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In this paper we show that the upper Dini directional derivative of an radially upper
semicontinuous function has the same lower bounds as the lower Dini directional deriva-
tive, and that the second-order upper Dini directional derivative of an radially upper
semicontinuous function, which satisfies some additional assumptions, has the same
lower bounds as the second-order lower Dini directional derivative. A second-order
complete characterization of a convex function is obtained in terms of the second-order
upper Dini derivative and of the first-order one. These results are extensions of the
respective theorems of L. R. Huang and K. F. Ng.

A second-order Taylor inequality is derived.
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1. DINT DERIVATIVES

A lot of derivatives of the nonsmooth functions are introduced mostly for the
purpose of optimization. The Dini derivatives play a key role among them.

In the sequel E is a real normed vector space, the real finite-valued function
f is defined on the open set X C E. The set of reals is denoted by R, and
R = RU {+o0} U {—}. Consider the following generalized directional derivatives
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of f at the point z € X in the direction u € E:

fi(z:;u) =limsup t™ (f(z + tu) — flx)).
t10

fllzu) = 1in&%nft—1(f(;z: + tu) — f(z)).

They are usually called respectively upper and lower Dini directional derivatives.

The following theorem claims that the upper Dini directional derivative of an
radially upper semicontinuous (radially u.s.c. for short} function has the same lower
bounds as the lower one.

Theorem 1. Let X C E be an open convex set, and f : X — R be a radially
w.s.c. function. Suppose that u € E, and o € R. Then the following implications
hold:

filzu) >a, VzekX = fl(ziu) >a, Vre X, (1.1)
filziuy>a, YreX =4 fla+tu) — f(z) ~at >0, (12)
Vre X,Vt>0 provided that x4+ tu € X.

Proof. Assume that f (z:u) > a for all z € X. If @ = —oc. then the claim is
obvious. Let a@ > —oc, and 3 be an arbitrary number such that 3 < a. Suppose
that = € X is fixed. There exists a sequence t,, of real positive numbers, converging

to 0, such that
t (f(z 4 tyu) — flz) > 3. (1.3)

Consider the function
w(t) = f(z + tu) — f(z) — Bt
which is defined for all t > 0 such that z + tu € X, and the set

A={te(0,00) |z +tueX, ¥(t) >0}

It is clear that t,, € A, and inf 4 = 0. We show that A is an interval with the right
endpoint
b=sup{t € (0,00) |z +tuec X}

Indeed, suppose that there exists ¢ € R, satisfying 0 < ¢ < b, ¥(c) < 0. Since ¢ is
u.s.c., then by the generalized Weierstrass theorem there exists a global maximizer
¢ of 1 over the closed interval [0,¢]. It follows from (1.3) that there exists ¢ € A
such that 0 < t < ¢. Hence %(€) > ¥(t) > 0, and 0 < £ < ¢. According to the
necessary maximality condition, v’ (£;1) < 0. On the other hand.

YL (&)= filz+&uiu) —3>a—-5>0,

which is a contradiction. Consequently, b is the right endpoint of A. and A is
an interval. For all sufficiently small t > 0 we have t~'(f(z + tu) — f(x)) > 3.
Therefore f' (z;u) > B. Since 3 is arbitrary such that 3 < a, then f (z;u) > a.
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The converse implication of (1.1) is obvious.

We shall prove the inequality (1.2). Since b does not depend of 3, we have
t= f(x+tu) — f(zx)) > 3 for all 3 and ¢ such that 3 < a,t>0.x+tue X. Since
3 is arbitrary. then (1.2) holds. []

Example 1. The following example shows that the assumption f to be radially
u.s.c. cannot be dropped in Theorem 1. Consider the function f : R — R such that

0, x is rational,
fla) = { 1. otherwise.

The number 0 is a lower bound of the upper Dini derivative, since filz;1) >0 for
all x € R. If « is irrational, then f' (2;1) = ~o0.

Example 2. The following example shows that the assumption f to be radially
u.s.c. cannot be dropped in Theorem 1 even in the case when the function is lower
semicontinuous (l.s.c.). Consider the function f: R — R such that

f(z) = 0, x is irrational,
Sl -1/q. x=(p/q), p, q are integers.

The number 0 is a lower bound of the upper Dini derivative. The number v/2 is an
endless decimal 1,4142... The sequences 1, 10, 10%, 103, 104, ... and 1+ 2, 14 +
2, 141+ 2, 1414+ 2, 14142+ 2, ... correspond to the value of this number. Denote
them respectively by g, and p,. It is obvious that

-1/q -1

fr(V2:1) < liminf < lim inf .
—V2. E>V2, p, g - integers (p/q) — V2 n—oc p, — q“\/i

Bl

Since —1 < p,~2-¢,v2 < 0. then =1/(pp—gnV2) < —1/2and f' (V2;1) < —1/2.

Now we show some applications of Theorem 1.

The following result is a direct consequence of the Zygmund’s lemma (see, for
example, Penot [7, Lemma 1.1]). Some of its proofs can be found in Diewert 3,
Corollary 4 and 5], Giorgi and Komlosi [5, Theorem 1.13] and references therein.
See Scheffler [9, Lemma 4.1], too.

Corollary 1. Let ¢ : [a,b] = R be an w.s.c. function. If
ol (2:1) > 0 (¢ (2;1) > 0) for all z € [a,b),

then ¢ is monotone nondecreasing (strictly monotone increasing) on [a,b).
Proof. Let ¢! (x;1) > Ofor all z € [a,b),and a < z; < 25 < b. Choosing a = 0,
it follows from (1.2) that o(z2) > ¢(z;), since the function ¢ can be continued in

a constant manner to the left of the point a to obtain an open interval, where the
right upper Dini derivative is nonnegative.
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Assume that ¢/, (z;1) > 0 for all z € [a.b). Using the arguments of Theorem
1, by choosing 3 = 0, we get that (1.2) will be strict with a = 0, i.e. ¢ is strictly
monotone increasing. [0

The following statement is well known (sec, for example, Giorgi and Komlosi
[5, Theorem 1.10]), but our proof is shorter.

Corollary 2. Let ¢ : [a,b] = R be an w.s.c. function. If the function

w(b) — s:(a).

h(t) = ¢(t) — p(a) —(t —a), where = ——

assumes a global minimum over [a,b], then there exists an intermediate point t
such that ¢’ (t1;1) <.

Proof. Suppose the contrary that ¢/, (t;1) > v for all ¢ € (a,b). Therefore,
B (1) = ¢ (t;1) — v > 0 for all t € (a,b). According to Corollary 1, h is strictly
monotone increasing on (a,b). The function h is u.s.c. Since h(a) = h(b) = 0.
by the upper semicontinuity, h(t) < 0 when t € (a,b). Then h cannot assume a
minimal value over [a,b]. which is a contradiction. [

The following is a well known version of the mean value theorem. Similar results
arc proved in Demyanov and Rubinov [2, Theorem 1.3.1], Giorgi and Komlosi [,
Corollary 1.9], Penot [7, Proposition 1.3] and references therein.

Corollary 3. Let ¢ : [a,b] = R be an u.s.c. function. Then

w(b) —pla) > m(b—a), where m = inf bapg(z; 1).
a<z<

Proof. Denote g(t) = ¢(a +t) — ¢(a) — mt. It is defined and u.s.c. for all
t € [0,b—al. Since ¢ (t;1) = ¢ (a+t:1)—m > 0 for all ¢ € [0,b—a), by Corollary
1, g is monotone nondecreasing. Therefore, g(t) > g(0) for all ¢ € [0,b—a). Since g
isu.s.c., then g(b—a) > limsup,_,, , g(t) > ¢(0). Hence, p(b)—~¢(a)-m(b—a) > 0.
O

2. SECOND-ORDER DINI DERIVATIVES

There are several ways to define second-order Dini derivatives. One of them is
the following. Consider the function f: X -» R, where X C E is an open set. We
define the second-order upper Dini derivative of f at z € X in the direction u € E
and the lower one as follows:

Y(x;u) = lim soup 272 (f(z + tu) = f(x) = tf (z;u)),
tl
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flxiu) = 111}};1)nf2t—2(f(1‘ +tu) = flx) —tf. (x:u)).

We call f upper and f” lower in consistence with the first-order derivatives.
but Example 1 shows that the inequality f”(r;u) < f(z;u) may be violated
for some z € X, u € E. If z is rational, then filz:1) = oc. fl{x:1) = 0.
Hal) = —oc. f(x:1) = 0.

The following theorem is connected to Theorem 1.

Theorem 2. Let X C E be an open convex set, and f: X — R be a radially
u.s.c. function. Suppose that uw € E, a € R, and f (x;u) + f (x:—u) > 0 for all
r € X. Then the following implications hold:

fllzu)>a, Ve e X = f'(zu)>a, VzeX; (2.1)

fllzu) 20, Ve e X = f(z+tu) - f(z) —tfi(z;u) > 0.5t%a,
Vze X, Vt>0such thatz +tu € X.
When f is directional differentiable everywhere, i.e.

filziu) = f (z:u) = f'(ziu), Ve € X, Yu € E,
then the converse implication of (2.1) holds.

Proof. The case when a = —oc is evident. Assume that @ > —o2¢ and
Y{ziu) > a for all x € X. For arbitrary fixed r € X and 3 € R satisfying
3 < a. consider the function

U(t) = flr+tu) = flo) —tf (x;u) = 0.58t%,
which is defined for all ¢ > 0 such that x + tu € X, and the set
A={te(0,)|z+tue X, ¥t) >0}

Then 4 = (0.b), where b = sup{t € (0,c) | z + tu € X}. Indeed, it follows from

Y(ziu) > 3 that there exists a sequence of positive numbers ¢, converging to 0,
which satisfy the inequality v(¢,) > 0. Hence inf A = 0. Let there exist ¢ € R such
that 0 < ¢ < b and ¥(c) < 0. According to the inequality ¥)(¢,) > 0, there exists
t € (0.c) N A. By the upper semicontinuity of ¢, there exists a global maximizer &
of © over [0, ¢]. Since v/(§) > 1(t) > 0, then 0 < € < ¢. On the other hand, we have

(&) = flle+ Euu) ~ filaiu) - BE.

UL (& -1) = fl(e + Eus —u) + fl(z:iu) + BE.

We conclude from the necessary maximality condition that v, (§;v) < 0 when
v = +1. Using the hypothesis of the theorem, we get

0> UL (&) + e (& -1) = fl(z+ &wiu) + f (z + Eu; —u) > 0.
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Therefore ¢, (€:1) = 0. According to the second-order necessary maximality con-
dition, ¢ (& 1) < 0. We continue

v (61) = fllr+Suu)—3>a—-3>0.
which is a contradiction. Consequently, .4 = (0,b). Since b does not depend of J.
2672 (f(x + tu) = flz) —tf(z:u)) > 3
for all ¢ € (0,b) and for arbitrary 3 < a. Thus,
fla+tu) = f(x) —tf(a;u) > 0.5at?,
and
22 (f(z + tu) = f(@) — tf(@su)) > 2 2(f (@ + tw) — f(2) = tfi(xi) 2 a

for all t € (0,b). Then taking the limits, as t — 0, we get that f"(z:u) > a.
In case when f is directional differentiable evervwhere. one easily gets the
converse claim to (2.1), since

fia;u) > fi(ziw), Ve € X, Vu € E. [

The following theorem is a necessary and sufficient condition for convexity.

Theorem 3. Let X C E be an open convez set, f: X — R be a radially u.s.c.
function. Then f is convex iff the following conditions hold together:

filzu) + fi(z;=u) >0 forallz e X, uc€E, (2.2)
fla;u) >0 forallwre X, u€E. (2.3)

If inequalities (2.2},(2.3) hold, and (2.3) is strict for all x € X, v € E. then f is
strictly conver.

Proof. Tt is obvious that each convex function satisfies inequalities (2.2}, (2.3).
Conversely, suppose that (2.2), (2.3) are fulfilled. Applying Theorem 2 by choosing
«a = (0, we obtain that

flz +tu) — f(z) > tfL(z;u) for all t such that 0 <t <b, (2.4)

where b = sup{t € (0,2) | z + tu € X}. It follows from (2.4) that for all 2’ € X,
y' € X, X €[0,1] the following inequalities are fulfilled:

f@) = f@'+ Ay —2") S Aol + Ay —2'):2" = y'), (2.5)
Fl) = fl@ + Ay —2) > A= Nf (@ + My — ')y —2').  (26)

By using (2.2}, we infer from (2.5) and (2.6) that
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(1= N + My = fla + A~ ') >
AML =N ([ + Ay =2’ =)+ fl(a + Ay — ')y —a")) > 0.
Therefore f is convex.
The strictly convex case is similar. We must take only 3 = 0. Then it is seen
from Theorem 2 that inequality (2.4) will be strict. O

Theorems 2 and 3 are extensions of Theorems 1 and 2 in Huang and Ng [6].
where they are proved in the case when the function is locally Lipschitz and regular
in the sense of Clarke [1]. But inequality (2.2} is not used in Theorem 2 of Huang
and Ng [6]. A locally Lipschitz regular function always fulfills it.

Remark 1. For example. some classes of functions, which satisfy inequality
(2.2). are the Gateaux-differentiable. quasidifferentiable in the sense of Pschenich-
nyvi [8]. or locally-Lipschitz regular in the sense of Clarke [1] functions. Another
functions. which fulfill this condition. are all ones such that the upper Dini subdif-
ferential

0f(z) := {€ € B* | (&,u) < fi(a;u) ¥V u € E}
is nonempty for all # € X'. The functions of the first three classes from above are
directional differentiable.

The following is an application of Theorem 3. and it says when a second-order
Tavlor inequality holds.

Theorem 4. Let o : [a,b] = K be an w.s.c. function. Assume that
Gel) + & (1 -1) >0, Ve (ab).
Then (b) = p(a) — (b—a)y {a:1) > 0.5m(b — a)?, where

m = rrlln{aér;ibY+(r 1}. 1r:f<bgp (x;—1)}.

Proof. Consider the function
g(t) = pla +t) — ¢la) — t¢' (a; 1) — 0.5mt*, t € [0.b— al.
It is clear that for all t € (0.b — a)
go(t:1) = (a+ 1) — ¢ (a;1) —mt,

g\ (t:-1) =\ (a+t:—-1) + ¢ (a: 1) + mt.

Therefore.
gt +gl -1 =¢ (a+t:1) + @ {a+t;-1) > 0.

Since
glt:l) = (a+t:1) —m >0,
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gi(t:-1)=¢(a+t:=1) —m >0,

then, by Theorem 3, ¢ is a convex function on (0.5 — a}. Hence, there exists the
directional derivative g'(t; 1) = ¢/ (t: 1) for all t € (0,b—a). It is easy to verify that
there exists ¢/ (0: 1) and it is equal to 0. Using the upper semicontinuity, it is casy
to show that g is convex on [0,b — a].

Suppose that 0 < t < s < s+t < b— a. By convexity of g, the following
inequalities hold:

. t . t.
g(s) < gg(t) + (1 - 5)9(3 + 1),

g(t) < Zg(s) + (1= 1)g(0).

Consequently, 17 (g(¢)—g(0)) < t7 (g(s+t)—g(s)). Taking the limits ast — 0.
we get that 0 = ¢/ (0:1) < g’ (s;1) = ¢'(s;1) for all s € (0,0 —a). By Corollary 1,
g is monotone nondecreasing on [0,b — a). Using the upper semicontinuity, we get

glb—a) > limsup g{s) > g(0) =0,

s—+b—a,s<b—a

which completes the proof. O

Similar, but different results to Theorems 3, 4 are derived by Ginchev and the
author [4] in terms of other lower derivatives.
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