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their points and are spherical 3-designs. We prove that such codes have the maximal
possible cardinality provided the dimension and the minimum distance are fixed.
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1. INTRODUCTION

Let S™! be the n-dimensional unit sphere with the usual Euclidean metric and
inner product. A spherical code C is a finite nonempty subset S™!. Some char-
acterizations of spherical codes are given by the dimension n, their cardinality |C|,
the maximal inner product s(C) = max{(z,y) : z,y € C,z # y} (or, equivalently,
the minimum distance d(C') = min{d(z,y) : z,y € C,z # y} = v/2(1 — s(C))). By
(1, M,s) we denote any code C C S"~! with |C| = M and s(C) = s.

Denote by £ = ¢(C) the number of distinct inner products of different points
of C. Then C is called an ¢-distance spherical set. If A(C) is the set of all distinct
inner products, then |A(C)| = £(C).
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A spherical 7-design is a spherical code C C S™~! such that

1 f@u) = 5 3

,.L(Sn‘_l) Sn-—1 zec

(u(z) is the Lebesgue measure) holds for all polynomials f(z) = f(z1,22,...,25)
of degree at most 7 (i.e. the average of f over the set is equal to the average of
f over S®1). The number 7 is called strength of C. The spherical designs were
introduced in 1977 by Delsarte-Goethals-Seidel [13] in analogy with the classical
combinatorial designs.

Examples, constructions and classification results for spherical ¢-distance sets
can be found in [12, 13, 16, 6, 4]. However, a few {-distance sets of large (with
respect to n and ¢) cardinality are known.

Many investigations of combinatorial objects start with an assumption of cer-
tain regularity. Since almost all known maximal £-distance sets are spherical designs
of suitable strength, we have decided to investigate further this connection.

We consider spherical 2-distance sets which are simultaneously spherical 3-
designs. We prove that such codes have maximal possible cardinality for fixed
dimension and the maximal inner product. This implies that the codes achieve the
so-called Levenshtein bound which gives strong restrictions.

2. SOME PRELIMINARIES

Let C' C S™~! be a spherical code and z € C. Then the system {A,(z) : —
t < 1} of integers

Az) =l{y € C: (z,y) =t}

is called distance distribution of C' with respect to z. We take only the nonzero
entries in the distance distribution.
A spherical code is called distance regular if its distance distributions do not
depend on z. In this case we omit the point z in the notation.
Delsarte-Goethals-Seidel [13] give the following connection between the £-dis-
tance sets and the spherical 7-designs.

Theorem 2.1.Let C C S™! be an {¢-distance spherical set and a spherical
T-design. Then:

a) (the absolute bound) T < 2¢ and |C| < ("*771) + (*17?). If one of these
bounds is attained, then so does the another.

b)r > £ — 1 implies that C is distance regular.

c) (Delsarte-Goethals-Seidel bound)

n+e—1 n+e—2 .
. + e_1 ) if T=2e;
€l 2 n+e-—2 . (2.1)
2 e—1 , if T=2e-1.
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Let My(¢) = max{|C|: C C S"! is an {-distance set} be the maximal possi-
ble cardinality of a spherical {-distance set. Then the absolute bound and an easy
lower bound state that

(n+§-—1)SMn(g)S(n-i-§~1)+(n—é-—€-1—2). 22

Despite this gives the asymptotic behaviour of M, (f), a few examples are known
to attain the upper bound. Moreover, a few £-distance sets are known to be close
to this bound.

The following definition for spherical designs is crucial for our approach. If
¢ Cc S™ ! is a spherical 7-design, then for every point y € C' and for every real
polynomial f(t) of degree at most 7 the equality

Y flzy) = flCl - £(1) (2.3)
zeC\{y}
holds, where
_ F(n—-1)
R NC T

1
fo= Cn/l F)(1 =23/ 2g¢,

(fo is the first coefficient in the expansion f(t) = Z:-;o f,-P,-(")(t) in terms of the
Gegenbauer polynomials [1, Chapter 22]). In fact, for calculations of f, we use the
following formula:

as 3ay
4 aq__ 2.4
fo +n+n(n+2)’ (24)
where f(t) = ap + a1t + apt* + - -+ = Zfzo fz‘P,-(n)(t)‘

We also need the notion of maximal spherical codes. If the dimension n and
the maximal inner product s are fixed, a classical problem in geometry and coding
theory asks for finding exact values or bounds on

A(n,s) = max{|C]: C c S"!,5(C) < s}.

A spherical (n, A(n, s), s)-code is called maximal.

As usually in the coding theory, lower bounds on A(n, s) are given by construc-
tions (cf. [11] and references therein) and the best upper bounds are obtained by
linear programming (cf. [14, 15, 11, 7]). We are especially interested in some of
Levenstein’s bounds.

The Levenshtein’s bounds have somewhat complicated description. However,
we need here only a particular case

A(n,s) < nl = a)iin+hs+2 for0<s< _______,713—1‘ (2.5)
1 — ns? n+2

Clearly, a code which attains (2.5), i.e. an (n,L3(n,s), s)-code, is maximal.
Our main result shows that every spherical 2-distance set which is a spherical 3-
design is nothing but such a maximal spherical code.
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3. THE MAIN RESULT

Let C C S™! be a 2-distance set and a spherical 3-design. It follows from
(2.2) for £ = 2 and the Delsarte-Goethals-Seidel bound for 7 = 3 that
If the upper bound is attained, then C is already 4-design. Since all feasible parame-
ter sets of 4-designs are determined [5, 8], we assume that |C| < n(n+3)/2—1. Then
we consider the whole range despite the feasible codes with fewer than n(n + 1)/2
points would not be maximal 2-distance sets.

It is worth to note that the known constructions of spherical 3-designs (see (2,
3]) do not provide examples of 2-distance sets we are searching for.

Theorem 3.1. A spherical code C C S™! is a 2-distance spherical set and a
spherical 3-design if and only if C' attains the Levenshtein’s bound (2.5).

Proof. ”<” This direction is known. The necessary conditions for attaining
the bound (2.5) show that C is a 2-distance set and a 3-design.
" =" Let the spherical code C C S™~! be a 2-distance set and a 3-design. Then

n(n +3)
2

and we set |C| = 2n + k, where 0 < k < n(n — 1)/2, k is integer.

It follows from Theorem 2.1b) that C' is distance regular. Let A(C) = {t1,12},
Ay (z) = P and Ay, (z) = Q (the last two numbers do not depend on z). We
assume that ¢; < ts.

The equality (2.3) gives

Pf(t1) + Qf(t2) = 2n + k) fo - f(1) (3.1)

2n < |C] <

for every real polynomial f(t) of degree at most 3.

We first prove a Lloyd-type theorem by proving that ¢; and t, are roots of a
quadratic equation with integer coefficients.

Using first degree polynomials f(t) = t—t and f(t) = t—t; in (3.1), we obtain

. — 1)t —
_@ntk-Dh+1 Q=(2n+k )t +1

P
to — 1 t1 — 1o

b)

respectively.
By the second degree polynomial f(t) = (¢t — ¢;)(¢t — ¢;) we obtain from (3.1)

that
n(t; +t2) +n+k

e == A o =)
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Using these three relations in
Pt} +Qt3 = -1
(which is obtained from (3.1) by using f(t) = t3), we derive

bty = —— "2 and tyt = k
PR T T k—1 T T Thntk—1)

Therefore t; and ¢, are the roots of the quadratic equation
nn+k—=10t2+nn—-1t—k=0.

In particular, we also see that ¢; < 0 < t3 and |t;| > t,.

As a short second step, we observe that t; and ¢ are in fact rational numbers.
Indeed, setting f(t) =t in (3.1), we obtain Pt; + Qt3 = —1, which is equivalent to
P(t; +t2) + (Q — P)to = —1. Since P, t; +t> and @ — P are rationals, this implies
that ts is rational as well. Analogously, we see that ¢, is rational.

In the third step we already prove that C' is an (n, L3(n, s), s)-code for s = t,.
Indeed, s(C) = t; and the equality

n(1 = t3)[(n + 1)t2 + 2]

L3(n,t2) = 2
2

is an identity (note that it is an identity for s = ¢; as well), which completes the
proof. O

Theorem 3.1 shows that an examination of spherical 2-distance sets which are
spherical 3-designs can be done via results on (n, L3(n, s), s)-codes. The latter codes
were studied by Boyvalenkov-Langjev in [10] and further by Boyvalenkov-Danev in
(9]. In [9] all feasible parameters of (n, L3(n, s), s)-codes in dimensions n < 1600
were found together with eleven infinite series.
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