ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 95

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI" FACULTE DE MATHEMATIQUES ET INFORMATIQUE Tome 95

A GENERALIZATION OF A RESULT OF DIRAC

NEDYALKO NENOV

Let G be a graph, $\chi(G) = r$ and $\operatorname{cl}(G) < r$. Dirac has proved in [2] that for such graph $|V(G)| \ge r + 2$ and |V(G)| = r + 2 only if $G = K_{r-3} + C_5$. The main result in the current article generalizes the proposition mentioned above (Theorem 2.1). As a consequence of Theorem 2.1, some results for Folkman graphs are obtained (Theorems 7.1–7.4, 8.1).

Keywords: chromatic number, Folkman graph, α -critical graph

2000 MSC: 05C15, 05C55

1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges. The vertex set and the edge set of a graph G will be denoted by V(G) and E(G), respectively. We call a p-clique of G a set of p vertices, each two of which are adjacent. The biggest natural number p, such that the graph G contains a p-clique, is denoted by cl(G) (the clique number of G).

If $X \subseteq V(G)$, then:

G[X] is the subgraph of G induced by X;

G-X is the subgraph of G induced by $V(G)\setminus X$;

 $\Gamma_G(X)$ is the set of vertices in G, adjacent to at least one vertex of X.

In this paper we shall use also the following notations:

 $\alpha(G)$ — the independence number of G;

 $\chi(G)$ — the chromatic number of G;

 $\pi(G)$ — the maximum number of independent edges in G (the matching number of G);

 \overline{G} — the complement of G;

 K_n — the complete graph of n vertices;

 C_n — the simple cycle of n vertices.

By $G-e, e \in E(G)$, we denote the supergraph of G such that V(G-e) = V(G), $E(G-e) = E(G) \setminus \{e\}$ and $G+e, e \in E(\overline{G})$, is the supergraph of G for which $V(G+e) = V(G), E(G+e) = E(G) \cup \{e\}$.

Let G_1 and G_2 be graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[v_1, v_2], v_1 \in V(G_1), v_2 \in V(G_2)\}.$

2. THE MAIN RESULT

Definition 2.1. The partition $V(G) = V_1 \cup ... \cup V_r$ is *p*-saturated if the union of each *p* of the sets V_i , i = 1, ..., r, contains a *p*-clique of G.

Definition 2.2. The partition $V(G) = V_1 \cup ... \cup V_r$ is r-chromatic if the sets V_i , i = 1, ..., r, are independent.

Definition 2.3. A graph G is p-saturated if each $\chi(G)$ -chromatic partition of V(G) is p-saturated.

It is clear that if $\chi(G) \geq 2$, then G is 2-saturated. Dirac has proved in [2] the following proposition:

Let $\chi(G) = r$ and cl(G) < r. Then $|V(G)| \ge r + 2$ and if |V(G)| = r + 2, then $G = K_{r-3} + C_5$.

The main result in this paper is the following generalization of the above mentioned proposition:

Theorem 2.1. Let $\chi(G) = r$, $\operatorname{cl}(G) < r$ and G is p-saturated, but is not (p+1)-saturated. Then $|V(G)| \ge r + p$ and |V(G)| = r + p only if $G = K_{r-p-1} + \overline{C}_{2p+1}$.

We need the next propositions.

Proposition 2.1. For any graph G

$$\chi(G) + \pi(\overline{G}) \le |V(G)|.$$

Proof. Let |V(G)| = n, $\pi(\overline{G}) = s$, and $\{x_1, y_1\}, \ldots, \{x_s, y_s\}$ be a matching of \overline{G} . If v_1, \ldots, v_{n-2s} are the other vertices of G, then

$$\{x_1, y_1\} \cup \ldots \cup \{x_s, y_s\} \cup \{v_1\} \cup \ldots \cup \{v_{n-2s}\}$$

is an (n-s)-chromatic partition of G. Hence, $\chi(G) \leq n-s$. \square

Proposition 2.2. Let $\chi(G) = r$, G be a p-saturated, $2 \le p \le r$, and $V(G) = V_1 \cup \ldots \cup V_r$ be an r-chromatic partition of G. Then for any k, $p \le k \le r$, the graph $G[V_1 \cup \ldots \cup V_k]$ is p-saturated.

Proof. We put $G[V_1 \cup \ldots \cup V_k] = G'$. It is clear that $\chi(G') = k$. Assume the opposite and let $V_1' \cup \ldots \cup V_k'$ be a k-chromatic partition of V(G') which is not p-saturated. Then the r-chromatic partition $V_1' \cup \ldots \cup V_k' \cup V_{k+1} \cup \ldots \cup V_r$ of V(G) is also not p-saturated, which is a contradiction. \square

3. EXAMPLES OF p-SATURATED GRAPHS

Lemma 3.1. Let $V' \subseteq V(\overline{C}_{2p+1})$, |V'| = m < 2p + 1 and $G = \overline{C}_{2p+1}[V']$. Then $cl(G) \ge \left\lceil \frac{m}{2} \right\rceil$.

Proof. It follows from m < 2p + 1 that $\chi(\overline{G}) \leq 2$. Let $V(\overline{G}) = V_1 \cup V_2$, where V_1 and V_2 are independent sets of \overline{G} . Then $\alpha(\overline{G}) \geq \max\{|V_1|, |V_2|\}$. Hence $\alpha(\overline{G}) \geq \left\lceil \frac{m}{2} \right\rceil$, i.e. $\operatorname{cl}(G) \geq \left\lceil \frac{m}{2} \right\rceil$. \square

Proposition 3.1. For any $p \geq 3$ the graph \overline{C}_{2p+1} is p-saturated, but the graph $\overline{C}_{2p+1} - e$ is not p-saturated for any $e \in E(\overline{C}_{2p+1})$.

Proof. It is clear that $\chi(\overline{C}_{2p+1})=p+1$. Let $V_1\cup\ldots\cup V_{p+1}$ be (p+1)-chromatic partition of $V(C_{2p+1})$ and let $V'=V(G)\setminus V_i$. We put $G'=\overline{C}_{2p+1}[V']$. From $\alpha(\overline{C}_{2p+1})=2$ it follows that $2p-1\leq |V'|\leq 2p$. By Lemma 3.1, $\operatorname{cl}(G')\geq p$. Hence \overline{C}_{2p+1} is p-saturated.

Let $e \in E(\overline{C}_{2p+1})$ and $\widetilde{G} = \overline{C}_{2p+1} - e$. Assume that $V(C_{2p+1}) = \{v_1, \dots, v_{2p+1}\}$ and $E(C_{2p+1}) = \{[v_i, v_{i+1}], i = 1, \dots, 2p, [v_1, v_{2p+1}]\}$. We may assume that $e = [v_1, v_{2s+1}], 1 \le s \le p-1$.

Case 1. s=1. In this case $\operatorname{cl}(\widetilde{G})=p-1$ and hence \widetilde{G} is not p-saturated.

Case 2. $2 \le s \le p-1$. In this case $\alpha(\widetilde{G})=2$. Hence $\chi(\widetilde{G})=p+1$. It is clear that

$$\{v_1\} \cup \{v_2, v_3\} \cup \ldots \cup \{v_{2n}, v_{2n+1}\}$$

is a (p+1)-chromatic partition of $V(\widetilde{G})$. Obviously, $\widetilde{G}[v_1,\ldots,v_{2s+1}]=\overline{C}_{2s+1}$. Hence $\{v_1,\ldots,v_{2s+1}\}$ contains no (s+1)-clique of \widetilde{G} . Thus $\{v_1,\ldots,v_{2p-1}\}$ contains no p-clique and \widetilde{G} is not p-saturated. \square

Proposition 3.2. Let $2 \le p < r$ and $G = K_{r-p-1} + \overline{C}_{2p+1}$. Then the graph G is p-saturated, but for any $e \in E(G)$ the graph G - e is not p-saturated or $\chi(G - e) < r$.

Proof. If r = p+1, Proposition 3.2 follows from Proposition 3.1. Let $r \ge p+2$. Obviously, $\chi(G) = r$. We put $V(K_{r-p-1}) = \{z_1, \ldots, z_{r-p-1}\}$. Let $V_1 \cup \ldots \cup V_{p+1}$ be

a (p+1)-chromatic partition of $V(\overline{C}_{2p+1})$. Then $\{z_1\}\cup\ldots\cup\{z_{r-p-1}\}\cup V_1\cup\ldots\cup V_{p+1}$ is an r-chromatic partition of V(G). It is clear that each r-chromatic partition of V(G) has this form. Let V be the union of p subsets of this r-chromatic partition, $V'=V(K_{r-p-1})\cap V$, $V''=V(\overline{C}_{2p+1})\cap V$ and |V'|=q. Then V' is a q-clique. Since \overline{C}_{2p+1} is p-saturated (Proposition 3.1), V'' contains a (p-q)-clique. Hence V contains a P-clique. This proves that P is P-saturated.

Consider the graph $\widetilde{G} = G - e$, $e \in E(G)$.

Case 1. $e \notin E(\overline{C}_{2p+1})$. In this case obviously $\chi(\widetilde{G}) < r$.

Case 2. $e \in E(\overline{C}_{2p+1})$. By Proposition 3.1, the graph $\overline{C}_{2p+1} - e$ is not p-saturated. Hence $\widetilde{G} = K_{p-r-1} + (\overline{C}_{2p+1} - e)$ is also not p-saturated. \square

α-CRITICAL GRAPHS

Definition 4.1. A graph G is said to be α -critical if $\alpha(G - e) > \alpha(G)$ for all $e \in E(G)$.

For the α -critical graphs the following facts are known:

Theorem A ([4], see also [1, Th. 8, p. 290]). In an α -critical graph G without isolated vertices, each independent set A satisfies $|\Gamma_G(A)| \geq |A|$.

Theorem B ([5, p. 58, exercise 25]). Let G be a connected α -critical graph with $|V(G)| = 2\alpha(G) + 1$. Then G is the simple cycle with $2\alpha(G) + 1$ vertices.

5. THE LEMMAS

Lemma 5.1. Let G be a graph and cl(G - v) = cl(G) for all $v \in V(G)$. If the graph H is such that V(H) = V(G), cl(H) = cl(G) and $E(H) \supseteq E(G)$, then cl(H - v) = cl(H) for all $v \in V(H)$.

Proof. We have

$$\operatorname{cl}(H - v) < \operatorname{cl}(H) = \operatorname{cl}(G) = \operatorname{cl}(G - v) \le \operatorname{cl}(H - v).$$

Hence cl(H) = cl(H - v) for all $v \in V(H)$. \square

Lemma 5.2. Let G be a graph such that cl(G - v) = cl(G) for all $v \in V(G)$. Then:

- (a) $|\Gamma_{\overline{G}}(Q)| \ge |Q|$ for each clique Q of G;
- (b) $\pi(\overline{G}) \ge \operatorname{cl}(G)$;
- (c) $|V(G)| \ge \chi(G) + \operatorname{cl}(G)$.

Proof. Let the graph H be such that V(H) = V(G), cl(H) = cl(G), $E(H) \supseteq E(G)$ and cl(H+e) > cl(H) for all $e \in E(\overline{H})$. From Lemma 5.1, cl(H) = cl(H-v) for all $v \in V(G)$. Hence \overline{H} is a graph without isolated vertices. It follows from

 $\operatorname{cl}(H+e)>\operatorname{cl}(H)$ for all $e\in E(\overline{H})$ that $\alpha(\overline{H}-e)>\alpha(\overline{H})$ for all $e\in E(\overline{H})$. So, \overline{H} is an α -critical graph without isolated vertices. By Theorem A, $|\Gamma_{\overline{H}}(Q)|\geq |Q|$ for each independent set Q of \overline{H} , i.e. for each clique Q of H. Since $\Gamma_{\overline{H}}(Q)\subseteq \Gamma_{\overline{G}}(Q)$, $|\Gamma_{\overline{G}}(Q)|\geq |Q|$.

Let Q be a clique of G such that $|Q| = \operatorname{cl}(G)$. From (a) and Hall's theorem it follows that $\pi(\overline{G}) \geq \operatorname{cl}(G)$. This inequality together with Proposition 2.1 imply (c). \square

Remark. The proposition (a) of Lemma 5.2 is essentially the same as exercise 8, p. 302 in [1]. Another proof of (b) is obtained in [17].

Lemma 5.3. Let G be a graph such that $\chi(G) = p + 1$, $\operatorname{cl}(G) = p$ and let G be p-saturated. Then:

- (a) $\operatorname{cl}(G v) = \operatorname{cl}(G), \ \forall v \in V(G);$
- (b) $\pi(\overline{G}) \geq p$.

Proof. Let $V_1 \cup \ldots \cup V_{p+1}$ be a (p+1)-chromatic partition of V(G). Since this partition is p-saturated, $\operatorname{cl}(G-V_i)=p,\ i=1,\ldots,p+1$. From these equalities it follows that $\operatorname{cl}(G-v)=\operatorname{cl}(G)=p$ for all $v\in V(G)$. Lemma 5.2(b) implies the inequality $\pi(\overline{G})\geq p$. \square

Lemma 5.4. Let G be a graph such that |V(G)| = 2p + 1, $\chi(G) = p + 1$, cl(G) = p, and let G be p-saturated. Then the graph \overline{G} is connected.

Proof. According to Lemma 5.3(b), $\pi(\overline{G}) \geq p$. Let $V(G) = \{v_1, \ldots, v_{2p+1}\}$ and let $\{v_1, v_2\}, \ldots, \{v_{2p-1}, v_{2p}\}$ be a matching of \overline{G} . Then

$$\{v_1, v_2\} \cup \ldots \cup \{v_{2p-1}, v_{2p}\} \cup \{v_{2p+1}\}$$

is a (p+1)-chromatic partition of G. The connected component of \overline{G} , which contains v_{2p+1} , will be denoted by M. By Lemma 5.3(a), \overline{G} has no isolated vertices. Hence $|M| \geq 2$. Obviously, if one of the vertices v_{2k-1} , v_{2k} belongs to M, then $\{v_{2k-1}, v_{2k}\} \subseteq M$. Hence we may assume that

$$M = \{v_1, v_2, \dots, v_{2s-1}, v_{2s}, v_{2p+1}\}, \quad 1 \le s \le p.$$

Suppose that \overline{G} is not connected. Then s < p. Since G is p-saturated, M contains an (s+1)-clique Q of G. It is clear that $\Gamma_{\overline{G}}(Q) \subseteq M$. Thus, $|\Gamma_{\overline{G}}(Q)| \leq s$. Since $\operatorname{cl}(G-v) = \operatorname{cl}(G)$ for all $v \in V(G)$ (see Lemma 5.3(a)), this contradicts Lemma 5.2(a) and proves Lemma 5.4. \square

Lemma 5.5. Let G be a graph such that $\chi(G) = p + 1$, $\operatorname{cl}(G) = p$, and let G be also p-saturated. Then $|V(G)| \geq 2p + 1$ and |V(G)| = 2p + 1 only if $G = \overline{C}_{2p+1}$.

Proof. It follows from Lemma 5.3(a) that

$$\operatorname{cl}(G - v) = \operatorname{cl}(G), \quad \forall v \in V(G).$$
 (5.1)

By Lemma 5.2(c), $|V(G)| \geq 2p+1$. Let |V(G)| = 2p+1. Consider the graph H such that V(H) = V(G), $\operatorname{cl}(H) = \operatorname{cl}(H)$, $E(H) \supseteq E(G)$ and $\operatorname{cl}(H+e) > \operatorname{cl}(H)$ for all $e \in E(\overline{H})$. According to (5.1), Lemma 5.1 and Lemma 5.2(c), $\chi(H) \leq p+1$. Since $\chi(H) \geq \chi(G) = p+1$, we have $\chi(H) = p+1$. Obviously, each (p+1)-chromatic partition of H is also a (p+1)-chromatic partition of H. Hence H is also H-saturated. By Lemma 5.4, H is connected. It follows from $\operatorname{cl}(H+e) > \operatorname{cl}(H)$, $\forall e \in E(\overline{H})$, that $\alpha(\overline{H}-e) > \alpha(\overline{H})$, $\forall e \in E(\overline{H})$. So, \overline{H} is an α -critical and connected graph. According to Theorem B, $\overline{H} = C_{2p+1}$. Thus H is a subgraph of \overline{C}_{2p+1} . By Proposition 3.1, H is H is H is a subgraph of H is a subgraph of H is H is a subgraph of H is a subgraph of H is H is a subgraph of H is a subgr

6. A PROOF OF THEOREM 2.1

Let $V_1 \cup \ldots \cup V_r$ be an r-chromatic partition of G such that $V' = V_1 \cup \ldots \cup V_{p+1}$ contains no (p+1)-clique of G. Let G' = G[V'] and $V'' = V(G) \setminus V'$. By Proposition 2.2, the graph G' is p-saturated. Hence $\operatorname{cl}(G') = p$. Obviously, $\chi(G') = p + 1$. According to Lemma 5.5, $|V'| \geq 2p + 1$. Since $|V''| \geq r - p - 1$, we have $|V(G)| \geq r + p$. Let |V(G)| = r + p. Then |V(G')| = 2p + 1 and |V''| = r - p - 1. By Lemma 5.5, $G' = \overline{C}_{2p+1}$. Thus G is a subgraph of $K_{r-p-1} + \overline{C}_{2p+1}$. It follows from Proposition 3.2 that $G = K_{r-p-1} + \overline{C}_{2p+1}$.

7. ON THE VERTEX FOLKMAN GRAPHS

Definition 7.1. Let G be a graph and let $a_1, \ldots, a_r, r \geq 2$, be positive integers. The r-partition $V_1 \cup \ldots \cup V_r$ of V(G) is said to be (a_1, \ldots, a_r) -free if for all $i \in \{1, \ldots, r\}$ the set V_i contains no a_i -clique of G. The symbol $G \xrightarrow{v} (a_1, \ldots, a_r)$ means that every r-partition of V(G) is not (a_1, \ldots, a_r) -free.

Let $m = \sum_{i=1}^{r} (a_i - 1) + 1$. Consider an r-partition $V(K_{m-1}) = V_1 \cup ... \cup V_r$, where $|V_i| = a_i - 1$. Obviously, this r-partition is $(a_1, ..., a_r)$ -free. Hence $K_{m-1} \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$. It is clear that $K_m \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$. Thus, from $\operatorname{cl}(G) \geq m$ it follows that $G \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$. Clearly, $G \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$ implies $\operatorname{cl}(G) \geq \max\{a_1, ..., a_r\}$. Folkman proves in [3] that for every $a_1, ..., a_r$ there exists a graph $G \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$ with $\operatorname{cl}(G) = \max\{a_1, ..., a_r\}$. The graph G, such that $G \stackrel{v}{\longrightarrow} (a_1, ..., a_r)$, is called a vertex $(a_1, ..., a_r)$ -Folkman graph.

It is clear that

Proposition 7.1. For any permutation φ of the symmetric group S_r we have

$$G \xrightarrow{v} (a_1, \ldots, a_r) \iff G \xrightarrow{v} (a_{\varphi(1)}, \ldots, a_{\varphi(r)}).$$

For the positive integers $a_1, \ldots, a_r, r \geq 2$, we put

$$m = \sum_{i=1}^{r} (a_i - 1) + 1$$
 and $p = \max\{a_1, \dots, a_r\}.$ (7.1)

Theorem 7.1. Let positive integers $a_1, \ldots, a_r, r \geq 2$, m and p satisfy (7.1) and $G \xrightarrow{v} (a_1, \ldots, a_r)$. Then $\chi(G) \geq m$ and if $\chi(G) = m$, the graph G is p-saturated.

Proof. Suppose $\chi(G) \leq m-1$ and $V(G) = V_1 \cup \ldots \cup V_{m-1}$ is an (m-1)-chromatic partition of G. Let $V(K_{m-1}) = \{z_1, \ldots, z_{m-1}\}$ and let $W_1 \cup \ldots \cup W_r$ be an r-partition of $V(K_{m-1})$ such that $|W_i| = a_i - 1$. Consider the map $V(G) \xrightarrow{\varphi} V(K_{m-1})$, where $v \xrightarrow{\varphi} z_i$ for all $v \in V_i$. We put $V'_k = \varphi^{-1}(W_k)$, $k = 1, \ldots, r$. Since V'_k is an union of $a_k - 1$ independent sets of G, V'_k contains no a_k -clique, $k = 1, \ldots, r$. So, $V'_1 \cup \ldots \cup V'_r$ is an (a_1, \ldots, a_r) -free partition of G, which is a contradiction.

Let $\chi(G)=m$. Suppose that G is not p-saturated and let $V_1\cup\ldots\cup V_m$ be an m-chromatic partition of G such that $V'=V_1\cup\ldots\cup V_p$ contains no p-clique of G. By Proposition 7.1, we may assume that $a_1\leq a_2\leq\cdots\leq a_r=p$. We put G'=G-V'. Obviously, $\chi(G')=m-p=m-a_r=\sum_{i=1}^{r-1}(a_i-1)$. From these equalities it follows that G' has an (a_1,\ldots,a_{r-1}) -free (r-1)-partition $W_1\cup\ldots\cup W_{r-1}$. But then $W_1\cup\ldots\cup W_{r-1}\cup V'$ is an (a_1,\ldots,a_r) -free r-partition of G, which is a contradiction. This ends the proof of Theorem 7.1. \square

Theorem 7.2. Let $a_1, \ldots, a_r, r \geq 2$, be positive integers and let m and p satisfy (7.1). Let the graph G be such that $G \xrightarrow{v} (a_1, \ldots, a_r)$ and cl(G) < m. Then $\pi(\overline{G}) \geq p$.

Proof. We prove the inequality $\pi(\overline{G}) \geq p$ by induction on m. It follows from $G \xrightarrow{v} (a_1, \ldots, a_r)$ that $\operatorname{cl}(G) \geq p$. Since $\operatorname{cl}(G) < m, m \geq p+1$. By this inequality, the minimal admissible value of m is p+1.

- 1. Let m=p+1. According to Proposition 7.1, we may assume that $a_1 \leq a_2 \leq \cdots \leq a_r = p$. From m=p+1 it follows that $a_1 = \cdots = a_{r-2} = 1$, $a_{r-1} = 2$ and $\operatorname{cl}(G) = p$. Hence $G \xrightarrow{v} (a_1, \ldots, a_r)$ implies $G \xrightarrow{v} (2, p)$. From $G \xrightarrow{v} (2, p)$ it follows $\operatorname{cl}(G-v) \geq p$ for all $v \in V(G)$. So, $\operatorname{cl}(G-v) = \operatorname{cl}(G) = p$ for all $v \in V(G)$. According to Lemma 5.2(b), $\pi(\overline{G}) \geq p$.
- 2. Let $m \geq p+2$. If $\operatorname{cl}(G-v) = \operatorname{cl}(G)$, $\forall v \in V(G)$, from Lemma 5.2(b) it follows that $\pi(\overline{G}) \geq \operatorname{cl}(G)$. Hence $\pi(\overline{G}) \geq p$. Suppose $\operatorname{cl}(G-v_0) < \operatorname{cl}(G)$ for some $v_0 \in V(G)$. Since $\operatorname{cl}(G) < m$, $\operatorname{cl}(G-v_0) < m-1$. We may assume that $a_1 \leq \cdots \leq a_r = p$. It follows from $m \geq p+2$ that $a_{r-1} \geq 2$. Obviously, $G \xrightarrow{v} (a_1, \ldots, a_r)$ implies $G v_0 \xrightarrow{v} (a_1, \ldots, a_{r-2}, a_{r-1} 1, a_r)$. Applying the inductive hypothesis for $G v_0$, we conclude that $\pi(\overline{G} v_0) \geq p$.

Hence, $\pi(\overline{G}) \geq p$. \square

Theorem 7.3 ([7]). Let $a_1, \ldots, a_r, r \geq 2$, be positive integers and m and p satisfy (7.1). If $G \xrightarrow{v} (a_1, \ldots, a_r)$ and cl(G) < m, then $|V(G)| \geq m + p$.

Another proof of Theorem 7.3. According to Theorem 7.1, $\chi(G) \geq m$, and accordingly to Theorem 7.2, $\pi(\overline{G}) \geq p$. It follows from Proposition 2.1 that $|V(G)| \geq m + p$. \square

Theorem 7.4 ([8]). Let $a_1, \ldots, a_r, r \geq 2$, be positive integers, and let m and p satisfy (7.1). If $G \xrightarrow{v} (a_1, \ldots, a_r)$, $\operatorname{cl}(G) < m$ and |V(G)| = m + p, then $G = K_{m-p-1} + \overline{C}_{2p+1}$.

Another proof of Theorem 7.4. It follows from Proposition 2.1 and Theorem 7.2 that $|V(G)| \ge \chi(G) + p$. Since |V(G)| = m + p, we conclude that $\chi(G) \le m$. By Theorem 7.1, $\chi(G) = m$ and G is p-saturated. It follows from Theorem 2.1 and |V(G)| = m + p that G is not (p+1)-saturated and $G = K_{m-p-1} + \overline{C}_{2p+1}$.

It is proved in [6] that $K_{m-p-1} + \overline{C}_{2p+1} \xrightarrow{\nu} (a_1, \ldots, a_r)$.

8. EDGE FOLKMAN GRAPHS

Definition 8.1. Let $a_1, \ldots, a_r, a_i \geq 2, r \geq 2$, be integers. Let G be a graph and let

$$E(G) = E_1 \cup \ldots \cup E_r$$

be an r-colouring of E(G). This r-colouring is said to be (a_1, \ldots, a_r) -free if for all $i \in \{1, \ldots, r\}$ the graph G contains no monochromatic a_i -clique of colour i. The symbol $G \xrightarrow{e} (a_1, \ldots, a_r)$ means that every r-colouring of E(G) is not (a_1, \ldots, a_r) -free.

Obviously, if $\operatorname{cl}(G) \geq R(a_1, \ldots, a_r)$, where $R(a_1, \ldots, a_r)$ is the Ramsey number, then $G \stackrel{e}{\longrightarrow} (a_1, \ldots, a_r)$. It is clear that $G \stackrel{e}{\longrightarrow} (a_1, \ldots, a_r)$ implies $\operatorname{cl}(G) \geq \max\{a_1, \ldots, a_r\}$. The existence of a graph $G \stackrel{e}{\longrightarrow} (a_1, \ldots, a_r)$ with $\operatorname{cl}(G) = \max\{a_1, \ldots, a_r\}$ was proved in the case r = 2 by Folkman in [3] and for arbitrary r by Nesetril and Rodl in [16].

Theorem 8.1. Let $a_1, \ldots, a_r, a_i \geq 2, r \geq 2$, be integers and let $G \xrightarrow{\epsilon} (a_1, \ldots, a_r)$. Then

- (a) $\chi(G) \geq R$, where $R = R(a_1, \ldots, a_r)$;
- (b) suppose that $\chi(G) = R$, cl(G) < R and there exists an r-colouring

$$E(K_R) = E_1 \cup \ldots \cup E_r \tag{8.1}$$

with the unique monochromatic a_i -clique P of colour i and without monochromatic a_j -clique of colour j, $j \neq i$. Then G is a_i -saturated and if $K_{R-a_i-1} + \overline{C}_{2a_i+1} \stackrel{e}{\longrightarrow} (a_1, \ldots, a_r)$, then $|V(G)| > R + a_i$.

Proof. The proof of the inequality (a) is due to Lin in [5]. To prove the proposition (b) of Theorem 8.1, suppose to the contrary that $V_1 \cup \ldots \cup V_R$ is an R-chromatic partition of V(G) such that $V_1 \cup \ldots \cup V_{a_i}$ contains no a_i -clique. Let $V(K_R) = \{z_1, \ldots, z_R\}$ and $P = \{z_1, \ldots, z_{a_i}\}$. Consider the map $V(G) \xrightarrow{\varphi} V(K_R)$, where $v \xrightarrow{\varphi} z_i$, $\forall v \in V_i$. Let $E'_1 \cup \ldots \cup E'_r$ be the r-colouring of E(G), where $[u,v] \in E'_i \iff [\varphi(u),\varphi(v)] \in E_i$ of (8.1). From $G \xrightarrow{e} (a_1,\ldots,a_r)$ it follows that in this r-colouring there exists a monochromatic a_k -clique Q of colour k. Obviously, $\varphi(Q)$ is a monochromatic a_k -clique of colour k in (8.1). By the properties of the

r-colouring (8.1) it follows that i = k and $\varphi(Q) = P = \{z_1, \ldots, z_{a_i}\}$. Hence $Q \subseteq V_1 \cup \ldots \cup V_{a_i}$. This contradicts the assumption that $V_1 \cup \ldots \cup V_{a_i}$ contains no a_i -clique and proves that G is a_i -saturated.

According to Theorem 2.1, $|V(G)| \ge \chi(G) + a_i = R + a_i$. Since $K_{R-a_i-1} + \overline{C}_{2a_i+1} \xrightarrow{e} (a_1, \ldots, a_r)$, $G \ne K_{R-a_i-1} + \overline{C}_{2a_i+1}$. From Theorem 2.1, $|V(G)| > R + a_i$. The proof of Theorem 8.1 is completed. \square

Theorem 8.1 generalizes the results from [12].

Consider the graphs G such that $G \xrightarrow{e} (3,4)$ and $\operatorname{cl}(G) < 9$. We put $N(3,4;9) = \min\{|V(G)| : G \xrightarrow{e} (3,4) \text{ and } \operatorname{cl}(G) < 9\}.$

 u_1 u_2 u_3 u_3

Fig. 1. The graph F

Fig. 2. The graph F_1

Fig. 3. The graph F_2

Corollary 8.1 ([10]). N(3,4;9) = 14.

Proof. It is proved in [11] and [15] that $K_4 + C_5 + C_5 \xrightarrow{e} (3,4)$. Hence $N(3,4;9) \leq 14$. We prove the inequality $N(3,4;9) \geq 14$. Since R(3,4) = 9, from Theorem 8.1 follows $\chi(G) \geq 9$.

Case 1. $\chi(G) \geq 10$. Since $\operatorname{cl}(G) \leq 8$, Theorem 1 in [13] implies $|V(G)| \geq 14$. Case 2. $\chi(G) = 9$. By F, F_1 and F_2 we denote the graphs which are given in Fig. 1, Fig. 2 and Fig. 3, respectively. In Fig. 1 is given the unique 9-vertex graph F with $\alpha(F) = 2$ and containing an unique 4-clique $([v_1, v_3, v_5, v_7])$, [14]. Hence the 2-colouring $E(K_9) = E_1 \cup E_2$, where $E_2 = E(F)$, contains an unique 4-clique of 2nd colour and contains no 3-cliques of 1st colour. Let

$$A = (a_{ij}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 \\ 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \end{pmatrix}.$$

Consider the 2-colouring $E(K_4 + \overline{C}_9) = E_1 \cup E_2$, where $E(K_4) \cap E_2 = E(F_1)$, $E(\overline{C}_9) \cap E_2 = E(F_2)$ and $[u_i, v_j] \in E_2 \iff a_{ij} = 2$. This 2-colouring is (3, 4)-free, [10]. By Theorem 8.1, $|V(G)| \ge 14$.

REFERENCES

- 1. Berge, C. Graphs and Hypergraphs. Mathematical Library, 6, North-Holland, 1976.
- Dirac, G. Map colour theorems related to the Heawood colour formula. J. London Math. Soc., 31, 1956, 460-471.
- Folkman, J. Graphs with monochromatic complete subgraph in every edge coloring. SIAM J. Appl. Math., 18, 1970, 19-24.
- 4. Hajnal, A. A theorem on k-saturated graphs. Canad. Math. J., 17, 1965, 720-724.
- Lin, S. On Ramsey numbers and K_r-coloring of graphs. J. Combin. Theory, Ser. B, 12, 1972, 82-92.
- Lovasz, L. Combinatorial problems and exercises. Akademiai Kiado, Budapest, 1979.
- Luczak, T., S. Urbanski. A note on the restricted vertex Ramsey numbers. Periodica Math. Hungarica, 33, 1996, 101-103.
- Luczak, T., A. Rucinski, S. Urbanski. On the minimal vertex Folkman graphs. Discrete Math., 236, 2001, 245-262.
- Nedialkov, E., N. Nenov. Each 11-vertex graph without 4-cliques has a triangle free 2-partition of vertices. Ann. Univ. Sofia, Fac. Math. and Inf., 91, 1997, 127-147.
- Nenov, N. On (3,4)-Ramsey graphs without 9-cliques. Ann. Univ. Sofia, Fac. Math. and Inf., 85, 1991, 71-81 (in Russian).
- Nenov, N. On the Ramsey (3, 4)-graphs. Ann. Univ. Sofia, Fac. Math. and Mech., 73, 1979, 185-190 (in Russian).
- Nenov, N. A lower bound for the number of vertices of some Ramsey graphs. Ann. Univ. Sofia, Fac. Math. and Inf., 86, 1992, 11-25 (in Russian).
- 13. Nenov, N. On the Zykov numbers and some its applications to Ramsey theory. Serdica Bulgaricae math. publicationes, 9, 1983, 161–167 (in Russian).
- Nenov, N., N. Hadjiivanov. On some 2-colourings of the edges of the complete graph with 9 vertices. Ann. Univ. Sofia, Fac. Math. and Inf., 71, 1976, 95-115 (in Russian).

- Nenov, N. Ramsey graphs and some constants related to them. Ph.D. Thesis at University of Sofia, Sofia, 1980.
- Nesetril, J, V. Rödl. The Ramsey property for graphs with forbidden complete subgraphs. J. Combin. Theory, Ser. B, 20, 1976, 243-249.
- 17. Vizing, V., L. Melnikov. Solution of a Toft problem. *Diskret. Analiz*, **19**, 1971, 11–14 (in Russian).

Received on May 9, 2001

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., 1164 Sofia BULGARIA E-mail: nenov@fmi.uni-sofia.bg