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1. INTRODUCTION

In this paper we present a semantics of logic programming on abstract struc-
tures with parameters. It is typical for this semantics that it does not admit search-
ing in the domain of the structure. A semantics with searching in the domain of
the structure is studied in [4].

In structural programming every subroutine of the relevant language may be
joined as a function to the structure and the class of the computable functions
in the extended structure will remain unchanged. One may suppose that logic
programming has the same properties. Consider a structure 2 and a subset 4 of
the domain of . It seems suitable to define a semantics of a logic program P,
using A as a parameter, as the usual semantics of P on the extended structure
(A, A"), where A’ is the semicharacteristic predicate of the set A. Unfortunately,
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this approach is not satisfactory, because the obtained notion of computability
is not transitive, unless the equality relation is an underlined predicate of . It
turns out that in order to obtain an appropriate semantics, parameters should be
interpreted as “oracles”, enumerating their elements, rather than predicates.

This idea is formalized in the paper by introducing first order structures with
parameters, which are treated as effectively enumerable subsets of the domain of
the structure. A semantics of logic programs on such structures is introduced
and studied. The programming language obtained in this way has some interesting
properties. First of all, it has greater expressive power compared to all programming
languages that have certain natural properties. This fact helps us to show the
transitivity of the obtained notion of computability and also to prove that the
programming language is closed under recursion.

For the sake of simplicity, we consider only structures with unary functions,
predicates and parameters. All definitions and results can be easily generalized for
functions, predicates and parameters of arbitrary finite arity.

2. PRELIMINARIES

Let A = (B;6y,...,0n;%0,-..,5k; A1,...,An) be a partial structure, where
the domain of the structure B is a denumerable set, 8y, ...,0, are partial functions
of one argument on B, Xy, . .., &), are partial predicates of one argument on B, Yo =
\s.true, the parameters A,..., A,, are subsets of B, and n,k,m > 0. Moreover,
we assume that the predicates ¥i,..., X, obtain only the value “true” whenever
they are defined. The last assumption is made for the following reasons. First, it
is not restrictive for our considerations (if £ obtains the value "false”, it can be
represented by two predicates £ (t) < Z(t) and £ (t) & -X(¢)). And second,
logic programs cannot use the negatne part of the predicates of the structure
because of their syntax.

Let B = (N;¥1,...,¢n;00,..,0%;€1,-..,&m) be a partial structure over the
set N of the natural numbers. A subset W of N is called recursively enumerable
(r. e) in Biff W = ['(p1,...,¢n;00,---,0%:€1,...,&n) for some enumeration
operator I' (see [1]).

An enumeration of the structure 2 is any ordered pair (o, B), where
B = (N;Q1,.-,Pn;00,---,0k;&1,...,Em) is a partial structure, oo = As.true, the
predicates oy, ...,0 obtain only the value “true” whenever they are defined, and
a is a partial surjective mapping from N onto B, such that the following conditions
hold:

(i) The domain of a (Dom(e)) is closed with respect to the partial operations

yor ¥Pns

(ii) a(pi(z)) ~ 0;(a(z)) for all z of Dom(a), 1 < i < m;

(iii) oj(z) © Z,(afz)) for all z of Dom(a), 1 < j < k;

(iv) a(é) = {a(y) :y €&} = As, 1 <5 <m

(v) & C Dom(a), 1 < s < m.
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We shall suppose that an effective monotonic coding of finite sequences and
sets of natural numbers is fixed. If aq, ..., an is a sequence of natural numbers, by
(ag,...,am) we shall denote the code of the sequence ay, ..., am, and by E, — the
finite set with code v. We write £(z) to denote that x € €.

Let (q); = pz[p?/q & —(pi*? /q)], where p; is the i-th prime number.

1

Let (a,B) be an enumeration of 2. We shall call the set

D®B) = {(,z,y):1<i<n&pi(z)~y}
U {(io):n+1<j<n+k &oj_n(z) ~ true}
U {(s,2):n+k+1<s<n+k+m&&_,_i(z)}

a code of the structure B. It is clear that for every W C N, W isr. e. in B iff W
is r. e. in D("B).

Let A C B. The set A is called weak-admissible in the enumeration (a, B) iff
for some r. e. in B subset W of N the following conditions hold:

(i) W C Dom(a);

(ii) a(W) = A.

A subset A of B is called V-weak-admissible in 2 iff it is weak-admissible in
each enumeration (o, B) of 2.

The equivalence between the V-weak-admissible sets and the sets definable by
logic programs will be considered. The V-weak- admissible sets have an explicit
characterization, which simplifies the considerations.

We shall use the following notation. The letters ¢,p will denote elements of
B; z,y,z,u,v will be elements of N. We shall identify the predicates with partial
mappings which takes values 0 (for “true”) and 1 (for “false”).

Formulas of the form F'&...&F!, where each F* is an universal closure of
Horn clause, i. e. F* is a formula of the form VX, ... VX, (I vV =II; V...V =II,),
where n > 0 and II,II;,...,II, are atomic predicates, are called logic programs.
We shall use the usual notation of the Horn clauses:

H . —‘Hl,-.-,nn-

Let £=(fi,...,fn;Toy-.., T, T'; S1,. .., Sm) be the first-order language cor-
responding to the structure 2, where f1,..., f, are functional symbols, Ty, ..., Tk
are symbols for predicates, Ty represents the total predicate £y = As.0, 7" repre-
sents the nowhere defined predicate, and S,...,S,, are symbols for parameters.

Let {Z1,Z22,...} be a denumerable set of variables and {X§, X?,...} be a
special set of variables for the elements of parameter S,;, 1 < s < m. We shall use
the capital letters X,Y, Z to denote the variables.

If 7 is a term of the language £, then we shall write 7(Z) to denote that all of

the variables in 7 are among Z = (Z,,...,2,). f 7(Z) is a term and I = ¢y,. .., t,
are arbitrary elements of B, then by (2 /t) we shall denote the value, if it exists,
of the term 7 in the structure 2 over the elements t1,. .., t,.

Termal predicates in the language £ are defined by the following inductive
clauses:
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(i) Tj(1), 0 < j < k, and T'(7), where 7 is a term, are termal predicates;

(ii) Ss(X?), where 1 < s <m and i is an arbitrary natural number, is a termal
predicate;

(iii) if IT* and I1? are termal predicates, then II'&II? is a termal predicate.

Let TI(Z) be a termal predicate and t1,. .., be arbitrary elements of B. The
value Ilg(Z /%) is defined as follows: _ _

(i) if I1 = Tj('f‘), 0<j< k,_t_hen Hm(Z/E) =~ ¥ (Tm(Z/Z);

(i) if TT = T"(7), then Il (Z/t) is undefined;

(iii) if IT = S¢(X?), 1 < s < m, then (Sy(Xi/t))gq 0=t € Ag;

(iv) if IT = ' &%, where IT' and I1* are termal predicates, then

o 112, (Z/t), ifL(Z/f) =0
I t) ~ 2A ? ’
a(Z/1) {undeﬁned, othe?rlwise.

We shall call the expression 3X; ...3X,Il an exzistential termal predicate, where
Il is a termal predicate and X;,..., X, are all special variables of II. If ¥ =
3X; ...3X,I1 is an existential termal predicate with free variables Zy, ..., Z,, then
the value of ¥ is defined as follows:

Sn(Z/1) 0 3e1...3ep(er,-..,ep € B& N(Z/t, X [€) ~0).

We shall call the expression 3X, ...3X,(Il D 7) a conditional term, where IT is

a termal predicate, 7 is a term and X,,..., X, are all of the special variables in
Il and 7. The value of the conditional term Q = 3X;...3X,(Il D 7) with free
variables among Z,. .., Z, is defined as follows:

Qu(Z/H) ot & 3er...3epler,....ep € B N(Z/t,X/e)~0&
(Z[t, X [f) ~ t).

We shall assume that an effective coding of the language £ is fixed.

Let A be a subset of B. The set A is said to be weak-computable in the structure
9 iff for some 1. e. set V of codes of conditional terms {Q"}vev with free variables
Zy,..., 2, and for some fixed elements ¢;,...,1q of B the following equivalence is
true:

peAe eV &QyZ/D3p).

3. V-WEAK-ADMISSIBILITY

In this section we shall give an explicit characterization of V-weak-admissible
sets. The constructions and proves in this section will be used for the logic programs
in the next section. The main tool in the proofs will be the set theoretic forcing.
It is sufficient to use only special enumerations for our purposes.
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The enumeration (a,B) is said to be special iff the following conditions are
true:

(i) if pi(z) ~ y, then y = (i, j,z), where 1 < i < n and j is an arbitrary natural
number;

(ii) if z € &, then z = (n+s,j), where 1 < s < m and j is an arbitrary natural
number.

In the sequel all enumerations will be special, unless something else is assumed.

We shall call
A= (al;Hl;(p’I)"-iga’n;o'lli" -70’k;611)"' )€Im)

a finite part, where:

(i) Hy and o are respectively a finite set of natural numbers and a finite
mapping from N in B and H, N Dom(a;) = §;

(i) ¢'y,..., ', are partial functions from H; U Dom(a,) in H, U Dom(ay);

(i) if @}(r) =~ y, then y = (i,5,z), where 1 < i < n and j is an arbitrary
natural number;

(iv) Dom(ay) is closed with respect to ¢'y,..., ¢ ;

(v) if ¢ € Dom(a;) and j(z) ~ y, then ;(oy(z)) ~ a1 (y), 1 < i < n:

(vi) 0'1,...,0's are partial predicates on H, and obtain only the value “true”
whenever they are defined;

(vii) & C Dom(a;), 1 < s <m;

(viii) if z € &, then z = (n + s,j), where 1 < s < m and j is an arbitrary
natural number;

(ix) a1 (&) C As, 1 <s<m.

We shall denote finite parts by A and §. We shall introduce relations 7 C?
between finite parts and between a finite part and an enumeration and consider
some of their properties.

Let &; = (ai; Hiz¢'y,. ., 0 0, 00 60,6 ), i = 1,2, be finite
parts. We say that A; C Ay (4, is included in Ay or Ay extends A,) iff:

() H1 € Hy; on S ao5 98 <9}, 1<i<ny0) <o, 1<j<k;élCe
1< s<m;

(ii) if p?(z) ~ y and y € Dom(ay), then ¢! (z) ~y, 1 <i < n;

(iii) if £2(z) and x € Dom(ay ), then £ (z), 1 < s < m.

Let A be a finite part and (@, B) be an enumeration. We say that A C (a, B)
iff:

(i) HiNDom(a) = § and o) < o

(if) ¥} i, 1<i<n; 05 <05, 1<j<k; € CE&,1<s<m;

(iii) if p;(z) ~ y and y € Dom(ay), then ¢i(z) ~y, 1 <i < n;

(iv) if £(y) and y € Dom(ay), then € (y), 1 < 5 < m.

From the definitions of the relations ”C” we get immediately:

1. A CA;

2. if Ay C Ay and A, C Agz, then A; C Ags;

3. if Ay C Ay and Ay C (a,B), then A; C (a,B):
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4. if Ay C (a,B) and Ay C {a,B), then there exists a finite part A such that
A C (a,B), Ay € A and A, C A.

The structure B models F,(y) (we write B |= F.(y)) iff y € T.(D(B)), where
I, is the e-th enumeration operator.

By WB we denote the set T,(D(B)), i. e.

ye W8 & 3u({v,y) € We & E, C D(B)).

We say that the enumeration (a,B) models F.(y) ((a,B) = F.(y)) iff B =
Fe(y).

We define the relation “forces” (|-) by the following clauses:

1. Al-u, where u € N, if one of the following conditions is true:

(i) u=(i,z,2), 1 <i<n,and @;(z) =~ z;

(ii) u = (n+j,7), 1 < j <k, and (z € H; and o}(z) ~ true) or (z € Dom(a:)
and Xj(aq(z)) ~ true);

(iii) u = (n + k + s,x), 1 < s <m, and &(z);

2. AFE = {u1,...,u} if A-u;, 1<i <

3. Al-Fe(y) if v({v,y) € W, & A}-E,).

The following properties of forcing are easily obtained:

1. if A}-F,.(y) and A C §, then §|-F.(y);

2. if A-F.(y) and A C (a,B), then {a,B) k= Fe(y);

3. if (a,B) | F.(y), then there exists a finite part A C (a,®B) such that
Al-Fe(y).

Most of the proofs in this paper use stepwise constructions. On each step we
construct a finite part of a certain enumeration. The finite parts constructed on
later steps keep the forcing properties of the former steps. In this way we ensure the
modelling property of the constructed enumerations, which is a weak admissibility
indicator.

The following proposition gives a characterization of V-weak-admissible sets by
means of finite parts and the relation “|-".

Proposition 3.1. Let D be a V-weak-admissible set. Then there ezist a finite
part A and a natural number e such that the following conditions hold:

(i) V6 2 AVy(S|-Fe(y) = y & Hs);

(ii) t € D & 36 D Ady(as(y) ~t & é|-F.(y)).

Proof. Assume that a finite part A and a natural number e, satisfying the
properties (i) and (ii), do not exist. We shall construct a special enumeration
(a,B) for which D is not weak-admissible. The construction will be made by
steps. On the ¢-th step we shall construct a finite part A, that extends A;—;. On
the steps g for which (¢)o = 4n,4n + 1,4n + 2 we shall ensure some properties of
the enumerations, while on steps for which (¢)o = 4n + 3 and (g); = e we shall
ensure non-admissibility of D with respect to I'.. We assume that an arbitrary
enumeration of B is fixed.
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1. Let (¢)o = 4n. Let z be the first natural number which is not in Dom(a,—y)U
Hgy_1, and let ¢t be the first element of B which is not in Range(aq—1) (if such t
does not exist, then let ¢ be an arbitrary element of B). We define:

aq(r) ~t and ay(z) ~ ay-1(2) for all other z;
Hy=Hy ;0! =97, 1<i<m
ol=ol1<j<k =€, 1<s<m
2. Let (9)o = 4n + 1 and (g); = (i,z), where * € Dom{a,_), <p§’_1(:c) is
undefined and 6;((ag-1(z)) > t. Let y = (i,5,z) and y ¢ Dom(a,-) UH,_1 (such
y exists, because j is an arbitrary natural number). We define:

@i(z) ~ y and !(z) ~ p? ' (2) for all other z;
aq(y) ~ t and ay(2z) =~ ay-y(z) for all other z;
H, = H,_y; gongo;’—l, 1<l<n, l#1;
ol=0l", 1<j<k €=¢71 1<s<m.

3. Let (¢)o = 4n + 2 and (g); = (s,2'), where 2’ € Dom(a,-1), 1 < s < m;
ag-1(2') ~t,t € A; and t & ag_1(&). Let = = (s + n, j), where j is an arbitrary
natural number such that x ¢ Dom(ag-1) U H,—;. We define:

ay(z) ~ t and aq(z) ~ ay-1(2) for all other z;
Hy=H,q; ¢l=¢!™', 1<i<n; a;?—:—a}"l, 1<7<k;

= 'y{z}and 2=¢"1, 1<r<m, r # m.

4. Let (g)o = 4n + 3 and (¢); = e. We shall construct A, such that if
{a,B) D A, then for W:B and D one of the following conditions is false:

(a) WP C Dom(a);

(b) a(WB) = D.

From the assumptions it follows that for A,_; and e at least one of the condi-
tions (i) or (ii) is violated:

A) Let (i) be false, i. e. 36 O A3y(6|-F.(y) & y € Hs). Let A, = ¢ and
(a,B) 2 Ay. Due to property 2 of the relation “|-”, it follows that (a,B) |=

F.(y),i.e.y € WEB. But y € Hy, hence y € Dom(a). We have obtained that
W2 ¢ Dom(a).
B) Let (ii) be false. Then there exists some ¢ such that one of the following is
true:
t€Dand VD A1 Vy(as(y) ~t = § J-Fe(y)); (3.1)
t ¢ Dand 36 D Ay—13y(as(y) ~t & §|-Fe(y)). (3.2)
If (1) is true, then Ay = A,_;. Suppose that for some (a,B) D A, the conditions
(a) and (b) are true. Then there exists y € W:B such that a(y) ~ t, hence
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(a,B) = F.(y). Due to property 3 of the “|-” relation and property 4 of the “C”
relation, there exists a finite part § such that as(y) ~ t, é—Fe(y) and 6 D> A,.
This contradiction proves that, for all (a,B) D A,, at least one of (a) and (b) is
violated.

Let (2) be true and let A; = d and (a,B) O A,. Then ay) ~ t and due to
property 2 of the “|-” relation, (a, B) |= Fe(y),i.e. y € W%, therefore af W ) #
D.

Now we define (o, B) in the following way:

a=an; H=UHq§‘Pi=U‘Pg, 1<i<n
U§8,1<s<m U—qu, 1<j<k;

ifzeD
o(z) ~ { > ((:)(,x)) o e H@(a),

It is easy to see that all constructions are correct. We have obtained an enumer-
ation {a,B) for which D is not weak-admissible. The last proves the proposition.(]

Let var = {Y,,Y1,...} be the set of all non-special variables and val be a bijec-
tion of N onto var. Let A be a fixed finite part such that Dom(a;) = {w1,...,w,}
and oy (w;) =t;, 1 <1<,

Proposition 3.2. There exists an effective way to define, for every finite set
E of natural numbers and for every natural y, a conditional term \M(W) with free
variables W = (Wy,...,W,), where W; = val(w;), 1 < i < r, such that the
following conditions hold:
(i) ifte /\m(W/t), then 36 D A(as(y) ~ t & 0}-E);
(ii) if t & /\m(W /1), then at least one of the following conditions is true:
(a) 36 O A(U}~E & y € H;);
(b) V& D A(S|-E = as(y) # t).

Proof. The set E is said to be consistent iff the following conditions hold:
If u € E, then u = (i,z,2), 1 <i<noru=(i,z),n+ 1<t <n+k+m.
If (i,z,z) € E and (i,z,2) € E, then 2z = 2.

If (i,z,2z) € E and z € Dom(a, ), then ¢}(z) ~ z.

If (i,z,2) € E and ¢'(z) is defined, then ¢)(z) ~ z.

If (i,2) € E,n+k+1<n+k+mand z € Dom(a;), then &_,,_,(2).

If (i,z,2) € E, 1 <i<n,then z = (1,7, 2).

I @2z)eE,n+k+1<i<n+k+m,then z=(i—k,j)

mmedlately from the definitions it follows that:

BN O ouse LN

Lemma 3.1. If there ezists a finite part § O A such that 6|—E, then E is
consistent.
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If E is not consistent, let A = T'(W;) D W;. Now let F be consistent and let

E, = E\ ({{i,z,2)|z € Dom(ay) & 1 <i < n}
U{(i,2)]z € Dom(ay) &n+k+1<i<n+k+m}).

It is easy to show that:

Lemma 3.2. If§ D A, then the following equivalence is true:
(Su—E = 6|——E1
Let

P={z|(t,z) e By &n+k+1<i<n+k+m},
K ={z|(i,z,2) € B, &1 <i<n}U{z|{(j,2) € E1 &
n+1<j<n+k}U{w,...,w.}UP.

We define the relation “—” (follows) between natural numbers as follows:
21 —) Z9 iff (i,21,22) € El and 1 < i < n.

Here are some simple properties of this relation:

1. If 27 = z and 20 = z, then z; = 2.

2. If 21 — z, then there exists only one number ¢ such that (i,2;,2) € E;
(Z = (i,j,ll))-

3. If 2; = z, then z; < z (the coding is monotonic).

Note that if z € P, then z has no predecessor, because z = (s,j), where
n+1<s<n+m,i e zcannot be a value of a function.

We define sets Ky, K1, ... as follows:

K0={'UJ1, wr}UP
Kiyi={23z(z e K1 &z — 2)}, [=0,1,...

It is easy to show by induction that if m; < ms, then K,,, N K, = 0. Then
there exists p such that K41 = 0. Let K* = |J]_, Ki. It is clear that K* is a finite
set.

For every z € K* we define 7% in the following way:

1. If z € K, then:

(a) if z € {wy,...,w,}, then 7% = val(z);

(b) if 2 = (s,j) € P, then 7% = X377,

2. If z€ Kjq, 2 — 2z and z € Kj, then 7% = f;(7%).

Let E* C E; be such that

u€ E* ‘g ((u=(i,z1,22) &1 <i<n)
Viu=({j,z1) &n+1<j<n+k+m)) &2z € K"
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Let 7 = {X ™|z = (s,j) € P} and let w7 = {(X5,... X"}

For every u € E* we define L* as follows:

(a) if u = (i,21,22) and 1 <1 <n, then L* = To(772);

(b) if u = (n+j,2) and 1 < j <k, then L* =T;(7%));

(c) if u = (n+k+s,2) and 1 < s <m, then L* = 5,(X?).

Now let ¥ = &uep-L* and IT = 3X;' ... 33X, &uep- L,

The next two lemmas follow immediately from the above constructions.

Lemma 3.3. Let 6 O A and §|-E,. Then P C Dom(as).

Lemma 3.4. Letd D A, §|-E; and as(p;) ~ ei, 1 < i < p. Then the following
conditions are true:

(i) K* € Dom(as); L

(ii) Vz € K*(as(z) =~ Tél(W/i,X/é));

(iii) Soq(W/t, X /e) ~0. (X stands for X7, ... LX),

Lemma 3.5. Let HiNK* =0 ande,,...,e, € B be such that Em(W/i,Y/E) o~
0. Then there exists a finite part § O A with the following properties:

(i) as(p:) ~ei, 1 <i<q;

(ii) Dom(as) = K* and Hs = Hi U (K/K*);

(iii) if z € K*, then a;(z) ~ TQ(I'V/Z, X [e);

(IV) ‘SH_EI

Proof. For z € K* we define a; as follows:

1. If z € Ky, then: L

(a) if z = w;, then as(z) ~ t; =~ T&(W/E,X/E) (17 = w;);

(b) if z = p;, then as(z) ~ e; T&(W/E,Y/E) (1% = X50).

2. If z € K41, then as(z) ~ Tél(_W-/f,‘X_/E).

The other components of § we define as follows:

Hs; = HiU(K/K");

d .
cpf(zl) ~ 22 g (2,21,22) € Ey V(P;(Zl) ~ zo for
1<i<nand z € Hs UDom(as);

£(z2) 24 (s+n+k,z) € EyVE(z) for 1 <5 <mand z € Dom(as);
ag(z) ~ true & (n+j,2) € E1V 0}(2) ~ true for
1<j<kandz€ H;.

It is easy to show that the finite part J defined above satisfies (1)-(iv). O

Now we can continue the proof of Proposition 3.2. Let

)\ = T'(Wl)D"Vl, ify¢K* or K*NH, #0,
“1IID>7Y, otherwise.
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Let Ay (W /) 3 t. Due to Lemma 3.5, there exists § D A such that as(y) ~
V(% /e, W /t) ~ t and 6} E,, and hence §|-E.

Let Ag (W /%) # t and E be consistent. There exist three possibilities:

1. K* N Hy # 0. Suppose that 6 2 A and §|-E. Then due to Lemma 3.3 and
Lemma 3.4, K* C Dom(as). This contradicts the fact that Dom(as) N Hy = 0,
hence for all 6 D A it is true that § J~FE, i. e. (ii)(a) is satisfied.

2. K*NH, =0 and y € K*. Suppose that § D A and §}-E. Hence §}~E; and,
due to Lemma 3.4, P C Dom(a;), as(y) ~ r¥(W/t,X [e) and To(W/t, X [€) ~
0, where e; = as(pi), 1 < i < p. If as(y) ~ t, then A(W/f) ~ t. This is a
contradiction, hence as(y) # ¢ and (ii)(b) holds.

3. K*NH, =0andy ¢ K*:

(a) If II(W /%) =~ 0, then there exist ey,...,e, € B such that Sy (W /%, X /)
~ 0. Due to Lemma 3.5 and the properties of the relation “|-", there exists § D A
such that 6|-FE and y € Hs. Then (ii)(a) is true.

(b) Let II(W /) # 0. Let 6 O A and suppose that 6}—E. Due to Lemma 3.3,
there exist e;,...,e; € B such that Sy (W /i, X/e) ~ 0. It follows from this
contradiction that (ii)(b) is true.

Let Agy(W/t) # t and let E be not a consistent set. Then for all§ D A, § J-F
and (ii)(b) is true. That proves Proposition 3.2. [

Theorem 3.1. If D is a V-weak-admissible set, then D is weak-computable.

Proof. Let D be V-weak-admissible. Due to Proposition 3.1, there exist a finite
part A and a natural number e such that:

(i) V6 2 AVy(§|-Fe(y) = y ¢ Hs);

(i) t € D« 30 D Ady(as(y) ~ t & 8|—-Fe(y)).

Let t € D. It follows from (ii) that there exists a natural number v such that
(v,y) € W, and §|-E,. Consider the conditional term A¥¥ for E, and y from
Proposition 3.2. Suppose that A" (W /t) # t. There exist two possibilities:

1. There exists ' O A such that §'|~E, and y € Hy. Hence ¢§'|-F.(y) and
y € Hg , which contradicts (i).

2. For all §' D A(§'|-E, = ag(y) #t). This case is also impossible, because
d DA, §E, and as(y) ~ t.

So we have that ¢ € A&y(W/Z).

Now let t € A&”(W/Z). Then 36 O A(as(y) ~ t & §|-E,) and, due to (i),
teD.

Finally, we obtain that

te D e 3v,y) € W\ (W/T) 3 1),

which proves the theorem. [J
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4. LP-DEFINABILITY

Now we are ready to introduce our semantics of the logic programs. Let £ =
(fis--s fasToy ... Tx; S1,...,Sm) be a first-order language corresponding to the
partial structure A. Let C' = {¢;,...,¢.} be a set of constants. For every t € B
we introduce new constants kf as names for £, 1 < s < m. We define the sets
K, = {kflt € As}, 1 <s<m,and K =J,_, K,;. Let £, = LUC U K and let
A" be the enrichment of 2 to the extended language £x. Let Tk be the set of all
ground terms of L. The set

Y (@A) ={T5(n)|0<j < k& T € T & Tj(rgq+) ~ 0}

is called a diagram without parameters of the structure 2. For all parameters we
also introduce a diagram

O(As) = {Ss(k)|ki € K5}, 1<s<m.
Now we define a diagram of the whole structure 2:
O°(A) =C(A)UB(A,)U...Ud(Ap).

A subset D of B is called definable by logic programs (LP-definable) in the
structure 2 iff there exist an ordered pair (P, H) (P is a logic program and H is
a new predicate symbol) and a set of constants C = {¢j,...,c,} such that the
following equivalence is true:

teD & 3Ir(r €Tk &O(A)UPH H(r) & T+ > t)

(the sign “F” means derivability in the sense of the first-order predicate calculus). .

Notice that in the definition of () the underlined predicates and the pa-
rameters are not treated in equal manner. For example, suppose that 6;(z) = t.
Suppose that X;(t) ~ 0 and ¢ € A;. Then both T;(k;) and T (fi(k$) are elements of
8¢ (). On the other hand, S;(k§) € 9% (), but Ss(f;(k$)) ¢ (). The picture
changes if the equality relation is among the underlined predicates. In such case,
we have f;(k$) = kf € 8°(2) and hence 8% () F S (fi(k?)).

Now we shall consider the relation between the LP-definable and V-weak-
admissible sets. For this purpose, we shall translate the constructions from Propo-
sition 3.2 into logic programs. We shall introduce some auxiliary terms.

A natural number e and a finite part A are called compatible iff

V6 D AVy(d}-F.(y) = y & Hs).

A subset D of B is said to be sufficient for the finite part A and the natural
number e iff the following equivalence is true:

te D 36D Adylas(y) ~ t & 6|-F.(y)).
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A family of sets P is called sufficient iff, for every compatible finite part A and
natural number e, there exists D € ¢ such that D is sufficient for A and e.

Note that if D and D, are sufficient for A and e, then D = D;. It follows from
Proposition 3.1 that if D is V-weak-admissible, then it belongs to every sufficient
family.

Let fix a finite part A. For every natural number e compatible with A we shall
construct a logic program (P’', F') such that the set defined by (P’, F') is sufficient
for A and e.

Let 0 and nil be new constant symbols, let fo be a new unary functional
symbol, and h be a new binary functional symbol.

For every natural n by n we note the term f§'(0). Let NN denote the set
{njn € N}.

The following proposition is a reformulation of a well-known result.

Proposition 4.3. For every r.e. subset W of N* and for every k-ary predicate
symbol Q, there ezists a logic program P with the following properties:

(i) if (z1,...,zx) € W, then PF Q(z,,...,2;);

(ii) there exists a Herbrand interpretation I of P, which is a model of P and

I(Q)(al,"'7ak)=0<:>
Jz, ... 3zk((z1,..., o) EW &y =2, & ... & ag = z;).

Such interpretations of P we call standard.

We define lists in the following inductive way:

(i) nil is a list;

(i) if « is a list and S is a term, then g(a, B) is a list.

Let A = (a; Hi;¢' 1y 0301, 063 €, o € )y Dom(an) = {wy, ...,
w,}; og(wi) =~ t;, 1 < i <7, and let e,...,¢c, be new constant symbols which
are interpreted in 2 as ti,...,t.. Let R = {e1,...,¢r,0,nil, fo,..., fu,h} and

'8, X3, ... be special variables. Let T be the set of all terms constructed by means
of R and the special variables. We shall denote the elements of T by a,b,c,... Let
var(a) be the set of the variables of a. We consider Herbrand interpretations of ¥.
For a consistent set F, we shall use the sets P, K, Ey, K* and E*, constructed in
the proof of Proposition 3.2.

We consider substitutions of the form {XJ1/u1,.. o Xpd [1g}, where py, ...,
g € T. If p; = p; and p; = (s; +n,j), 1 < i < g, the substitution is called
a correspondence and the list [[Xp!p ],..., [X,fg|2q ]] is called a representation of
the correspondence. For a substitution & and a € ¥, by ak we denote the term,
provided by applying s over a. If [ is a representation of a correspondence, I« is
called a pseudocorrespondence.

If I and f are correspondences, then we shall write [ <; f to denote that [ = f
or | = append(l,[X,m]) for some special variable X and a natural m. We use the
sign “<” to denote the reflexive and transitive closure of “<”.
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Consider the sets:

Neg = {(z,ylz,ye N&z #y},

Cod2 = {(Qz,i,y)LEQEE&x—-(z s
Cod3 = {(z,i,y,2)lz,4,y,2€ N &z = (i,y,2)},
Dalpha = {w,,...,w,},

NDalpha = N/Dalpha,
NCod2 = N/L, where L = {z|z = (i,z) & 1,2 € N},
NCod3 = N/L', where L' ={z|jz = (1,j,2) & 1<i<n&j,z€ N}.

All of them are recursively enumerable. Let the logic programs Pp.q, Peod2,
Peoas, Paatphay Pndalphay Prcod2, Pncod3 represent the above sets with predicate
symbols negq, cod2, cod3, dalpha, ndalpha, ncod2 and ncod3 and suppose that they

have no common predicate symbols.

We shall identify the finite set of atoms with their conjunction if the set is not
empty, and with true if it is empty.

We shall consider several programs, needed in the construction of P’. When
a program uses already defined predicates, we shall suppose that the texts of the
corresponding programs are appended to the text of this program. For example,
we shall suppose that in the next program Py the programs Ppeq, Peod2, Peods and
Pndalpha are included.

Po
e\ (Y, [Y|R])-cod3(Y,1, Z, X ),ndalpha(X). 1 <i<n
e1(Y,[Y|R])-cod2(Y,j,X). n+1<j<n+k
e1(Y,[Y|R]):-cod2(Y, s, X),ndalpha(X). n+k+1<s<n+k+m
e1(X,[Y|R]):-neq(X,Y),e1(X, R).

The next proposition is a verification of the program Fy. The method used is
developed in [3].

Proposition 4.4. If z € N and E = {uy,...,w} is a consistent set, then
Py tFe(z,[uy,...,y]) iff z € E.

Proof. The “if” part is proved by induction on I. To prove the “only if” part,
we shall define a special Herbrand interpretation of P,. Let take a special Herbrand
interpretation I of the predicates that occur in Ppeq, Peod2, Peods and Pryaipha. We
define the predicate I(e;) as follows:

(a) I(e;) ~0if a ¢ N or 7 is not a list representing a consistent set;

(b) I{e;) ~0if a =2 € N and 7 is a list representing a consistent set E such
that z € F;.
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A straightforward proof shows that I is a model for Py. This fact together
with the definition of I(e;) proves the proposition. [J

The following programs are verified in a similar way.

P
p(z, z)-cod2(Y, 5, X),e1 (Y, Z).

Proposition 4.5. Ifz € N and E = {u;,...,u,} is a consistent set, then

P Fop(z, [uy,...,u,]) iff z € P.

pu((1 )
pr (X, [H|T)):-ncod2(H), py (X, T).
pi(X, [H|T)):-cod2(H,j,Z),; (X, T). n+1< j<n+k
p1(X,[H|T)):-cod2(H, s, Z),dalpha(Z), p1 (X, T).
n+k+1<s<n+k+m
m([H|Y),[H|T)):-cod2(H, s, X),ndalpha(X), (Y, T).
n+k+1<s<n+k+m.

Proposition 4.6. If e is a list representing a consistent set E, then

Py - pi(f,e) iff f represents the set P.

en([] [

e11 (X, [H|T)):-cod3(H, 1, Z,Y),dalpha(Y),e;;(X,T). 1<i<n

en (X, [H|T)):-cod2(H, s, Z), dalpha(Z), e (X, T).
n+k+1l<s<n+k+m

en([H|X],[H|T]):-cod3(H,i, Z,Y),ndalpha(Y),en1 (X, T). 1<i<n

en([H|X], [H|T)):-cod2(H, j, Z),e11 (X, T). n+1<j<n+k

en ([H|X],[H|T)):-cod2(H, s, Z),ndalpha(z), e (X, T).

n+k+1<s<n+k+m.
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Proposition 4.7. If e is a list representing a consistent set F, then

P3 & ej1(a,e) iff a represents the set F.

Py
nel([ ], X):-.
nel([X1|Y], X):-neq(X1, X),nel(Y, X).

Proposition 4.8. If a is a list of elements of N and b is an element of N,
then

Py F nel(a,b) iff b is not an element of a.

Py
k(w;,Z2):-. 1<i<r
kX, Z)-p(X, Z).
k(X, Z)-cod3(X,1,J, Z1),cod3(Y,i,Z1,X),e,(Y, Z), k(Z1, Z).
1<i<n.

Proposition 4.9. If z € N and e is a list representing a consistent set F,
then

P F k(z,e) iffz € K*.

Pe
k(X,Z):-ncod3(X),p1 (Y, Z),nel(Y, X), ndalpha(X).
k(X,Z):-cod3(X,i,J,Y), cod3(R,3,Y, X),e1, (X1, Z), nel(X1, R),
pl(Y'1,2Z),nel(Y1, X),ndalpha(X). 1<i<n
k(X,Z):-cod3(X,i,J,Y), 1 (Y1,2Z),nel(Y1, X),ndalpha(X),
cod3(R,1,Y,X),e1(R, Z),k(Y,Z). 1<i<n.

Proposition 4.10. If z € N and e is a list representing a consistent set E,
then

Ps - k(z,e) if z ¢ K*
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Py

tau(w;,c;, X, X, E):-. 1 <i<r

tau(X,Y,[],[[Y, X]], E):-p(X, E).

tau(X,Y,[[Y1,X1]|21},([Y1, X1]|Z2), E):-p(X, E),p1 (X1, E),
neq(X,X1),
tau(X,Y,Z1,Z2, E).

tau(X, fi(V), S, Q, E):-cod3(X,i,J, X1),k(X1, E),cod3(R,1, X1, X),

e1(R,E),tau(X1,V,5,Q,FE). 1<i<n.

Proposition 4.11. Let the list e represent the consistent set E, x € N, z €
K*, and c is a pseudocorrespondence. Let b and d be elements of . Then:

P F tau(z, b, c,d, e) iff there exist a substitution k, a term 7 of T and corre-
spondences | and f such that Tk = b, Ik = ¢, fx =d and

I <y fyvar(r)Uvar(l) = var(f) end 7f =7° (W/e, X /p),

where 7* is the term constructed for z in the proof of Proposition 3.2,¢ = (¢1,...,¢r)
and p = (p1, ..., Pq)-

If I, and Iy are lists, we shall write {; <} ls to denote that l; = Iy or there
exists a term a of ¥ such that ls = [a,l;]. By “<™ we denote the transitive closure
Of “—<_;”.

Let £ = (e1,.. ¢ f1ye-os fny Toy -y Tk;S1,...,8m) be a first-order lan-
guage, where special variables are also available. Atoms in £ are atoms in which
may occur Tp,...,T, and S;,...,Sn. Let £ be an enrichment of £ with the
constants 0, nil and the functional symbols fo and h.

Pg

pi([],E, Z):'-

pi(IX|Y], E, Z)-cod3(X,i, X1,Y1),E(Y1,E),pi(Y,E, Z). 1<i<n

pi([X|Y), E, Z):-cod3(X, i, X2, X1), k(X 1, E), tau(X 1,Y1, Z, Z1, E),
To(Y1),pi(Y,E, Z1). 1<i<n

pi([X|Y], B, Z)-cod2(X, j, X1), k(X 1, E), tau(X1,Y1, Z, Z1, E),
Tn-ij(Y1),pi(Y,E,Z1). n+1<j<n+k

pi([X|Y], E, Z)-cod2(X, j, X1), k(X 1, E), pi(Y, E, Z).
n+l1<j<n+k

pi([X|Y), B, Z):-cod2(X, s, X1), p(X1, E), tau(X1,Y1, Z, Z1, E),
Syont(Y1),pi(Y,E,Z1). n+k+1<s<n+k+m
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([ X|Y], E, Z):-cod2(X, s, X1),dalpha(X1),pi(Y, E, Z1).
n+k+1<s<n+k+m.

Proposition 4.12. Let e and e; be lists such that e; <* e, let e represent
a consistent set E and let b be a pseudocorrespondence. Then for every finite
set G of atoms in the language £ holds Py - G = pi(e;,e,b) iff there exist a
substitution x, o finite set G° of atoms in £ and correspondences | and f such
that G = G, b = Ik, | < f, e; represents the set E' and G°f > %,(W /¢, X /D),
where £, = Uwegene {Lu} and P = {p1,...,pg} is the set corresponding to E
constructed in Proposition 3.2.

Proof. The “if” part is similar to the previous propositions. To prove the
“only if” part, we define a class K of Herbrand interpretations of Ps. A Herbrand
interpretation I of Py belongs to £ if the following conditions are satisfied:

(i) I is standard for the already defined predicates.

(ii) If ey, e and b belong to T, then:

(a) I(pi)(e1,e,b) ~ 0 if e; or e are not lists or e; £* e or e does not represent
a consistent set or b is not a pseudocorrespondence;

(b) I(pi)(e1,e,b) ~ 0 if e; and e are lists; e; <* e; e represents a consistent
set; b is a pseudocorrespondence; there exists a finite set G = {f,..., s} of atoms
such that I(8;) ~ --- ~ I(8,) ~ 0 and there exist a finite set G° of atoms in
£, a substitution x and correspondences [ and f such that b = Ik, | < f and
G°f 2 £,(W/e, X/p).

It is easy to show that every interpretation in £ is a model of P.

Let G = {f1,...,81} be a finite set of atoms in £, e; and e be lists, e; <* e,
let e represent a consistent set E, b be a pseudocorrespondence and P3 - G =
pi(ey,e,b). Consider I € R such that I(8;) ~ 0 iff f; € G. I is a model of &,
hence I(pi)(e;,e,b) >~ 0. The latter together with the definition of I proves the
proposition. [

Proposition 4.13. For every natural e compatible with the finite part A, there
ezists a logic program (P', F) such that the set definable by means of (P',F) and
the constants cy,...,c, is sufficient for A and e.

Proof. Consider the set
W1 = {{(v,y) € W,|E, is consistent, y € K™ and K* N H, = §}.

It is clear that W; is ar. e. set. Let () be a new unary predicate symbol and Py be a
logic program that represents W; by means of ). Let list be a new binary predicate
symbol and Pj¢ be a logic program that has no common predicate symbols with
the other programs and satisfies the following conditions:

(i) if u is a code of the finite set {vy,...,v}, then Pjg & list(u, [vy,...,1]);

32



(ii) there exists a Herbrand interpretation I of Pjy such that if © € N and
E, = {v1,...,u}, then I(list)(u,b) ~0iff b = [v,,...,2].
Consider the following logic program:

Pl
F(Y)-Q(Z),cod2(Z,U, X), list(U,U1), tau(X,Y,[], F,U1),
pi(UL, UL, F).

As in the previous propositions, it may be proved that for every finite set G of
atoms in £, and for every term 7, P’ + G = H(7) iff there exist a substitution
K, an ordered pair (v,y) € W, a finite set G° of atoms in £, a term 7° in £},
and a correspondence [ such that G = G%, 7 = 7%, G° D %(W /¢, X/p) and
70l = 7¥(W /e, X /B), where ¢ = (c1,..-,¢r), P = (P1,...,Pq), Ey is the finite set
with code v, P = {p1,...,p,} and E* are its corresponding sets constructed in
Proposition 3.2, ¥ = Uwuepg- Lu and 7¥ is the term corresponding to y.

Let the subset D of B be LP-definable by (P’, F') and ¢, ..., c.. We shall prove
that D is sufficient. Let 36 O A3y(as(y) ~ t & d}—Fe(y)). It follows from - F,(y)
that there exists (v,y) € W) such that é|-E,. Let K* be the set corresponding to
E,, constructed in the proof of Proposition 3.2. It is easy to prove that (v,y) € W;.

From § D A and 6| FE, it follows that K* C Dom(as), i.e. there exist Iy, ...,
such that Sg((W /¢, X /I) ~ 0. Let k; be the name of /; with respect to the parameter
with number s; (there exists such a name, because p; = (s; + n,j) € &,). Let
I=(X5p)- -, [X;;’,p_q]], 70 = r¥(W /) and G° = £(W /). Then for the empty
substitution &, P G® = F(7°) holds. From Zg (W /¢, X /k) ~ 0 it follows that
G°(X/k) C 8°(%), where k = (ki,...,k;). From the Theorem of constants and
the Deduction theorem it follows that P U 3% () - F(r), where 7 = 7°(X /k). In
addition, 7y ~ %(W/‘é, X/k) ~ 'r%(W/f, X /1) ~ as(y) ~ t. We obtained that
teD.

Now let £ € D. From the Theorem of constants and the Reduction theorem it
follows that there exists a finite set G of atoms in £ such that P+ G = H(7).
Let X;,..., X, be the set of variables occurring in the formula G = H(r1).
Then there exist dj,...,dy € B such that Gy (Xi/di,...,Xy/dg) ~ 0 and
TQ[(Xl/dl)- ..,qu/dq') ~T.

From the characterization of P, there exist (v,y) € W), a substitution «, a finite
set G? of atoms in [;> and a correspondence f such that G = G%, 7 = 7%, G°f D
S(W/e,X/p) and 7°f = 7¥(W /¢, X/p). Let X3!,...,X;} be the variables occur-
ring in G® and 7°, f = {X;'/l,..., X, /l;} and & = {X!/p’,..., X;7 [u;}. Let
oy (X1/dy, ..., Xq /dy) = 1; and let the first ¢ variables in f and & be X!, ..., X;;’.
Then:

Goy(X1/dy, ..., Xy [dy) = Gy(Xi! [, .., X7 1) ~ 0,
Tog(X1/dy, ., Xg [dg) = 7 (X [y, X 1) > ¢,

1
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Hence Sy (W /e, X /1) = 0 and 75 (W /, X/1) =~ t, where X = (X31,..., Xp0).
It follows from (v,y) € W; that Hy N K* = @, y € K* and E, is consistent.
This, together with Lemma 3.5, implies §|-F.(y) and as(y) ~ ¢, which proves the

proposition. [}
From the previous considerations follows:

Theorem 4.2. If D is V-weak-admissible, then D is LP-definable.

It is interesting to note that LP-definability implies V-weak-admissibility, i.
e. the classes of LP-definable and V-weak-admissible sets coincide. The interested
reader is referred to [4], where the proof of this fact is given in the case where the
searching in the domain of the structure is allowed.

5. PROGRAMMING LANGUAGES

In this section we shall consider the computational power and shall prove
the transitivity of the new semantics. Consider the first order language £ =
(er,...y¢ri fryeo s SniToye -3 Tk3S1,- .., Sm). Let 8 be the class of all structures
corresponding to £ such that

Ql€R®ﬂ=(B;tl,...,t.,;{)l,...,Hn;Zo,...,Ek;Al,...,Am)

and ¥; be true whenever be defined, 1 < j < n, ¥y = As.true and A; are subsets
of B.

A programming language on £ (see [4]) is an ordered triple L = (D, p, &), where
D is a denumerable set of objects — the syntactic descriptions of the programs of
L, p — the arity function - is a mapping of D into N \ {0}, and & - the semantics
of the programs in L - is a mapping of © x £ such that if d € © and A € §,
then &(d,?) is equal to the object computable by means of the program d on the
structure A. This object is typically a partial function or a set. Here we shall
suppose that &(d,?) is a subset of |%|?(?) (by |2| we denote the universe of the
structure 2).

There are at least two natural conditions that should satisfy each programming
language L on £, cf. [4].

First of all, it should be effective in some sense. A language L is called effective
if for all p € D there exists an enumeration operator I' such that, for all 8 € R for
which |B| = N, it holds T'(D'(B)) = &(p,B), where D'(B) = D(B)U {{(n + k +
m+i,t;):1<i<r}

The second condition is related to the implementation independence of L.

Let A; = (B;;til,. ..,ti,;eil,.. . ,9",,,;2"0,. ..,Eik;A"l,...,A"m) €ER =172
A surjective mapping k of B; onto B; is called a strong homomorphism iff the
following conditions are true:

(i) k(t) =82, 1<i<r

(ii) 6?(k(s)) ~ k() (s)) for each s € B, 1 < i < m;
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(iii) ¥2(k(s)) > £i(s) for each s € B, 1 < j < k;

(iv) (Al) = A2, 1 < s < m.

The language L is called invariant if for all structures 2, B € £, such that there
exists a strong homomorphism & from || onto |B], and for all p € D, k(S (p,A)) =
S(p,B).

We introduce an extra third condition, which is related to the fact that search-
ing of the domain of the structure is not allowed in our semantics. This condition
means that the programs use no external information about the structure, in other
words, they ask only questions concerning the parameters during the execution.
That is why the structures of the next definition have the same parameters.

Let A;,%; € K We shall call that ; is a substructure of A, (we denote
911 g ‘212) if:

(i) By C Ba;

(i tl=¢31<i<n

(iii) Al = A2, 1< s <my

(iv) 61 (t) ~ 6%(t) forall t € By, 1 <i < m;

(v) Z}(t) ~ Z3(t) forallt € By, 1< j < k.

We say that the language L has a substructure property if for all 2,2, € ],
such that 2; C 2s, &(p, 22(1) — 6(}), 212)

Consider two programming languages L = (D,p,8) and L' = (D', p’, &'). Let
D be the set of the ordered pairs (P, H), where P is a logic program and H is an
unary predicate symbol. Let D' be the set of the ordered pairs (F, H), where F is
an arbitrary first order formula. Let p and p' be the constant 1. Let K, £x, Tk
and ¢ (2A) for A € & be the same as in the previous section. Let B and P’ be
defined as follows:

te PP, H),A) & Ir(r € Tx &°(A)UPF H(r) & T+ ~ 1),
te€ P (FH),A) & 3r(reTk &I“A)UFF H(r) & g0 = ).

Let &' coincide with ’, and & ~ with .

It is easy to prove that the languages L and L’ are effective, invariant and have
the substructure property.

Now we shall prove that the language L is maximal among the effective, invari-
ant languages with substructure property, i. e. every set, computable by a language
with these properties, is also computable by L.

We say that the language L, = (D1, p1,6;) is translatable into the language
L2 = (Dg,pg, Gz) (see [4]) (we denote L1 S_ﬁ Lz) iff

Vp1 € D13p2 € Da((p1(p1) = p2(p2)) & VA € R(G1(p1, %) = Ga(p2, %))).

Theorem 5.3. Let Ly = (Dy,p1,6;) be an arbitrary programming language
on R, which s effective, invariant and has substructure property. Then L, < gL
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Proof. Let p; € ©,. Consider an arbitrary structure % € £. Let (a,B)
be its enumeration and let A = (B;t1,...,t:;01,...,00;20,..., Zp; A1, ..., Am),
B = (N;xl,---,xr;@lg---,(Pn;UO,---,Uk;EI,---,Em) and a(.'l,‘,‘) >~ i, 1 S i S T.
Then B € R, and if ¢! and o} are the restrictions of ¢; and o; on Dom(a),
respectively, then « is a strong homomorphism from B = (N;z1,...,2,¢7,...,
@070, -,0%k;€1,. .., &m) onto A and B* C B (Dom(a) is closed with respect
t0 ¢1,-..,9n). Due to the properties of L1, we obtain &;(p;,2) = a(S,(p1,B"))
= a(6;1(m,B)) = (T, (D'%)) and T'p, ( '%) C Dom(a), i. e. for every 2 € £ and
for every enumeration (o, B) of 2 it is true that

S1(p1, ) = (I}, (D'(B))), (5.1)
[y, (D'(B) C Dom(a). (5.2)
Let us fix natural numbers wy,...,w,. Let e; be the number of I';; and let

W = {{(z,v)|3'3z((z,v") € W, and v be the code of the set E,,
obtained from F, by removing elements
of the form (n + k +m +i,w;),1 <i<r)}.

This set is r.e. Let e be its Godel code and let us fix an arbitrary 2 € K.
Consider a finite part A of % such that H; = & = ... =&, =0, ¢] = ... =
oh =0,01 = ... =0, =0 and a1(w;) =~ (ci)gy. Let § O A and éf-Fe(y).
Then there exists (v,y) € W, such that §|-E,. For all (a,B) D ¢ it is true
that Tp, (D'(B)) = ['(D(B)) and (o, B) = Fe(y) (there exists at least one such
enumeration). Then y € T, (D'(B)) © y € I'.(D(B)) and from (5.2) it follows
that y € Dom(a), i. e. y € Hs. We obtained that for every 2 € £, the finite part A,
constructed above, and e are compatible. Consider the definition of the consistent
set E, for the fixed A. It can be seen that the consistency of E, depends only on
wy,...,wy. The same is true for K* and P. Then the set

W = {(z,v)|(z,v) € W, and E, is consistent

depends only on wy,...,w,. Consider the program (P', F) from Proposition 4.13.
It is true that V2 € (&((F', F),) = Dg), where Dy is sufficient in 2 for e and
A, i. e. the condition ¢t € Dgy <» 36 O Ady(as(y) ~t & §|-Fe(y)) is true.

We shall prove that Dy = &;(p;, ™) for every & € R Let s € G1(p1,2)
and let fix an enumeration (a,B) of A such that B = (N;w,...,We;@1,...,¥n;
00s---,0k; €1y, €m) and {a,B) D A. Then there exists y such that (a,B) =
F,(y) and a(y) ~ s. Hence there exists § D A and §|-F.(y) and as(y) ~ s. It
follows that s € Dgy.

Now let t € Dgy, then 36 D A3y(as(y) ~ t & d|-Fe(y)). Let fix an arbitrary
enumeration (@, B = (N;wi,...,Wr;P1y--+Pni00y--«,0k;&1,5---,&m)) of A such
that (a,B) D 4, then I'p, (D'('B)) = T'(D(B)) and due to (5.2) and the fact that
8|-Fe(y), (a,B) = Fe(y) and a(y) ~ t, it follows that t € &,(p;, ).
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Finally, we obtain that Dy = &,(p;,?). O

From the theorem it follows that L’ <g L. This means that the Horn clause
programs are at least as strong as any other language using arbitrary first order
formulas as programs. For m = 0 we obtain the same result for logic programs
without parameters.

Let (Po, Ho) € D and for every 2 € £ we denote Wy = &((FPo, Ho), ).

Proposition 5.14. For every program (P, H) there ezists a program (Q, R)
such that for every A € R, P((P, H), (A, Wy)) = 6((Q, R), ), where (A, W) is
a structure obtained from A by adding the parameter Wgy .

Proof. Let L* = (D", p*,8") be a new programming language, where D* = D;
p* = pand G ((P,H),) = P((P, H), (A, Wy()). We shall show that L* is effective,
invariant and has the substructure property.

Effectiveness follows from the effectiveness of L and the fact that enumeration
operators are closed with respect to composition.

Let x be a strong homomorphism from 2 into B. Then x(Wy) = Wiy and
from the invariance of L it follows that

<(BUP H), (A, Wy ) = BUP, H), (B, Wig)),

i. e. L* is invariant.
Let 2 C B. L has the substructure property, hence Wy = Wi and

PUP, H), (A, Wy)) = PP, H), (B, Wig)),

i. e. L* has the substructure property.
Now applying Teorem 5.3 to L*, we obtain the proposition. [J

6. HORN CLAUSE OPERATORS

Let A € R and let (P,H) be a Horn clause program, where H is an unary
predicate. We define a mapping I'p i from the subsets of |%| onto the subsets of
2| by

PP,H(W) = m((P’ H)a (m) W))

It follows from the definition of ‘B that the operator I'p gy is compact, i. e.
s€lpy(W) & 3ID(D CW & D is finite & s € I'p y(D)).

Applying the Knaster—Tarski theorem, we obtain that I'p  has a least fixed
point Wo = Uz—o ['p ;7 (#). We denote this fixed point by

pW.B((P, H), (A, W)).

Now we shall show that the least fixed point of each Horn clause operator is
computable by means of Horn clause programs. In fact, we even have
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Theorem 6.4. For each Horn clause program (P, H) there exists a Horn clause
program (P*, H*) such that for all A € &

pW.B((P, H), (A, W)) = PP, H"), ).

Proof. Let L; be the programming language (D, p1, S;) on &, where ©, =D,
p1 = p and &,((P,H),A) = pW.B{P, H), (A, W)). To prove the theorem, it is
sufficient to show that L; <g L.

We shall prove that L, is effective, invariant and has the substructure property.
Indeed, the effectiveness of L, follows from the uniform version of the First recursion
theorem for enumeration operators. To prove the invariance of L;, suppose that
(P,H) € D1, let A,B € K and & be a strong homomorphism form 2 to 8. Let us
define the sequences of sets Wy and W% in the following way:

Wt = P((P, H), (%, Wg)) and Wigt! = B((P, H), (B, Wy)).

Now using the invariance of L, we obtain by induction on n that r.:(Wé‘() = W%,
n =0,1,... Hence,

KWW PP, H), (A, W))) = ypWB((P, H), (B, W)).

By this the invariance of L, is proved.
Now let 2 C B. Using the above sequences and the substructure property of
L, we obtain by induction on n that W = W&, n =0,1,... Hence,

pW.B((P, H), (A, W)) = pW PP, H), (B, W)).

We obtained that L, is invariant, effective and has the substructure property.
Applying Theorem 5.3 to Ly, we prove that L; <g L. O
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