ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 96

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 96

LETTER TO THE EDITOR TURÁN'S THEOREM AND MAXIMAL DEGREES

NIKOLAY KHADZHIIVANOV and NEDYALKO NENOV

The number of the edges of a graph G will be denoted by e(G), and the subgraph induced by the neighbours of the vertex x – by G_x . For the n-vertex r-partite Turán's graph $T_r(n)$ we define $e(T_r(n)) = t_r(n)$.

- B. Bollobàs in [1] and [2] considered the following simple algorithm to construct a large clique in a graph G: "Pick a vertex x_1 of maximal degree in $G_1 = G$, then a vertex x_2 of maximal degree in $G_2 = G_{x_1}$, and so on. The algorithm stops with x_l if x_l has no neighbours in G_l ". In [1] this algorithm was called the degree-greedy algorithm.
 - B. Bollobas in [1] proved the following results:

Theorem 2 (see also Theorem 5 in [2]). Let G be a graph with n vertices and $t_r(n) + a$ edges, where $a \ge 0$. Let x be a vertex of maximal degree d. Then $e(G_x) \ge t_{r-1}(d) + a$, and the inequality is strict unless $n - d = \lfloor \frac{n}{r} \rfloor$, and $G = G_x + \overline{K}_{n-d}$.

Theorem 5 (see also Theorem 6 in [2]). Let G be a graph with n vertices and least $t_r(n)$ edges. Then either $G = T_r(n)$ or else the degree-greedy algorithm constructs a clique of G of order at last r + 1.

The aim of this note is to draw attention to the fact that:

1. Theorem 2 is a special case of Proposition 1, p. 235 in [3] ($\langle A \rangle = G_x$ for some vertex x of maximal degree), because the case a=0 of Theorem 2 is obviously equivalent to Theorem 2.

- 2. The degree-greedy algorithm found by B. Bollobas, A. Thomason and J. Bondy in 1983 is a fact published in [4], p. 119, by N. Khadzhiivanov and N. Nenov in 1976.
 - 3. Theorem 5 coincides with Corollary 1 from [4], p. 121.
 - **4.** Theorem 3 in [1] is not correct, because $\triangle(T_r(n)) \neq (r-k-1)s+p$.
- **5.** In the proof of Theorem 5, given in [1] and [2], equalities $G_x = T_{r-2}(n-k)$ and $G = T_{r-1}(n)$ are not correct.

REFERENCES

- Bollobás, B. Turán's Theorem and Maximal Degrees. J. Combin. Theory Ser. B, 75, 1999, 160-164.
- Bollobás, B. Modern Graph Theory. Springer-Verlag, New York, 1998.
- Hadjiivanov (Khadzhiivanov), N., N. Nenov. On the Generalized Thurán's Theorem and extension of this Theorem. Ann. Sof. Univ., Fac. Math., 77, 1983, 231-242 (in Russian).
- Hadjiivanov (Khadzhiivanov), N., N. Nenov. Extremal problems for s-graphs and the theorem of Turan. Serdica, 3, 1977, 117-125 (in Russian).

Received on July 2, 2003

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: nenov@fmi.uni-sofia.bg hadji@fmi.uni-sofia.bg