ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 96

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 96

SOME RESULTS ON THE UPPER-SEMILATTICE OF R.E. m-DEGREES INSIDE A SINGLE R.E. tt-DEGREE

ANGEL V. DITCHEV

In this paper it is shown that: 1) There exists such a tt-degree which contains infinitely many m-degrees of the type of ω^k for any positive natural number k; 2) There exists such a tt-degree which contains infinitely many m-degrees of the type of $\mathbb Q$ of rational numbers.

Keywords: m-degrees, tt-degrees, upper semilattice

2000 MSC: 03D25, 03D30, 03D45, 03C57

In [1-7] Degtev, Ditchev and Downey have considered how many recursively enumerable (r.e.) m-degrees could be contained in a single r.e. tt-degree. It is shown in [2, 5, 6] that a single r.e. tt-degree can contain finitely many m-degrees, and in [3, 4, 7] — infinitely many r.e. m-degrees. In the case when a single r.e. tt-degree contains infinitely many r.e. m-degrees, it is known that they can be linearly ordered in the type of the ordinal ω [7] and can be mutually incomparable [3, 4]. In the present paper we show that a single r.e. tt-degree (even pc-degree) can contain infinitely many m-degrees with type the ordinal ω^k for every natural number k and with type $\mathbb Q$ of the rational numbers.

In this paper we use \mathbb{N} to denote the set of all natural numbers, \mathbb{Z} — the set of all integers, and \mathbb{Q} — the set of all rational numbers. We use also ω^k to denote the usual ordinal number.

If f is a partial function, we use Dom(f) to denote the domain and Ran(f) — the range of values of the function f.

If A is a finite set, we use |A| to denote the cardinality of the set A. Let us remind some definitions from [9, 10] and give some new ones.

Let Π , L, R be the usual primitive recursive functions such that $Dom(\Pi) = \mathbb{N}^2$, $Ran(\Pi) = Dom(L) = Dom(R) = Ran(L) = Ran(R) = \mathbb{N}$, which satisfy the following equations for all natural numbers x, y:

$$L(\Pi(x,y)) = x, \ R(\Pi(x,y)) = y, \ \Pi(L(x),R(x)) = x.$$

If β is a Goedel function, then for every natural numbers k, p_1, \ldots, p_k, i . k > 0, we use the following notations:

$$\langle p_1, \dots, p_k \rangle = \mu p[\beta(p, 0) = k \& \beta(p, 1) = p_1 \& \dots \& \beta(p, k) = p_k];$$

$$\operatorname{lh}(p) = \beta(p, 0); \quad (p)_i = \beta(p, i + 1);$$

$$\operatorname{Seq}(p) \iff \forall x (x
$$\operatorname{Seq}_k(p) \iff \operatorname{Seq}(p) \& \operatorname{lh}(p) = k.$$$$

 $\langle p_1, \ldots, p_k \rangle$ is a code of the sequence p_1, \ldots, p_k , lh(p) — the length of the sequence with code p, and Seq and Seq_k are predicates, which indicate a sequence and a sequence with length k, respectively.

A set A is said to be m-reducible to a set B $(A \leq_m B)$ iff there exists a total recursive function f such that the following equivalence hold:

$$\forall x (x \in A \iff f(x) \in B).$$

The set A is said to be bounded conjunctive reducible (bc-reducible) to the set B iff there exist natural number k and k total recursive functions f_1, \ldots, f_k , which satisfy the following equivalence:

$$\forall x [x \in A \iff f_1(x) \in B\& \dots \& f_k(x) \in B].$$

If r is any reducibility, a set A is said to be r-equivalent to a set B $(A \equiv_r B)$ iff $A \leq_r B$ and $B \leq_r A$. For any reducibility r the r-degree of the set A is called the family $d_r(A) = \{B | B \equiv_r A\}$. If some r-degree contains a set A, which is recursively enumerable, then this r-degree is said to be recursively enumerable (r.e.).

The ordinal ω^k we represent as the set $\{(a_1,\ldots,a_k)|a_1\in\mathbb{N}\&\ldots\&a_k\in\mathbb{N}\}$ and the order is the usual lexical one:

$$(a_1,\ldots,a_k) \prec (b_1,\ldots,b_k) \iff$$

$$(a_1 < b_1) \lor (a_1 = b_1 \& a_2 < b_2) \lor \ldots \lor (a_1 = b_1 \& a_2 = b_2 \& \ldots \& a_{k-1} = b_{k-1} \& a_k < b_k).$$

We are constructing an r.e. bc-degree, which considered as an upper-semilattice of m-degree contains a set of type ω^k of different r.e. m-degrees. The idea for constructing such r.e. bc-degree comes from the effective structures with functions and without predicates. The functions are choosen in an appropriate way to ensure that the choosen sets are in the same bc-degree and in the above-mentioned order.

For the sake of simplicity, we consider in full only the case k=2.

Let $\{\theta_k\}$, $k \in \mathbb{N}$, be the recursive functions with $Dom(\theta_k) = Ran(\theta_k) = \omega^2$, $k \in \mathbb{N}$, defined as follows:

$$\theta_0(i,j) = (i,j+1), \quad i,j \in \mathbb{N};$$

$$\theta_1(i,j) = \begin{cases} (0,j), & \text{if } i = 0, \\ (i-1,0), & \text{if } i > 0 \& j \text{ is even,} \\ (i-1,2), & \text{if } i > 0 \& j \text{ is odd }; \end{cases}$$

$$\theta_2(i,j) = \begin{cases} (0,1), & \text{if } i = 0 \& j = 0, \\ (0,j), & \text{if } i = 0 \& j > 0, \\ (i-1,0), & \text{if } i > 0 \& (j \text{ is odd } \lor j = 0), \\ (i-1,1), & \text{if } i > 0 \& j \text{ is even } \& j > 0; \end{cases}$$

$$\theta_{k+3}(i,j) = \begin{cases} (i+1,0), & \text{if } j = k, \\ (i+1,k), & \text{if } j = 0, \\ (i+1,j), & \text{if } j \notin \{0,k\}, \end{cases}$$

 $k \in \mathbb{N}$.

It is easy to check that the following lemmas are correct.

Lemma 1. For all $a \in \omega^2$ and for all natural numbers i, j and k the following equivalences hold:

$$a = (i, j) \iff \theta_0(a) = (i, j + 1);$$

$$a = (i, k) \iff \theta_{k+3}(a) = (i + 1, 0);$$

$$a = (i + 1, 0) \iff \theta_1(a) = (i, 0) \& \theta_2(a) = (i, 0).$$

Lemma 2. For all $a, b \in \omega^2$, such that $a \leq b$, there exists a function η , which is a composition of the functions θ_0 , $\{\theta_{k+3}\}_{k \in \mathbb{N}}$, id such that $\forall c(c = a \iff \eta(c) = b)$.

Lemma 3. a) For all natural numbers i, j such that i < j there exist functions $\eta_1, \ldots, \eta_{2l}$, which are compositions of the functions θ_1, θ_2 , such that $\forall a (a = (j, 0) \iff \eta_1(a) = (i, 0) \& \ldots \& \eta_{2l}(a) = (i, 0)$.

b) For all $a, b \in \omega^2$ such that $a \prec b$ there exist functions $\eta_1, \ldots, \eta_{2l}$, which are compositions of the functions $\{\theta_k\}_{k \in \mathbb{N}}$, such that $\forall c(c = b \iff \eta_1(c) = a \& \ldots, \& \eta_{2l}(c) = a)$.

We say that a set A contains almost all even (odd) numbers iff there exists a finite set B such that all even (odd) numbers are subset of $A \cup B$.

Lemma 4. a) If $\theta_k(i+1,j) = (i_1,j_1)$, k = 1,2, for some natural numbers i_1 , j_1 , then either for almost all even numbers j' or for almost all odd numbers j' the equation $\theta_k(i+1,j') = (i_1,j_1)$ holds.

b) Let η be such composition of the functions $\{\theta_k\}_{k\in\mathbb{N}}$ that at least one of θ_1 and θ_2 appears in η . If $\eta(i+1,j)=(i_1,j_1)$ for some natural numbers i_1,j_1 , then either for almost all even numbers j' or for almost all odd numbers j' the equation $\eta(i+1,j')=(i_1,j_1)$ holds.

Let
$$\varphi_i = \langle i, x \rangle$$
, $i \in \mathbb{N}$, and $N_0 = \mathbb{N} \setminus (\bigcup_{i \in \mathbb{N}} \operatorname{Ran}(\varphi_i))$.

Definition. Let $\{A_a\}_{a\in\omega^2}$ be a sequence of disjoint subsets of N_0 . We define the sequence $\{[A_a]\}_{a\in\omega^2}$ of disjoint sets of natural numbers by the following rules:

- (a) If $p \in A_a$, then $p \in [A_a]$;
- (b) If $i \in \mathbb{N}$, $p \in [A_a]$, and $\theta_i(a) = b$, then $\varphi_i(p) \in [A_b]$.

Lemma 5. If $\{A_a\}_{a\in\omega^2}$ is a recursive (r.e.) sequence of disjoint subsets of N_0 , then $\{[A_a]\}_{a\in\omega^2}$ is a recursive (r.e.) sequence of disjoint sets.

Lemma 6. If $\{A_a\}_{a\in\omega^2}$ is a sequence of disjoint subsets of N_0 , then the following equivalences hold for all natural x, i, j:

$$x \in [A_{(i,j)}] \iff \varphi_0(x) \in [A_{(i,j+1)}];$$

$$x \in [A_{(i,k)}] \iff \varphi_{k+3}(x) \in [A_{(i+1,0)}];$$

$$x \in [A_{(i+1,0)}] \iff \varphi_1(x) \in [A_{(i,0)}] \& \varphi_2(x) \in [A_{(i,0)}].$$

Corollary 1. If $\{A_a\}_{a\in\omega^2}$ is a sequence of disjoint subsets of N_0 , then $[A_{(i,j)}] \leq_m [A_{(i,j+1)}]$ and $[A_{(i,k)}] \leq_m [A_{(i+1,0)}]$ for all natural numbers i,j.

Corollary 2. If $\{A_a\}_{a\in\omega^2}$ is a sequence of disjoint subsets of N_0 , then $[A_a] \equiv_{bc} [A_b]$ for all $a, b \in \omega^2$.

Corollary 3. If $\{A_a\}_{a\in\omega^2}$ is a sequence of disjoint subsets of N_0 , then $[A_a] \equiv_{tt} [A_b]$ for all $a, b \in \omega^2$.

Lemma 7. For every natural number x, either $x \in N_0$ or there exists an effective way to find a function φ , which is a composition of the functions $\{\theta_k\}_{k \in \mathbb{N}}$ and $y \in N_0$ such that $\varphi(y) = x$.

Lemma 8. Let $\{A_a\}_{a\in\omega^2}$ be a sequence of disjoint subsets of N_0 . For any function φ , which is a composition of the functions $\{\theta_k\}_{k\in\mathbb{N}}$, and for any $a\in\omega^2$ there exists $b\in\omega^2$ such that $\varphi([A_a])\subseteq [A_b]$.

Lemma 9. Let $\{A_a\}_{a\in\omega^2}$ be a sequence of disjoint non-empty subsets of N_0 . For any function φ , which is a composition of the functions $\{\theta_k\}_{k\in\mathbb{N}}$, and for any $a,b\in\omega^2$ there exists an effective way to verify whether or not $\varphi([A_a])\subseteq [A_b]$.

Lemma 10. Let $\{A_a\}_{a\in\omega^2}$ be a sequence of disjoint non-empty subsets of N_0 and φ be a composition of the functions $\{\theta_k\}_{k\in\mathbb{N}}$. If $a,b\in\omega^2$ are such that $\varphi([A_a])\subseteq [A_b]$, then there exist infinitely many $c\in\omega^2$ such that $\varphi([A_c])\subseteq [A_b]$.

Let $N_0 = N_1 \cup N_2$, where N_1 and N_2 are infinite disjoint recursive sets, and let r' be a monotonically increasing function such that $\operatorname{Ran}(r') = N_1$ and $r(n) = r'(\frac{n(n+1)}{2} + n)$. In addition, let Φ be a partial recursive function (p.r.f.), which is universal for all unary p.r.f. Let $\Phi_e = \lambda x.\Phi(e,x)$ and $\Phi_{e,s}$ be a finite p.r. approximation of Φ_e , i.e.

 $\Phi_{e,s}(x) \!\cong\! \left\{ \begin{array}{ll} \Phi_e(x), & \text{if } x \in \mathrm{Dom}(\Phi_e)\&\ \Phi_e(x) \text{ is computable in less than } s \text{ steps,} \\ \text{undefined,} & \text{otherwise.} \end{array} \right.$

Theorem 1. There exists an r.e. bc-degree, which contains different m-degrees of the type of ω^2 .

Proof. In order to construct such a degree, we shall construct an r.e. sequence $\{A_a\}_{a\in\omega^2}$ of disjoint subset of N_0 such that if $a \prec b$, then $[A_a] \leq_m [A_b]$, but $[A_b] \not\leq_m [A_a]$. Then it will follow from Corollary 2 that all sets $\{A_a\}_{a\in\omega^2}$ are in the same bc-degree and, therefore, the proof will be completed.

We construct the sets $\{A_a\}_{a\in\omega^2}$ by steps, building a finite approximation $A_{a,s}$ of A_a on step $s, a \in \omega^2$.

On step s, if $(s)_0 = \langle e, i, j, i_1, j_1 \rangle$ and $(i, j) \prec (i_1, j_1)$, then our aim is to satisfy that the function Φ_e does not m-reduce $[A_{(i_1,j_1)}]$ to $[A_{(i,j)}]$, i.e. to find such a witness $x \in \text{Dom}(\Phi_e)$ that at least one of the following two conditions is satisfied:

- (i) $x \notin [A_{(i_1,j_1)}] \& \Phi_e(x) \in [A_{(i,j)}];$
- (ii) $x \in [A_{(i_1,j_1)}] \& \Phi_e(x) \not\in [A_{(i,j)}].$

For this purpose on step s if we find an x, such that $x \in \text{Dom}(\Phi_e)$, then we would like to do the following:

If $\Phi_e(x) \in [A_{(i,j)}]$, then to put x outside of $A_{(i_1,j_1)}$, satisfying (i).

If $\Phi_e(x) \notin [A_{(i,j)}]$, then to put x in $A_{(i_1,j_1)}$, satisfying (ii).

If on step s, x is placed in some set A_a in order to satisfy either (i) or (ii), we create an $(s)_0$ -requirement x. In this case, if x satisfies (ii), we need also some element y not to belong to a chosen set A_a . So, we create a negative $(s)_0$ -requirement y. To guarantee that for any e, such that Φ_e is a total, and for every $(i,j), (i_1,j_1)$, such that $(i,j) \prec (i_1,j_1)$, there exists an x satisfying either (i) or (ii), we shall use the priority argument, so that the smaller $(s)_0$ will have priority.

If x is an $(s)_0$ -requirement and y is a negative $(s)_0$ -requirement, created on step s, and till step t the condition (ii), which is satisfied on step s, is not injured, then we say that the $(s)_0$ -requirement and the negative $(s)_0$ -requirement are active on step t.

If an $(s)_0$ -requirement x satisfies (i), then we call it *active* on any step t > s.

If an $(s)_0$ -requirement (a negative $(s)_0$ -requirement) created on step s is active on every step t > s, then we say that it is a *constant*.

Now we can describe the construction of the sequence $\{A_a\}_{a\in\omega^2}$.

Step s = 0. Let $N_2 = \{a_0 < a_1 < \ldots\}$; we take $A_{(i,j),0} = \{a_{\Pi(i,j)}\}$. Thus it is ensured that $A_{(i,j)}$ is non-empty.

Step s > 0. If neither Seq($(s)_0$) nor Seq₅($(s)_0$) & ($((s)_0)_1, ((s)_0)_2$) $\not\prec$ (($(s)_0)_3, ((s)_0)_4$), then we do nothing, i.e. we take $A_{(i,j),s} = A_{(i,j),s-1}, i,j \in \mathbb{N}$, and do not create any requirements.

If $Seq_5((s)_0)$ and $s = \langle e, i, j, i_1, j_1 \rangle$, where $(i, j) \prec (i_1, j_1)$, we verify whether an active $(s)_0$ -requirement exists. If there exists such a requirement, then do nothing.

If such a requirement does not exist, then we verify whether there exists an $x \in N_1$ such that $x > r((s)_0)$, $x \in \text{Dom}(\Phi_{e,s})$, $x \notin \bigcup_{a \in \omega^2} A_{a,s-1}$ and x does not belong to any active negative requirement, created on a step t < s such that $(t)_0 < (s)_0$. If such an x does not exist, then we do nothing.

Otherwise, we denote by x_s the least such x and create an $(s)_0$ -requirement x_s . Let $\Phi_e(x_s) = z$ and $\psi(y) = z$, where ψ is either a composition of the functions $\{\varphi_k\}_{k \in \mathbb{N}}$ or $\psi = \mathrm{id}$ and $y \in N_0$.

We verify whether $z \in A_{(i,j),s-1}$. If so, then we fix $A_{(i,j),s} = A_{(i,j),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i,j)$.

Otherwise, we verify if $z \in A_{(i',j'),s-1}$ for some $(i',j') \neq (i,j)$. If so, then fix $A_{(i_1,j_1),s} = A_{(i_1,j_1),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i_1,j_1)$. Otherwise we consider two cases:

Case I. $x_s \neq y$. We fix $A_{(i_1,j_1),s} = A_{(i_1,j_1),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i_1,j_1)$ and create a negative $(s)_0$ -requirement y.

Case II. $x_s = y$. We find effectively $(i_2, j_2) \neq (i_1, j_1)$ such that $\psi([A_{(i_2, j_2)}]) \subseteq [A_{(i,j)}]$ and fix $A_{(i_2, j_2), s} = A_{(i_2, j_2), s-1} \cup \{x_s\}, A_{(k,l), s} = A_{(k,l), s-1}$ for $(k, l) \neq (i_2, j_2)$. Finally, we take $A_a = \bigcup_{s \in \mathbb{N}} A_{a,s}, \ a \in \omega^2$.

Obviously, the construction is effective, hence the sequence $\{A_a\}_{a\in\omega^2}$ is r.e. Moreover, $\{A_a\}_{a\in\omega^2}$ is a sequence of disjoint subsets of N_0 since one element may be placed in only one A_a .

Lemma 11. The set $N_1 \setminus A$ is infinite.

Proof. Let $(N_1)_n = \{x | x \in N_1 \& x < n\}.$

We will prove that the set $(N_1)_{r(n)} \cap (N_1 \setminus A)$ contains at least n elements or, which is the same, $|(N_1)_{r(n)} \cap A| \leq \frac{n(n+1)}{2}$.

Indeed, for every $\langle e, i, j, i_1, j_1 \rangle$ such that $(i, j) \prec (i_1, j_1)$ we have no more than $\langle e, i, j, i_1, j_1 \rangle + 1$ $\langle e, i, j, i_1, j_1 \rangle$ -requirements and each of them is greater than $r(\langle e, i, j, i_1, j_1 \rangle)$ and belongs to some $A_a \subseteq A$. Therefore, in $|(N_1)_{r(n)} \cap A|$ there are only m-requirements for m < n, i.e. in $|(N_1)_{r(n)} \cap A|$ there are no more than

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$
 elements. Lemma 11 is proved.

Lemma 12. The set $N_1 \setminus A$ is immune, i.e. $N_1 \setminus A$ does not contain infinite r.e. subset.

Proof. Let us assume that there exists a set $C \subseteq N_1 \setminus A$, which is infinite and r.e. and $x_0 \in N_2$. Obviously,

$$f(x) = \begin{cases} x_0, & \text{if } x \in C, \\ \text{undefined}, & \text{otherwise} \end{cases}$$

is a p.r.f. Let e be a natural number, such that $f = \Phi_e$ and let $x \in \text{Dom}(f)$ be such that $x > r(\langle e, 0, 1, 0, 2 \rangle)$ and s_0 be the least s satisfying the equality $\Phi_{\epsilon,s}(x) = f(x)$. Then x must be an $\langle e, 0, 1, 0, 2 \rangle$ -requirement created on some step $s > s_0$ such that $\langle s \rangle_0 = \langle e, 0, 1, 0, 2 \rangle$, i.e. $C \cap A$ is non-empty, which contradicts the assumption. Therefore, $N_1 \setminus A$ is immune.

Lemma 13. For any natural number e, such that $N_1 \subseteq \text{Dom}(\Phi_e)$, and for every $\langle e, i, j, i_1, j_1 \rangle$, such that $(i, j) \prec (i_1, j_1)$, there exists a constant $\langle e, i, j, i_1, j_1 \rangle$ -requirement.

Proof. Assume that there is no constant $\langle e, i, j, i_1, j_1 \rangle$ -requirement, where $(i,j) \prec (i_1,j_1)$ and $N_1 \subseteq \text{Dom}(\Phi_e)$. We find an s_0 such that if $s \geq s_0$ and $\langle e', i', j', i'_1, j'_1 \rangle < \langle e, i, j, i_1, j_1 \rangle$, then every constant $\langle e', i', j', i'_1, j'_1 \rangle$ -requirement is already created. Moreover, let $x \in N_1 \setminus A$, $x > r(\langle e, i, j, i_1, j_1 \rangle)$ and s be such that $s \geq s_0$, $\Phi_{e,s}(x)\Phi_e(x)$ and $(s)_0 = \langle e, i, j, i_1, j_1 \rangle$. Then on step s a constant $\langle e, i, j, i_1, j_1 \rangle$ -requirement x would be created. Lemma 13 is proved.

Now we will prove Theorem 1. Let us assume that $[A_{(i_1,j_1)}] \leq_m [A_{(i,j)}]$ and $(i,j) \prec (i_1,j_1)$. Therefore, there exists a total recursive function f such that $\forall x(x \in [A_{(i_1,j_1)}] \iff f(x) \in [A_{(i,j)}])$.

Let e be such that $\Phi_e = f$. It follows from Lemma 13 that there exists a constant $\langle e, i, j, i_1, j_1 \rangle$ -requirement x_s , created on step s. Then $x_s \in N_1$, $f(x_s) = z$, $z = \psi(y)$, where ψ is either a composition of $\{\varphi_k\}_{k \in \mathbb{N}}$ or $\psi = \mathrm{id}$, and $y \in N_0$.

It is not possible $z \in A_{(i,j),s-1}$, because then $x_s \in A_{(i,j),s}$, since $x_s \in A_{(i,j)} \subseteq [A_{(i,j)}]$ and $f(x_s) = z \in [A_{(i,j)}]$.

It is also not possible $z \in A_{(i',j'),s-1}$ for some $(i',j') \neq (i,j)$, because then $x_s \in A_{(i_1,j_1),s} \subseteq A_{(i_1,j_1)} \subseteq [A_{(i_1,j_1)}]$ and $f(x_s) = z \in [A_{(i_1,j_1)}]$.

It is also not possible $x_s \neq y$, because $x_s \in A_{(i_1,j_1),s} \subseteq A_{(i_1,j_1)} \subseteq [A_{(i_1,j_1)}]$ and $f(x_s) = z \notin \bigcup_{a \in \omega^2} [A_a]$.

Therefore, $x_s = y$. Then $(i_2, j_2) \neq (i_1, j_1)$, $\psi([A_{(i_2, j_2)}]) \subseteq [A_{(i,j)}]$ and $x_s \in A_{(i_2, j_2), s} \subseteq A_{(i_2, j_2)} \subseteq [A_{(i_2, j_2)}]$. The received contradiction shows that the assumption $[A_{(i_1, j_1)}] \leq_m [A_{(i,j)}]$ is not true. Theorem 1 is proved.

Corollary 4. There exists an r.e. tt-degree, which contains different m-degrees of the type of ω^2 .

Now we consider the corresponding functions for the case $k \in \mathbb{N}, k > 2 - \{\theta_m^n\}$. θ_0 , θ_1 , θ_2 with $Dom(\theta_m^n) = Ran(\theta_m^n) = Dom(\theta_l) = Ran(\theta_l) = \omega^k$, $m \in \mathbb{N}$,

 $n = 1, \dots, k - 1, l = 0, 1, 2$ defined as follows:

$$\theta_0(i_1,\ldots,i_k) = (i_1,\ldots i_{k-1},i_k+1), \quad i_1,\ldots i_k \in \mathbb{N}:$$

$$\theta_1(i_1,\ldots,i_k) = \begin{cases} (0,i_2,\ldots,i_k), & \text{if } i_1 = 0,\\ (i_1-1,0,\ldots,0), & \text{if } i_1 > 0 \ \& \ i_2 \text{ is even},\\ (i_1-1,2,0,\ldots,0), & \text{if } i_1 > 0 \ \& \ i_2 \text{ is odd} \end{cases};$$

$$\theta_2(i_1,\ldots,i_k) = \begin{cases} (0,1,i_3,\ldots,i_k), & \text{if } i_1 = 0 \ \& \ i_2 = 0,\\ (0,i_2,\ldots,i_k), & \text{if } i_1 = 0 \ \& \ i_2 > 0,\\ (i_1-1,0,\ldots,i_k), & \text{if } i_k > 0 \ \& \ (i_2 \text{ is odd} \ \lor i_2 = 0),\\ (i_1-1,1,0,\ldots,0), & \text{if } i_1 > 0 \ \& \ i_2 \text{ is even} \ \& \ i_2 > 0; \end{cases}$$

$$\theta_l^1(i_1,\ldots,i_k) = \begin{cases} (i_1,\ldots,i_{k-1}+1,0), & \text{if } i_k = l,\\ (i_1,\ldots,i_{k-1},l), & \text{if } i_k = 0,\\ (i_1,\ldots,i_{k-1}+1,i_k), & \text{if } i_k \notin \{0,l\}, \end{cases}$$

$$\theta_l^{k-1}(i_1,\ldots,i_k) = \begin{cases} (i_1+1,0,i_3,\ldots,i_k), & \text{if } i_2 = l,\\ (i_1+1,l,i_3,\ldots,i_k), & \text{if } i_2 = 0,\\ (i_1+1,l,i_3,\ldots,i_k), & \text{if } i_2 \notin \{0,l\}, \end{cases}$$

 $l \in \mathbb{N}$.

Analogously, one can prove the following

Theorem 2. There exists an r.e. bc-degree, which contains different m-degrees of the type of ω^k for any positive integer k.

Corollary 5. There exists an r.e. tt-degree, which contains different m-degrees of the type of ω^k for any positive integer k.

We will construct also an r.e. bc-degree, which considered as an upper-semilattice of m-degree contains a set of type $\mathbb Q$ of different r.e. m-degree. The idea for constructing such r.e. bc-degree is the same as in Theorem 1.

Let \mathbb{Q} be the set of rational numbers with the usual ordering, Q be the set $\{(a_1, a_2 + 1) | a_1 \in \mathbb{Z} \& a_2 \in \mathbb{N}\}$. It is well-known that we can represent \mathbb{Q} with the elements of Q having in mind that two elements $(a_1, a_2), (b_1, b_2)$ represent the same rational number $(\frac{a_1}{a_2+1})$ iff $a_1.(b_2+1)=(a_2+1).b_1$. We write

$$(a_1,a_2) \prec (b_1,b_2)$$
 iff $\frac{a_1}{a_2+1} < \frac{b_1}{b_2+1}$ and write $(a_1,a_2) \preceq (b_1,b_2)$ iff $(\frac{a_1}{a_2+1} < \frac{b_1}{b_2+1})$ or $\frac{a_1}{a_2+1} = \frac{b_1}{b_2+1})$.
Let θ_0 , θ_1 and θ_2 be the recursive functions with $Dom(\theta_k) = Ran(\theta_k) = Q$.

k = 0, 1, 2, defined as follows:

$$\theta_0(i,k) = (i+1,k), \ i \in \mathbb{Z}, \ k \in \mathbb{N};$$

$$\theta_1(i,k) = \begin{cases} (i-3,k), & \text{if } rem(3,i) = 0, \\ (i-2,k), & \text{if } rem(3,i) = 2, \\ (i,k), & \text{if } rem(3,i) = 1; \end{cases}$$

$$\theta_2(i,k) = \begin{cases} (i-3,k), & \text{if } \text{rem}(3,i) = 0, \\ (i-1,k), & \text{if } \text{rem}(3,i) = 1, \\ (i,k), & \text{if } \text{rem}(3,i) = 2; \end{cases}$$

 $i \in \mathbb{Z}, k \in \mathbb{N}.$

The following lemmas are analogous to those before Theorem 1 and it is easy to check that they are again correct.

Lemma 14. For all $a \in \mathbb{Q}$, $i \in \mathbb{Z}$ and for every natural number k the following equivalences hold:

$$a = (i, k) \iff \theta_0(a) = (i, k + 1);$$

 $a = (i + 3, k) \iff \theta_1(a) = (i, k) \& \theta_2(a) = (i, k).$

Lemma 15. For all $a, b \in Q$ such that $a \leq b$, there exists a function η , which is a composition of the functions θ_0 , θ_1 , θ_2 , id such that $\forall c(c = a \iff \eta(c) = b)$.

Lemma 16. For all $a, b \in Q$ such that $a \leq b$, there exist functions $\eta_1, \ldots, \eta_{2l}$, which are compositions of the functions θ_1, θ_2 such that $\forall c(c = b \iff \eta_1(c) = a \& \ldots \& \eta_{2l}(c) = a$.

Lemma 17.a) If $\theta_k(i_1, j_1) = (i, j)$, $k \in \{1, 2\}$ for some integers i, j such that rem(3, i) = 0, then $j_1 = j$ and there exists at least one $i_2 \neq i_1$ such that the equation $\theta_k(i_2, j) = (i, j)$ holds.

b) Let η be such composition of the functions θ_0 θ_1 , θ_2 that at least one of θ_1 and θ_2 appears in η . If $\eta(i_1, j_1) = (i, j)$ for some integers i, j, such that $\operatorname{rem}(3, i) = 0$, then $j_1 = j$ and there exists at least one $i_2 \neq i_1$ such that the equation $\eta(i_2, j) = (i, j)$ holds.

Let
$$\varphi_i = \langle i, x \rangle$$
, $i = 0, 1, 2$; $x \in \mathbb{N}$ and $N_0 = \mathbb{N} \setminus (\operatorname{Ran}(\varphi_0)) \cup \operatorname{Ran}(\varphi_1) \cup \operatorname{Ran}(\varphi_2)$.

Definition. Let $\{A_a\}_{a\in Q}$ be a sequence of disjoint subset of N_0 . We define the sequence $\{[A_a]\}_{a\in Q}$ of disjoint sets of natural numbers by the following rules:

- (a) If $p \in A_a$, then $p \in [A_a]$;
- (b) If $i \in \{0, 1, 2\}, p \in [A_a] \text{ and } \theta_i(a) = b$, then $\varphi_i(p) \in [A_b]$.

Lemma 18. If $\{A_a\}_{a\in Q}$ is a recursive (r.e.) sequence of disjoint subsets of N_0 , then $\{[A_a]\}_{a\in Q}$ is a recursive (r.e.) sequence of disjoint sets.

Lemma 19. If $\{A_a\}_{a\in Q}$ is a sequence of disjoint subsets of N_0 , then the following equivalences hold for all natural x, j and integer i:

$$x \in [A_{(i,j)}] \iff \varphi_0(x) \in [A_{(i+1,j)}];$$

$$x \in [A_{(i+3,j)}] \iff \varphi_1(x) \in [A_{(i,j)}] \& \varphi_2(x) \in [A_{(i,j)}].$$

Corollary 6. If $\{A_a\}_{a\in Q}$ is a sequence of disjoint subsets of N_0 , then $[A_{(i,j)}] \leq_m [A_{(i+1,j)}]$ for all natural j and integer i.

Corollary 7. If $\{A_a\}_{a\in Q}$ is a sequence of disjoint subsets of N_0 , then $[A_a] \equiv_{bc} [A_b]$ for all $a, b \in Q$.

Corollary 8. If $\{A_a\}_{a\in Q}$ is a sequence of disjoint subsets of N_0 , then $[A_a] \equiv_{tt} [A_b]$ for all $a, b \in Q$.

Lemma 20. For every natural number x, either $x \in N_0$ or there exists an effective way to find a function φ , which is a composition of the functions θ_0 , θ_1 , θ_2 and $y \in N_0$ such that $\varphi(y) = x$.

Lemma 21. Let $\{A_a\}_{a\in Q}$ be a sequence of disjoint subsets of N_0 . For any function φ , which is a composition of the functions θ_0 , θ_1 , θ_2 , and for any $a\in Q$ there exists $b\in Q$ such that $\varphi([A_a])\subseteq [A_b]$.

Lemma 22. Let $\{A_a\}_{a\in Q}$ be a sequence of disjoint non-empty subsets of N_0 . For any function φ , which is a composition of the functions θ_0 , θ_1 , θ_2 , and for any $a,b\in Q$ there exists an effective way to verify whether or not $\varphi([A_a])\subseteq [A_b]$.

Lemma 23. Let $\{A_a\}_{a\in Q}$ be a sequence of disjoint non-empty subsets of N_0 and φ be a composition of the functions θ_0 , θ_1 , θ_2 . If $a,b\in Q$ are such that $\varphi([A_a])\subseteq [A_b]$, then there exist at least two different elements $c_1,c_2\in Q$ such that $\varphi([A_{c_1}])\subseteq [A_b]$ and $\varphi([A_{c_2}])\subseteq [A_b]$.

Theorem 3. There exists an r.e. bc-degree, which contains different m-degrees of the type of \mathbb{Q} .

Proof. The construction of such a degree is analogous to that in Theorem 1, i.e. we construct an r.e. sequence $\{A_a\}_{a\in Q}$ of disjoint subset of N_0 such that if $a \prec b$, then $[A_a] \leq_m [A_b]$, but $[A_b] \not\leq_m [A_a]$.

We construct the sets $\{A_a\}_{a\in Q}$ by steps, building the finite approximation $A_{a,s}$ of $A_a, a\in Q$, on step s.

On step s if $(s)_0 = \langle e, i, j, i_1, j_1 \rangle$ and $(i, j) \prec (i_1, j_1)$, then our aim is to satisfy that the function Φ_e does not m-reduce $[A_{(i_1, j_1)}]$ to $[A_{(i, j)}]$, i.e. to find such a witness $x \in \text{Dom}(\Phi_e)$ that at least one of the following two conditions is satisfied:

- (i) $x \notin [A_{(i_1,j_1)}] \& \Phi_e(x) \in [A_{(i,j)}];$
- (ii) $x \in [A_{(i_1,j_1)}] \& \Phi_{\varepsilon}(x) \not\in [A_{(i,j)}].$

Since the definitions are the same as in Theorem 1, we omit them and describe the construction of the sequence $\{A_a\}_{a\in Q}$.

Step s = 0. Let $N_2 = \{a_0 < a_1 < \ldots\}$; we take $A_{(i,j),0} = a_{\Pi(i,j)}$.

Step s > 0. If neither $[Seq_5((s)_0) \text{ nor } Seq_5((s)_0)\&(((s)_0)_1,((s)_0)_2 + 1) \prec (((s)_0)_3,((s)_0)_4 + 1)]$, then we do nothing, i.e. we take $A_{(i,j),s} = A_{(i,j),s-1}, i \in \mathbb{Z}, j \in \mathbb{N}$, and do not create any requirements.

If $Seq_5((s)_0)$ and $s = \langle e, i, j, i_1, j_1 \rangle$, where $(i, j) \prec (i_1, j_1)$, we verify whether an active $(s)_0$ -requirement exists. If there exists such a requirement, then do nothing.

If such a requirement does not exist, then we verify whether there exists an $x \in N_1$ such that $x > r((s)_0)$, $x \in \text{Dom}(\Phi_{e,s})$. $x \notin \bigcup_{a \in Q} A_{a,s-1}$ and x does not belong to any active negative requirement, created on a step t < s such that $(t)_0 < (s)_0$. If such an x does not exist, then we do nothing.

Otherwise, we denote by x_s the least such x and create an $(s)_0$ -requirement x_s . Let $\Phi_e(x_s) = z$ and $\psi(y) = z$, where ψ is either a composition of the functions $\{\varphi_k\}_{0 \le k \le 2}$ or $\psi = \operatorname{id}$ and $y \in N_0$.

We verify whether $z \in A_{(i,j),s-1}$. If so, then we fix $A_{(i,j),s} = A_{(i,j),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i,j)$.

Otherwise, we verify if $z \in A_{(i',j'),s-1}$ for some $(i',j') \neq (i,j)$. If so, then fix $A_{(i_1,j_1),s} = A_{(i_1,j_1),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i_1,j_1)$. Otherwise, we consider two cases:

Case I. $x_s \neq y$. We fix $A_{(i_1,j_1),s} = A_{(i_1,j_1),s-1} \cup \{x_s\}$, $A_{(k,l),s} = A_{(k,l),s-1}$ for $(k,l) \neq (i_1,j_1)$ and create a negative e-requirement y.

Case II. $x_s = y$. We find effectively $(i_2, j_2) \neq (i_1, j_1)$ such that $\psi([A_{(i_2, j_2)}]) \subseteq [A_{(i,j)}]$ and fix $A_{(i_2, j_2), s} = A_{(i_2, j_2), s-1} \cup \{x_s\}$, $A_{(k,l), s} = A_{(k,l), s-1}$ for $(k, l) \neq (i_2, j_2)$. Finally, we take $A_a = \bigcup_{s \in \mathbb{N}} A_{a,s}, \ a \in Q$.

Obviously, the construction is effective, hence the sequence $\{A_a\}_{a\in Q}$ is an r.e. sequence of disjoint subsets of N_0 .

The proofs of the following lemmas are analogous to those in Theorem 1.

Lemma 24. The set $N_1 \setminus A$ is infinite.

Lemma 25. The set $N_1 \setminus A$ is immune.

Lemma 26. For any natural number e, such that $N_1 \subseteq \text{Dom}(\Phi_e)$, and for every $\langle e, i, j, i_1, j_1 \rangle$, such that $\langle i, j \rangle \prec \langle i_1, j_1 \rangle$, there exists a constant $\langle e, i, j, i_1, j_1 \rangle$ -requirement.

Theorem 3 is completed.

Corollary 9. There exists an r.e. tt-degree, which contains different m-degrees of the type of \mathbb{Q} .

Combining the technique from Theorem 1 above and [3], Theorem 1, one can receive that there exists an r.e. pc-degree, which contains infinite antichains of chains of the type of ω^k for different numbers k (but r.e.).

REFERENCES

- 1. Degtev, A. N. tt-degrees and m-degrees. Algebra and Logic, 12, 1973, 143 161.
- 2. Degtev, A. N. Three theorems on tt-degrees. Sib. Math. J., 17, 1976, 1014 1022.

- 3. Ditchev, A.V. Some results on bounded truth-table degrees. Zeitschr. f. Math. Logik und Grundlagen d. Math., 36, 1990, 263 271.
- Ditchev, A.V. On bounded truth-table and positive degrees. Ann. de l'Univetsit\(\text{e}\) de Sofia, Fac. de Math. et Inf., 86, 1992, 61 - 71.
- Downey, R. G. Recursively enumerable m- and tt-degrees. I: The quantity of mdegrees. J. Symbolic Logic, 54, 1989, 553 - 567.
- Downey, R. G. Recursively enumerable m- and tt-degrees. II: The distribution of singular degrees. Arch. Math. Logic, 27, 1988, 135 - 147.
- Fisher, P. C. A note on bounded-truth-table reducibilities. Proceedings of the Am. Math. Soc., 14, 1963, 875 - 877.
- 8. Odifreddi, P. Strong reducibilities. Bull. Am. Math. Soc., New Ser., 4, 1981, 37 86.
- Odifreddi, P. Classical recurtion theory. Amsterdam: North Holland, 1989.
- Shoenfield, J. R. Mathematical Logic. Addison-Wesley Publ. Comp., Reading, Mass., 1967.

Received on November 2, 2002

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA