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Let G be a graph, x(G) = r and cl(G) < r. Dirac has proved in [2] that for such
graph |V(G)| > r + 2 and V(G =r+2onlyif G=K,_3+ Cs. The main result in
the current article generalizes the proposition mentioned above (Theorem 2.1). As a
consequence of Theorem 2.1, some results for Folkman graphs are obtained (Theorems
7.1-7.4, 8.1).
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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V(G) and E(G),
respectively. We call a p-clique of G a set of p vertices, each two of which are
adjacent. The biggest natural number p, such that the graph G contains a p-clique,
is denoted by cl(G) (the clique number of G).

If X CV(G), then:

G[X] is the subgraph of G induced by X;

G — X is the subgraph of G induced by V(G) \ X;

I'c(X) is the set of vertices in G, adjacent to at least one vertex of X.
In this paper we shall use also the following notations:

@(G) — the independence number of G,

X(G) — the chromatic number of G;

m(G) — the maximum number of independent edges in G
(the matching number of G);
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G — the complement of G;
K, — the complete graph of n vertices;
C, — the simple cycle of n vertices.

By G—e, e € E(G), we denote the supergraph of G such that V(G —e) = V(G),
E(G —e) = E(G)\ {e} and G + ¢, e € E(G), is the supergraph of G for which
V(G +e) =V(Q), E(G+e) = E(G)U {e}.

Let G; and G» be graphs without common vertices. We denote by G1 + G2
the graph G for which V(G) = V(G1) U V(G2) and E(G) = E(G,) U E(G2) U E',
where F' = {[UI,UQ], v € V(Gy), v2 € V(GQ)}

2. THE MAIN RESULT
Definition 2.1. The partition V(G) = V, U...UV, is p-saturated if the union
of each p of the sets V;, 2 =1,...,r, contains a p-clique of G.

Definition 2.2. The partition V(G) = V; U... UV, is r-chromatic if the sets
Vi, i =1,...,r, are independent.

Definition 2.3. A graph G is p-saturated if each x(G)-chromatic partition of
V(G) is p-saturated.

It is clear that if x(G) > 2, then G is 2-saturated. Dirac has proved in [2] the
following proposition:

Let x(G) =1 and cl(G) < r. Then |V(G)| > r+ 2 and if |V(G)| = r + 2, then
G = Kr_.3 + C5.

The main result in this paper is the following generalization of the above men-
tioned proposition:

Theorem 2.1. Let x(G) =, cl(G) < r and G is p-saturated, but is not (p+1)-
saturated. Then |V(G)| 21 +p and |V(G) =7 +p only if G = Kr—p_1 + Capy1.

We need the next propositions.

Proposition 2.1. For any graph G
X(G) +7(G) < [V(G)]-

_ Proof. Let [V(G)| = n, m(G) = s, and {21,911}, - .., {Zs,ys} be a matching of
G. If vy, ..., vp—2s are the other vertices of G, then

{a:l,yl}U...U{xs,ys}u{m}U...U{v,l~23}

is an (n — s)-chromatic partition of G. Hence, x(G) <n ~s. (1
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Proposition 2.2. Let x(G) =, G be a p-saturated, 2 < p < r, and V(G) =
ViU... UV, be an r-chromatic partition of G. Then for any k, p < k < r, the
graph G[Vy U ... U V}] is p-saturated.

Proof. We put G[V1 U...UV,] = G'. It is clear that x(G") = k. Assume the
opposite and let V} U ... U V] be a k-chromatic partition of V(G’) which is not
p-saturated. Then the r-chromatic partition V/U.. .UV} UVi4yU... UV, of V(G)
is also not p-saturated, which is a contradiction. ]

3. EXAMPLES OF p-SATURATED GRAPHS

Lemma 3.1. Let V' C V(Copy1), V| =m < 2p+ 1 and G = Capyy[V').
m
Then cl{G) > l-?.‘

Proof. Tt follows from m < 2p + 1 that x(G) < 2. Let V(G) = Vi1 U V4,
where V) and V; are independent sets of G. Then a(G) > max{|V;|, [V»|}. Hence
— my . m
o(G) > [3] ie. c(G) > [?] 0

Proposition 3.1. For any p > 3 the graph Cypy, is p-saturated, but the graph
Caps+1 — € is not p-saturated for any e € E(C2py1).

Proof. 1t is clear that x(C2ps1) = p+ 1. Let V3 U... U Vo1 be (p + 1)-
chromatic partition of V(Caps1) and let V' = V(G) \ Vi. We put G' = Cap[V'].
From a(Cypi1) = 2 it follows that 2p — 1 < |V'| < 2p. By Lemma 3.1, c(G") > p.
Hence Cpy1 is p-saturated.

Let e € E(Capyq) and G = Caps1—e. Assume that V(Copsy) = {vy,... y Uap+1}
and E(Copt1) = {[vi,vita], 7 = 1,...,2p, [v1,v2p41]}. We may assume that e =
v1,v2541), 1 <s<p-1. _

Case 1. s = 1. In this case cl(@) = p—1 and hence G is not p-saturated.

Case 2. 2 < s < p— 1. In this case a(G) = 2. Hence x(G) = p + 1. It is clear
that

{‘Ul} U {‘Uz,v3} U...U {‘ng,’v2p+1}
is a (p + 1)-chromatic partition of V(@). Obviously, é['l}l,...,'l)23+1] = Cogy1.
Hence {v;,...,v2541} contains no (s+1)-clique of G. Thus {vy, ..., v, } contains
1o p-clique and G is not p-saturated. [J

Proposition 3.2. Let 2 <p<r and G = K,_,_1 + Copy1. Then the graph
G is p-saturated, but for any e € E(G) the graph G — e is not p-saturated or
X(G ~e) < r.

Proof. 1f r = p+ 1, Proposition 3.2 follows from Proposition 3.1. Let r > p+ 2.
Obviously, x(G) =r. Weput V(K,_p—1) = {21,...,2r—p-1}. Let ViU...UV,4; be
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a (p+1)-chromatic partition of V(Capt+1)- Then {z1}U.. . U{zr—p JuViu.. .UV
is an r-chromatic partition of V(G). It is clear that each r-chromatic partition of
1% (G’) has this form. Let V be the union of p subsets of this r-chromatic partition,
= V(Kr—p-1) NV, V" = V(Caps1) NV and |V'| = ¢. Then V' is a g-clique.

Smce Cap41 is p-saturated (Proposition 3.1), V" contains a (p — q)-clique. Hence
V contains a p-clique. This proves that G is p-saturated.

Consider the graph G=G-e ec€ EQG).

Case 1. e & E(Cg,,H) In this case obviously x(G) <

Case 2. e € E’(Czp+1) By Proposition 3.1, the graph Capy1 — € is not p-
saturated. Hence G = Kp_,_1 + (Capt1 — €) is also not p-saturated. (]

4. a-CRITICAL GRAPHS

Definition 4.1. A graph G is said to be a-critical if a(G —e) > a(G) for all
e € E(G).
For the a-critical graphs the following facts are known:

Theorem A ([4], see also [1, Th. 8, p. 290]). In an a-critical graph G without
isolated vertices, each independent set A satisfies |I'c(A)| > |Al.

Theorem B ([5, p. 58, exercise 25]). Let G be a connected a-critical graph
with |V (G)| = 2a(G) + 1. Then G is the simple cycle with 2a(G) + 1 vertices.

5. THE LEMMAS

Lemma 5.1. Let G be a graph and (G —v) = cl(G) for all v € V(G). If
the graph H is such that V(H) = V(G), cl(H) = cl(G) and E(H) 2 E(G), then
cl(H —v) = c(H) for allv € V(H).

Proof. We have
cl(H —v) < cl(H) = cl(G) = cl(G —v) < cl(H —v).
Hence cl(H) = cl(H —v) for allv € V(H). O

Lemma 5.2. Let G be a graph such that cl(G —v) = cl(G) for all v € V(G).
Then: .
(a) ITg(Q)] > |Q| for each clique Q of G;
(b) m(G) > l(G);
(c) [V(G)| 2 x(G) + cl(G).

Proof. Let the graph H be such that V(H) = V(G), c(H) = cl(G), E(H) D
E(G) and cl(H +e) > cl(H) for all e € E(H). From Lemma 5.1, cl(H) = cl(H —v)
for all v € V(G). Hence H is a graph without isolated vertices. It follows from
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I(H +¢€) > cl(H) for all e € E(H) that o(H —¢) > a(H) for all e € E(H). So, H
is an a-critical graph without isolated vertices. By Theorem A, TH(Q)| > |Q) for
each independent set Q of H, i.e. for each clique Q of H. Smce I'g(Q) CTa(Q),

T&(@)] 2 Q).
Let @ be a clique of G such that |Q| = cl{(G). From (a) and Hall’s theorem

it, follows that w(G) > cl(G). This inequality together with Proposition 2.1 imply
(c). O

Remark. The proposition (a) of Lemma 5.2 is essentially the same as exercise
8, p- 302 in [1]. Another proof of (b) is obtained in [17].

Lemma 5.3. Let G be a graph such that x(G) = p+ 1, cl(G) = p and let G
be p-saturated. Then:

(@) (G —v) =cl(G), Yve V(Q);

(b) 7(G) > p.

Proof. Let V1 U... UV, be a (p+ 1)-chromatic partition of V(G). Since this
partition is p—saturated (G —-Vi) =p,i=1,...,p+ 1. From these equalities it
follows that cl(G — v) = c¢l(G) = pfor all v € V(G). Lemma 5.2(b) implies the
inequality 7(G) > p. O

Lemma 5.4. Let G be a graph such that [V(G)| = 2p+1, x(G) = p +1,
cl(G) = p, and let G be p-saturated. Then the graph G is connected.

Proof. According to Lemma 5.3(b), n(G) > p- Let V(G) = {v,...,v2p11}
and let {vy,v2}, ..., {v2p-1,v2p} be a matching of G. Then

{’Ul,’v2} U...uU {’Uzp_l,vzp} U {v2p+1}

is a (p + 1)-chromatic partition of G. The connected component of G, which
contains vap41, will be denoted by M. By Lemma 5.3(a), G has no isolated vertices.
Hence |M| > 2. Obviously, if one of the vertices var_1, vor belongs to M, then
{var—1,v2r} € M. Hence we may assume that

M={’UlaUZ,-°-)v2s-l)v28av2p+l}a 1 SSSP

Suppose that G is not connected. Then s < p. Since G is p-saturated, M contains
an (s + 1) clique Q of G. It is clear that I'z(Q) C M. Thus, [Iz(Q)| < s. Since
(G —v) = cl(G) for all v € V(G) (see Lemma 5.3(a)), this contradicts Lemma
9.2(a) and proves Lemma 5.4. 0O

Lemma 5.5. Let G be a graph such that x(G) = p+ 1, cl(G) = p, and let G
be also p-saturated. Then |V(G)| > 2p+1 and |V(G)| = 2p+1 only if G = Copt1.

Proof. 1t follows from Lemma 5.3(a) that

(G ~-v) =c(G@), YveV(Q). (5.1)
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By Lemma 5.2(c), |V(G)| > 2p + 1. Let |[V(G)| = 2p + 1. Consider the graph H
such that V(H) = V(G), cl(H) = cl(H), E(H) 2 E(G) and cl(H + ¢) > cl(H) for
all e € E(H). According to (5.1), Lemma 3.1 and Lemma 5.2(c), x(H) < p+ 1.
Since x(H) > x(G) = p+ 1, we have x(H) = p+ 1. Obviously, each (p + 1)-
chromatic partition of H is also a (p+ 1)-chromatic partition of G. Hence H is also
p-saturated. By Lemma 5.4, H is connected. It follows from cl(H + e) > cl(H),
Ve € E(H), that a(H—e) > a(H) Ve € E(H). So, H is an a-critical and connected
graph. According to Theorem B, H = Cs,41. Thus G is a subgraph of Caps1- By
Proposition 3.1, G = Caps1. O

6. A PROOF OF THEOREM 2.1

Let Vi U...UV, be an r-chromatic partition of G such that V' = V1 U...UV,4;
contains no (p+1)-clique of G. Let G' = G[V'] and V" = V(G)\V'. By Proposition
2.2, the graph G’ is p-saturated. Hence cl(G’) = p. Obviously, x(G') = p + 1.
According to Lemma 5.5, |[V'| > 2p + 1. Since [V"| > r — p— 1, we have |V(G)| >
r+ p. Let [V(G)| = r+p. Then V(G)| = 2p+1and |[V'|=r-p-1 By
Lemma 5.5, G' = Caps1. Thus Gis a a subgraph of K, _p_; +Copt1. It follows from
Proposition 3.2 that G = K,_p-1 + C’g,,+1

7. ON THE VERTEX FOLKMAN GRAPHS

Definition 7.1. Let G be a graph and let a;, ..., a,, 7 > 2, be positive
integers. The r-partition V; U.. .UV} of V() is said to be (ay, .. ar) -free if for all
i € {1,...,7} the set V; contains no a;-clique of G. The symbol G = (ay,...,ar)
means that every r-partition of V(G) is not (ay,...,a,)-free.

Let m = Y.;_,(a; — 1) + 1. Consider an r-partition V(Kpn-1) = V1 U...U
Vy, where |Vi;| = a; — 1. Obviously, this r-partition is (a,...,a,)-free. Hence
Km_1 =% (ay,...,a,). Itis clear that K,, — (ay,...,a,). Thus, from cl(G) > m
it follows that G —= (ay,...,a,). Clearly, G — (a1,...,a,) implies cl(G) >
max{ai,...,a,}. Folkman proves in [3] that for every a;, ..., a, there exists a
graph G — (ay,...,a,) with cI(G) = max{a;,...,a,;}. The graph G, such that
G -4 (a1,...,a;), is called a vertex (ai,...,a,)-Folkman graph.

It is clear that

Proposition 7.1. For any permutation ¢ of the symmetric group S, we have

G5 (al,...,ar) = G5 (a(p(l),...,a‘p(,)).

For the positive integers a,, ..., a,, 7 > 2, we put

m = Z i—1)+1 and p=max{ai,...,a,}. (7.1)
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Theorem 7.1. Let positive integers ay, ..., ar, v > 2, m and p satisfy
(7.1) and G = (ai,...,a,). Then x(G) > m and if x(G) = m, the graph G is
p-saturated.

Proof. Suppose x(G) < m—1and V(G) = VU...UV,_; is an (m — 1)-
chromatic partition of G. Let V(K1) = {z1,...,2m-1} and let W, U...UW, be
an r-partition of V(K,,_;) such that |W;| = a; — 1. Consider the map V(G) —2»
V(Kp-1), where v %3 z; for all v € V;. We put V) = o~ (Wi), k = 1,...,r.
Since V; is an union of a; — 1 independent sets of G, Vi contains no ai-clique,
k=1,...,r. So, V/U...UV!isan (a,...,a,)-free partition of G, which is a
contradiction.

Let x(G) = m. Suppose that G is not p-saturated and let V; U...UV,,
be an m-chromatic partition of G such that V' = V; U... U V], contains no p-

clique of G. By Proposition 7.1, we may assume that a; < a; < -+ < a, = p.
We put G' = G = V'. Obviously, x(G') = m—p =m—a, = 31_(a; — 1).
From these equalities it follows that G’ has an (ai,...,a,.;)-free (r — 1)-partition

WiU...UW,_;. But then Wy U...UW,_;UV'is an (a,,...,a,)-free r-partition
of G, which is a contradiction. This ends the proof of Theorem 7.1. [

Theorem 7.2. Let ay, ..., a,, r > 2, be positive integers and let m and p
satisfy (7.1). Let the graph G be such that G — (a,...,a,) and cl(G) < m. Then
(G) > p.

Proof. We prove the inequality 7(G) > p by induction on m. It follows from
G — (a1,...,a,) that cl(G) > p. Since cl(G) < m, m > p+ 1. By this inequality,
the minimal admissible value of m is p + 1.

1. Let m = p+ 1. According to Proposition 7.1, we may assume that a; <
ap <--<a,=p. Fromm =p+1it follows that a; = -+ =a,_3 =1, a,_; =2
and cl(G) = p. Hence G — (ay,...,a,) implies G —= (2,p). From G - (2, p) it
follows cl(G — v) > p for all v € V(G). So, cl(G —v) = cl(G) = p for all v € V(G).
According to Lemma 5.2(b), 7(G) > p.

2. Let m 2 p+2. If cl(G - v) = cl(G), Vv € V(G), from Lemma 5.2(b)
it follows that 7(G) > cl(G). Hence n(G) > p. Suppose cl(G — vy) < cl(G)
for some vy € V(G). Since cl(G) < m, cl(G — v) < m — 1. We may assume
that a1 < -+ < a, = p. It follows from m > p + 2 that a._; > 2. Obviously,
G % (ay,...,a,) implies G — vy —=» (a1,...,ar-2,ar-1 — 1,a,). Applying the
inductive hypothesis for G — vy, we conclude that 7(G — vg) > p.

Hence, 7(G) > p. O

Theorem 7.3 ([7]). Let ay, ..., a., v > 2, be positive integers and m and p
satisfy (7.1). If G — (ay,...,a,) and cl(G) < m, then |[V(G)| > m + p.

Another proof of Theorem 7.3. According to Theorem 7.1, x(G) > m, and

accordingly to Theorem 7.2, n(G) > p. It follows from Proposition 2.1 that
V(G)| >m+p. O
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Theorem 7.4 ([8]). Let ay, ..., a., r > 2, be positive integers, and let m
and p satisfy (7.1). If G = (ai,...,a;), (G) < m and |V(G)| = m + p, then
G = Km—p—l + Zq.‘2p+1v

Another proof of Theorem 7.4. It follows from Proposition 2.1 and Theorem
7.2 that |V(G)] > x(G) + p. Since |V(G)| = m + p, we conclude that x(G) < m.
By Theorem 7.1, x(G) = m and G is p-saturated. It follows from Theorem 2.1 and
IV(G)| = m + p that G is not (p + 1)-saturated and G = Kp—p—1 + Capy1.

It is proved in [6] that K,,_,_; + 'C'-gpﬂ =5 (ag,...,a,).

8. EDGE FOLKMAN GRAPHS

Definition 8.1. Let ay, ..., a,, a; > 2, r > 2, be integers. Let G be a graph

and let
E(G) =E1 U...UEr

be an r-colouring of E(G). This r-colouring is said to be (ay,...,a,)-free if for all
i € {1,...,r} the graph G contains no monochromatic a;-clique of colour i. The
symbol G == (ay,...,a,) means that every r-colouring of E(G) is not (a1,...,a)-
free.

Obviously, if cl(G) > R(ay,...,a;), where R(ay,...,a,) is the Ramsey
number, then G —= (ai,...,a,;). It is clear that G - (ai,...,a,) implies
cl(G) > max{ai,...,a,}. The existence of a graph G —= (a1,...,a,) with
c(G) = max{ay,...,a,} was proved in the case r = 2 by Folkman in (3] and
for arbitrary r by Nesetril and Rodl in [16].

Theorem 8.1. Let ay, ..., a,, a; > 2, r > 2, be integers and let G N
(a1,...,a;). Then

(a) x(G) > R, where R = R(ay,...,a,);

(b) suppose that x(G) = R, cl(G) < R and there ezists an r-colouring

E(Kg) = E\U...UE, (8.1)

with the unique monochromatic a;-cligue P of colour i and without monochro-
matic aj-clique of colour j, j # i. Then G is a;-saturated and if Kp_o,—1 +
Caa,41 — (ay,...,a,), then [V(G)| > R + a;.

Proof. The proof of the inequality (a) is due to Lin in [5]. To prove the
proposition (b) of Theorem 8.1, suppose to the contrary that Vi U...U Vg is an
R-chromatic partition of V(G) such that V; U...UV,, contains no a;-clique. Let
V(KR) = {z1,...,2r} and P = {2, ..., 25, }. Consider the map V(G) <5 V(KR),
where v %3 z;, Vo € Vi. Let E} U...U E. be the r-colouring of E(G), where
[u,v] € E! <= [p(u),p(v)] € E; of (8.1). From G — (a,,...,a,) it follows that
in this r-colouring there exists a monochromatic ax-clique @ of colour £. Obviously,
¢(Q) is a monochromatic ag-clique of colour k in (8.1). By the properties of the
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r-colouring (8.1) it follows that i = k and Q) = P = {z,...,2,.}). Hence
QCWViu...u Va;. This contradicts the assumption that VyuU... U Va; contains no
a;-clique and proves that G is a;-saturated.

According to Theorem 2.1, V(G)| > x(G) + a; = R + a;. Since Kg_g, 1+
Caraig1 = (a1,...,a,), G # KR-a;~1 + C24,41. From Theorem 2.1, V(@) >
R + a;. The proof of Theorem 8.1 is completed. 0]

Theorem 8.1 generalizes the results from [12].

Consider the graphs G such that G - (3,4) and cl(G) < 9. We put
N(3,4;9) = min{|[V(G)|: G - (3,4) and cl(G) < 9}.

Vs

U4 u3
‘ f
g u us
Fig. 1. The graph F Fig. 2. The graph F,

Fig. 3. The graph F,

Corollary 8.1 ([10)). N(3,4;9) = 14.

Proof. It is proved in [11] and [15] that K¢ + Cs + Cs ~% (3,4). Hence
N(3,4;9) < 14. We prove the inequality N(3,4;9) > 14. Since R(3,4) = 9, from
Theorem 8.1 follows x(G) > 9.
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Case 1. x(G) > 10. Since cl(G) < 8, Theorem 1 in {13] implies [V(G)| > 14.
Case 2. x(G) = 9. By F, F} and F, we denote the graphs which are given in

Fig. 1, Fig. 2 and Fig. 3, respectively. In Fig. 1 is given the unique 9-vertex graph
F with a(F) = 2 and containing an unique 4-clique ([vy,v3,vs,v7]), {14]. Hence
the 2-colouring E(Kgy) = E\ U E;, where E; = E(F), contains an unique 4-clique
of 2nd colour and contains no 3-cliques of Ist colour. Let

2 2 2

1
2
2
1

N N NN

2
1 1
1 1
2 2

=N DN
= N

I 1
1 1
A=(ay)=1, ,
2 2

—_ e DD

Consider the 2-colouring E(Kj + Cy) = E; U Ey, where E(K,) N Ey = E(F}),

E(Cq)NE; = E(F,) and [us,v;] € E» <= a;; = 2. This 2-colouring is (3, 4)-free,
(10]. By Theorem 8.1, [V(G)| > 14.

10.

11.

12.

13.

14.
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