hold:

Ve(r € A & f(x) € B).

The set A is said to be bounded conjunctive reducible {be-reducible) to the set
B iff there exist natural mumber & and & total recursive functions fi. ..., fi. which
satisfy the following equivalence:

Vi[r € A &= fi(z) € B&... &fi(x) € B).

If 7 is any reducibility, a set 4 is said to be r-equivalent to a set B (4 =, B)
iff A <, Band B <, A. For any reducibility r the r-degree of the set A4 is called the
family d,(A) = {B|B =, A}. If some r-degree contains a set 4, which is recursively
enumerable, then this r-degree is said to be recursively enumerable (r.e.).

The ordinal w* we represent as the set {(ay,...,az)la, € N& ... &ay € N}
and the order is the usual lexical one:

(a; < by)V{a; = bi&as < ba)V...V(ia; = bi&as = br& .. Kapoy = b &ayg < br).

We are constructing an r.e. be-degree. which considered as an upper-semilattice
of m-degree contains a set of type w* of different r.e. m-degrees. The idea for
constructing such r.e. he-degree comes from the effective structures with functions
and without predicates. The functions are choosen in an appropriate way to ensure
that the choosen sets are in the same be-degree and in the above-mentioned order.

For the sake of simplicity, we consider in full only the case k = 2.
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Let {6;}. k € N, be the recursive functions with Dom(#y) = Ran(f) = w~,
k ¢ N. defined as follows:

(0.7). if i =0,
Br(i.j) =< (i-1.0), ifi>0& jiseven,
(i-1.2), ifi>0& jisodd:
(0,1), ifi=04&j =0,
N7 (0,7), ifi=0& 5 >0.
020 ) = (i—1,0), ifi>0& (jisodd vj=0),
u—ll) ifi>0& jiseven & 7> 0

(i +1.0). ifj=k,
(i+1.3). ifj¢ {0k}

ke N.

It is easy to check that the following lemmas are correct.

Lemma 1. For all a € w? and for all natural numbers i, j and k the following
equivalences hold:
= (i,j) <= Oola) = (1,7 +1);

a=(i,k) <= Orysla) = (i +1,0);
= (i+1.0) <= 6i{a) = (i,0) & O2(a) = (i,0)

Lemma 2. For all a.b € w?. such that a < b, there exists a function n, which
is a composition of the functions 8y, {0"+3}A-’N’ id such thatVe(e = a <= nlc) =

b).

Lemma 3. a) For all natural numbers i, j such thati < j there exist functions

M, ..., N, which are compositions of the functions 61, B2, such that Ya(a =
(j,0) &= m(a) = (i.0) &...& nula) = (i,0).
b) For all a,b € 2 such that a < b there exist functions ny, ..., n2, which

are compositions of the functions {9"'}L-GN’ such that Ye(e = b <= mn(c) =
a&...,& nulc) =a).

We say that a set 4 contains almost all even (odd) numbers iff there exists a
finite set B such that all even (odd) numbers are subset of AU B.

Lemma 4. a)lf 6;(i + 1,j) = (i1,51), k = 1,2, for some natural nmnbers i1,
j1, then either for almost all even numbers j' or fm almost all odd numbers j' the
equation (i + 1,7") = (i1, j1) holds.
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b) Let 0 be such composition of the functions {Bk}ch that at least one of 6,
and 0y appears inn. If n(i +1.7) = (i1.]1) for some natural numbers 1. j1. then
either for almost all even numbers j' or for almost all odd numbers j' the equation
(i +1,3") = (i1.41) holds.

Let ¢; = (i,z), 7€ N, and Ny = N\ (UiEN Ran(;)).

Definition. Let {4,},c.2 be a sequence of disjoint subsets of Ny. We define
the sequence {{A,]},z.> of disjoint sets of natural numbers by the following rules:

(a) If p € A,, then p € [4,);

(b) If i € N, p € [4,], and #;(a) = b, then ¢;(p) € [As].

Lemma 5. If {A.}.c.2 is a recursive (r.e.) sequence of disjoint subsets of
No. then {[Au]}aew2 i a recursive (r.e.) sequence of disjoint sets.

Lemma 6. If {d4}ee.2 is a sequence of disjoint subsets of Ng. then the
follownng equivalences hold for all natural x.i.j:

z € [Au 5] <= volx) € [ jan));

T €& [."1(.,'!;',)] — i,.?k+3(1r) € [-4(1'-}-1,0)];

T € {A(.i_J,.[_Q}] — (-l) € ["{(i.[]}] & 992(.:1") € l-’l(z.O]]'

Corollary 1. If {d.}.c.2 is a sequence of disjoint subsets of Ny. then
(A ) <m [ jen] and [A ] <m [Agiero)] for all natural numbers i .

Corollary 2. If {d.}ac.z is a sequence of disjoint subsets of Ny. then
[Aa] =ue [Ab] for all a,b € w?.

Corollary 3. If {Ai}uc.> is a sequence of disjoint subsets of Ny, then
[Aa] =4 [Ab] for all a,b € w2

Lemma 7. For every natural number z, either ¢ € Ny or there exists an
effective way to find a function ¢, which is a r:omposzftion of the functions {gk}k-eN
and y € Ny such that (y) = 2.

Lemma 8. Let {A.},c.2 be a sequence of disjoint subsets of No. For any
function ¢, which is a composition of the functions {0k}, N and for any a € *
<
there exists b € w? such that p([A,]) C [A].

Lemma 9. Let {Aq},c.2 be a sequence of disjoint non-empty subsets of Ny.

For any function ¢, which is a composition of the functions {"k}keN’ and for any
a,b € w? there exists an effective way to verify whether or not p([A,]) C [4,].
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Lemma 10. Let {A,},c.2 be a sequence of disjoint non-empty subsets of
Ny and 2 be a composition of the functions {8} reN- If a.b € w? are such that

A([Aa]) € [44]. then there exist infinitely mony ¢ € w* such that p([A.]) € [4].

Let Ny = N7 U No. where N and N, are infinite disjoint recursive sets,
and let ' be a monotonically increasing function such that Ran(r'} = N, and

nin+1 .. . : .
rin) = 7"(\-(——()—) +n). In addition, let ® be a partial recursive function (p.r.f.),
which is universal for all unarv p.r.f. Let ®, = Aa.®(e,z) and @, 5 be a finite p.r.

approximation of ®.. i.e.

o (x). if 2 € Dom(®,.)& ®.(r) is computable in less than s steps,
undefined, otherwise.

oo

Theorem 1. There exists an r.e. be-degree, which contains different m-degrees
of the type of w?.

Proof. In order to construct such a degree, we shall construct an r.e. sequence
{A4}ac.2 of disjoint subset of Ny such that if @ < b, then [4a] < [As], but
(4] € [A]. Then it will follow from Corollary 2 that all sets {A,}.ec2 are in
the same be-degree and, therefore. the proof will be completed.

We construct the sets {4, },e.2 by steps, building a finite approximation Ag e
of 4, on step s, a € w”.

On step s. if (s)o = (e, i, j.i1. 1) and (.7} < (i1.j1), then our aim is to satisfy
that the function ®, does not m-reduce [Ag, ;] to [Ag ) e to find such a
witness = € Dom(®,) that at least one of the following two conditions is satisfied:

(1) = ¢ [l & 2elw) € Ayl

(“) x € [‘4(2'1,)1 jl} & q’e(-r) g {-'hzﬂj)]'

For this purpose on step s if we find an z, such that = € Dom(®.), then we
would like to do the following:

If ®,(z) € [4(; ;). then to put z outside of A, j,), satisfying (i).

If ®,(x) & [A; ;). then to put  in Ay, j,), satisfying (ii).

If on step s. z is placed in some set A, in order to satisfy cither (i) or (ii),
we create an (s)o-requirement x. In this case, if z satisfies (ii), we need also some
element y not to belong to a chosen set 4,. So, we create a negative (s8)o-requirement
y. To guarantee that for any e, such that ®, is a total, and for every (7.7), (i1, 1),
such that (i,j) < (i1, j1). there exists an z satisfving either (i) or (ii), we shall use
the priority argument, so that the smaller {s)o will have priority.

If r is an (s)p-requirement and y is a negative (s)o-requirement, created on
step s. and till step ¢ the condition (ii). which is satisfied on step s, is not injured,
then we sav that the (s)g-requirement and the negative (s)o-requirement are active
on step t.

If an (s)o-requirement z satisfies (i), then we call it active on any step ¢ > s.
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If an (s)o-requirement (a negative {s)p-requirement) created on step s is active
on every step £ > s, then we say that it is a constant.

Now we can describe the construction of the sequence {A4,}, ...

Step s = 0. Let No = {ag < a; < ...}: we take Aiijro = {ang ). Thus iris
ensured that Ay ;) is non-empty.

Step s > 0. If neither Seq((s)o) nor Seq;((s)o) & ({(s)a)1. ((s)a)2) #
(((s)o)s. ((s)o}s). then we do nothing, i.e. we take Aiigrs = Aijrs—1. .7 € N,
and do not create any requirements.

If Seqs((s)o) and s = (c.i, 5,41, j1), where (i.j)} < (i;.j1). we verify whether an
active (s)o-requirement exists. If there exists such a requirement. then do nothing,.

If such a requirement does not exist, then we verify whether there exists an
x € Ny such that & > r((s)y), © € Dom(P.5). & Useoodus—) and = does
not belong to any active negative requirement. created on a step + < s such that
(t)o < (s)o. If such an & does not exist, then we do nothing.

Otherwise, we denote by z, the least such 2 and create an (s)o-requirement
rs. Let @.(xs) = z and ¢(y) = z, where v is either a composition of the functions
{m.}kéN or ¥ = id and y € NY.

We verify whether z € Ay j) -1 If so, then we fix A ;) 5 = A )01 U{zs)
Atrays = Appys— for (k1) # (4. 7).

Otherwise, we verify if z € Ay, ;) oy for some (i'.j') # (i.j). If so. then fix
Ay = Ay jos—1 U {ast Anrs = Ao for (1) # (i1, j;). Otherwise
we consider two cases:

Case L xy #y. We fix 4, 56 = Ay gos—1 U{as), Ay = Ay for
(k,1) # (i1,71) and create a negative (s)g-requirement y.

Case 1L 5 = y. We find effectively (is, ja) # (i1, /1) such that ([ A ] C©
[eipland fix Ag, j6 = Ao gays Uk Apays = Aoy for (k1) # (is, ja).

Finally, we take 4, = US€N.~10‘5. a € w>.

Obviously, the construction is effective. hence the sequence {A,aen is re
Moreover, {4, },c.2 is a sequence of disjoint subsets of Ny since one element may
be placed in only one A4,.

Lemma 11. The set Ny \ A is infinite.

Proof. Let (Ny), = {z]r € N1&z < n}.
We will prove that the set (Ny),,,; N (N, \ A) contains at least n elements or.

C . o nin -4 1
which is the same, [(1\'1),.(,” N4l < Q_’ .

Indeed, for every (e,i.j,i;.j1) such that (i,j) < (i1.j;) we have no more
than (e, ,j,11,51) + 1 (e.i,j, i1, j1)-requirements and each of them is greater than
r{{e,7,j,11,71)) and belongs to some 4, C A. Therefore, in [(Ny).,) N A| there
are only m-requirements for m < n, i.e. in {(N1) r(ny N A there are no more than

n(n+1)

14+24 ... 4+n= 5 elements. Lemma 11 is proved.
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Lemma 12. The set Ny \ A is immune. i.e. Ny \ A does not contain infinite
r.e. siubset.

Proof. Let us assume that there exists a set C° C Ny \ A. which is infinite and
r.e. and g € N5, Obviously,

fla) = if v € C.
undefmed otherwise

is a p.r.f. Let e be a natural number, such that f = &, and let » € Dom(f' be such
that 2 > r({e.0,1,0,2)) and sy be the least s satisfying the equality ®, .(x) = f(x).
Then x must be an {(e.0, 1,0, 2)-requirement created on some step s > sg su(.h that
(s)o = (e.0.1.0,2), i.e. € A is non-empty. which contradicts the assumption.
Therefore. Ny \ 4 is immune.

Lemma 13. For any natural number e, such that Ny C Dom{®,.), and for
every {e.i.j.iy. 1), such that (i.j) < (i1. 1), there exists a constant le i, joirJu)-
requirenient.

Proof. Assume that there is no constant (e,i.j, 41, ji)-requirement, where
(i.j) < (i1.j1) and N7 € Dom(®.). We find an so such that if s > sp and
(e'.i". 7' i j1) < {e.i.j.i1.ji). then every constant {¢',i", j' ) ,j1)-requirement is
already croated. Morcover, let # € Ny \ A, # > r({e.i.j,i1, 7)) and s be such
that s > sg, @, ()®:(r) and (s)o = {e,%, .71, 71). Then on step s a constant
le.i,j.iy. ) )-requirement @ would be Crcated Lemma 13 is proved.

Now we will prove Theorem 1. Let us assume that [d;, ;] <m [Aa )] and
(i.7) < (i1.j1). Therefore. there exists a total recursive function f such that
vo(z € [y, ] = flz) € [‘llzﬁ]

Let ¢ be such that ®, = f. It follows from Lemma 13 that there exists a
constant {e.i.j.1;.j1)-requirement z, created on step s. Then z; € M, flzs) = =2,
» = ©:(y). where 1" is either a composition of {H} (N OF v = id, and y € Ng.

It is not posslble 2 € A jj.s—1. because then Ts € Agijy s since zg € A 5y C
A )] and f(zs) =z € (i)

It is also not possible z € ;1 -1 for some (i'.j") # (i.]), because then
2y € Ay gvrs © Agi gy C [y gn] and flag) =z € [dg gyl

It is also not possible 4 # ¥, because 5 € Ay jiys © Ay € (A, iy and
flas) =z ¢ Urxe.,.sz{-'la]

Therefore, 75 = y. Then (is.jo) # (iv.j1), ©{[Ag. . nl) € [Hup] and @y €
Ainores © Aingay © [ j»1)- The received (ontla(hctxon shows that the assump-
tion [A¢s, i) <m [4¢iy] is not true. Theorem 1 is proved.

Corollary 4. There exists an r.e. ti-degree, which contains different m-degrees
of the type of W?.
Now we consider the corresponding functions for the case b € N k>2 —

{67 }. 6o. 6. 2 with Dom(6}},) = Ran(#};,) = Dom(f;) = Ran(f;) = wF, m e N,

m
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(0,?'0_....,1,‘1,.}, if f] =0,
Oi(iy,....ig) =< (i; —1.0..... 0). if iy, >0 & @5 is even.
(iy, - 1,2,0..... 0), if7, >0 & 75 is odd :

(0,1,1‘3,...,2'“, if[1=0&i~_)20,

o (0,4, ix). if iy = 0 & iy >0,

A0 =0 G700 i), i > 0 & (is s odd Via = 0),
(il—-l,l,O,...,O), if i) >0 & 75 is even & i > 0

('il,....ik_] +1.0). if iy =1,
6) (i1, vip) = (iys..nipmr. D), if ij, = 0.
(i],...,l‘kw1+l,i;,-), ifikg{o,[}.
(iy +1,0,15, ... .'2';.-), if ip = 1.
0y iny.yin) = (iy + 1,15, . i), ifdo =0,
(i] +1,i2....,ik), if i» Q{OI}.

leN,

Analogously, one can prove the following

Theorem 2. There exists an r.e. be-degree, which contains different m-degrees

of the type of Wk for any positive integer k.

Corollary 5. There exists an r.e. tt-degree, which contains different m-degrees

of the type of W* for any positive integer k.

We will construct also an r.e. be-degree, which considered as an upper-semi-
lattice of m-degree contains a set of type @ of different r.e. m-degree. The idea for

constructing such r.e. be-degree is the same as in Theorem 1.

Let Q be the set of rational numbers with the usual ordering, ( be the set
{(ay.as + 1)|a, € Z&as ¢ N}. It is well-known that we can represent @ with the
elements of () having in mind that two elements (ai,a2), (by.bs) represent the same

. a
rational number (

) iff ay.(by + 1) = (ay + 1).b;. We write

as +1
. 45] bl .
yas) < (b Jbo ) iff and writ
(01 as) ( 1,b2) 1 o+ 1 < by 1 1 and write
a by a by

as < b,l') ﬁ- T = .
(a1,az2) < (by,by) i (a,_)_*_1<b.2+101 as + 1 b2+1)

Let 6y, 6, and #> be the recursive functions with Dom(#;) = Ran(f,) = Q.

k= 0,1.2, defined as follows:
Oo(i.k)=(i+1,k). ieZ, ke N;

(¢ —3,k), ifrem(3.i) =0.
Or(i, k) =< (i—2,k), ifrem(3,i)=2,
(i, k), if rem(3,7) = 1;
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(i —3,k). if rem(3,7) =0,
O-(i. k) =< (i =1, k), ifrem(3,i) =1,
(1, k), if rem(3.1) = 2;

icZ, keN
The following lemmas are analogous to those before Theorem 1 and it Is easy
to check that they are again correct.

Lemma 14. Foralla € Q, i € Z and for every natural number k the following
equivalences hold:
a=(i.k) <= by(a)={(i.k+1);

a=(i+3.k) = 6i(a)= (i, k) & 0:(a) = (1, k).

Lemma 15. For all a.b € Q such that a =< b, there ezists a function 7, which
is a composition of the functions 6y, 01, 62. id such that Ve(c = a <= nic) = b).

Lemma 16. For all a,b € Q such that a < b, there exist functions ni, ...,
121, which are compositions of the functions 6y, 82 such that ¥Ye(e = b <= mlc) =
a&...& nyle) = a.

Lemma 17.a) If 0x(i1.51) = (i.j), k € {1,2} for some integers i, j such that
rem({3,1) = 0, then j; = j and there exists at least one iz # 1) such that the equation
Grlia. ) = (i,J) holds.

b) Let n be such composition of the functions 6y 0, 62 that at least one of 6, and
8. appears in n. If n(iy. j1) = (i.§) for some integers i, j, such that rem(3.7) =0,
then j, = j and there exists at least one iy # iy such that the equation n(ia,j) =
{7.j) holds.

Let »; = (i.2).7=0,1.2; 2 € Nand Ny = N\ (Ran(yo))URan (1 )URan{p2)}.

Definition. Let {A,}.co be a sequence of disjoint subset of Np. We define
the sequence {[A,]}acq of disjoint sets of natural numbers by the following rules:

(a) If p € A,, then p € [A,];

(b) If i € {0,1,2}. p € [4,] and 6;(a) = b, then p;(p) € [4s].

Lemma 18. If {A.}aco is a recursive (r.e.) sequence of disjoint subsets of
No. then {[44]}aco is a recursive (r.e.) sequence of disjoint sets.

Lemma 19. If {A.}aco is a sequence of disjoint subsets of No, then the
following equivalences hold for all natural z,j and integer i:

z € [Ai ] <= volz) € [Auspl

1 € [Ais3 )] = wilz) € [Auy] & pa(z) € [A0)]-
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Corollary 6. If {4, }.c0 is a sequence of disjoint subsets of Ny, then
(A ] <o [Aiiga jy] for all natural j and integer i.

Corollary 7. If {4, }uzq is a sequence of disjoint subsets of No. then [4,] =.
[Ap] for all a,b e Q.

Corollary 8. If {4, }.cq is a sequence of disjoint subsets of Ny, then [4,] =,
[Ap] for all a,b € Q.

Lemma 20. For every natural number x, either x € Ny or there exists an
effective way to find a function . which is a composition of the functions 6y, 6.
B> and y € Ny such that o(y) = z.

Lemma 21. Let {d,}.c0 be a sequence of disjoint subsets of Ny. For any
function . which is a composition of the functions 6y, 6,. 85, and for any a € Q
there exists b € () such that o{[A,]) C [4].

Lemma 22. Let {A,}.co be a sequence of disjoint non-empty subsets of Ny.
For any function @, which is a composition of the functions 6y. 8. 85, and for any
a.b € Q there exists an effective way to verify whether or not o([4,]) C [4y].

Lemma 23. Let {4,}.co be a sequence of disjoint non-empty subsets of Ny
and @ be a composition of the functions g, 8y, 6. If a.b € Q are such that
o([A.]) C[Ay], then there exist at least two different elements ¢y.co € Q such that

([ Ae,]) C [As] and ([ Ae]) € [As).

Theorem 3. There exists an r.e. be-degree, which contains different m-degrees

of the type of Q.

Proof. The construction of such a degree is analogous to that in Theorem 1.
Le. we construct an r.e. sequence {A,}.eq of disjoint subset of Ny such that if
a < b, then [A,] <, [43], but [4;] £ [Ad].

We construct the sets {4, }.c0o by steps. building the finite approximation A, ;
of 4,, a € (, on step s.

On step s if (s)o = (e.4,7,71.7;) and (i.j) < (i1.j1). then our aim is to satisfy
that the function ®, does not m-reduce [4,,, ;] to [ ;1]. i.e. to find such a
witness z € Dom(®,) that at least one of the following two conditions is satisfied:

)z A 0] & Pela) € (A p);

(i) z¢€ [A(il‘;il)] & @.(x) ¢ [‘4(1~J'}]'

Since the definitions are the same as in Theorem 1, we omit them and describe
the construction of the sequence {4, }qe0.

Step s = 0. Let N2 = {ap < ay <...}: we take A jy0 = an -

Step s > 0. If neither [Seq;((s)o) nor Seq;((s)o)&(((s)o)1.((s)o)s + 1) <
(((s)o)s.((s)o)s + 1)], then we do nothing, i.e. we take Aijys ™ Aijrs—1: 1 €
Z.j € N, and do not create any requirements.
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If Seq- ((s)o) and s = {e,7.7.11,71). where (i, j) < (iy,j1), we verify whether an
active (s)o-requirement exists. If there exists such a requirement. then do nothing,.

If such a requirement does not exist. then we verify whether there exists an
r € Ny such that @ > r{{(s)o). © € Dom(®, ). v & Uscodas—1 and 2 does
not belong to any active negative requirement, created on a step f < s such that
(t)o < (s)g. If such an r does not exist. then we do nothing.

Otherwise. we denote by xg the least such z and create an (s)g-requirement
ry. Let @.{z,) = z and v(y) = z, where v is either a composition of the functions
{or}o<k<r or ¥ =1id and y € No.

We verify whether z € 4, ;) 5-1. If so. then we fix Ay ;)6 = Ay U{zs)s
Apenys = Ay.s—1 for (B0} # (7.7).

Otherwise. we verifv if = € Ay ;51 for some (i', ') # (i.j). If so, then fix
At s = Ay s Y{rs s Apens = Apns— for (k1) # (41, 51). Otherwise,
we consider two cases:

Case I x5 # y. We fix Agy s = Apgos—1 U{zsd, Apns = Apens— for
(k.1) # (i1. 1) and create a negative e-requirement y.

Case I1. zs = y. We find effectively (i, jo) # (i1, 1) such that ({4, j,]) C
Ay and fix Ay oy = Ais)s—1U{Ts ) Aeys = Apeays—r for (k1) # (i, jo).

Finally, we take 4, = UseNAa_s._ a€ Q.

Obviously, the construction is effective, hence the sequence {4, }.cq is an r.c.
sequence of disjoint subsets of Np.

The proofs of the following lemmas are analogous to those in Theorem 1.

Lemma 24. The set N\ A is infinite.
Lemma 25. The set N7\ 4 is immaune.

Lemma 26. For any natural number e, such that Ny C Dom(®.). and for
every {e,i.j.i1, j1), such that (i,J) < (i1,]1), there exists a constant (e,i,j.11, j1)-
requirement.

Theorem 3 is completed.

Corollary 9. There exists an r.e. tt-degree, which contains different m-degrees

of the type of Q.

Combining the technique from Theorem 1 above and 3], Theorem 1 , one can
receive that there exists an r.e. pc-degree, which contains infinite antichains of
chains of the type of w* for different numbers k (but r.e.).
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