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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V(G) and E(G),
respectively. We call a p-clique of G a set of p vertices, each two of which are
adjacent. The biggest natural number p such that the graph G contains a p-clique
is denoted by cl(G) (the clique number of G).

If W C V(G), then: G[W] is the subgraph of G induced by W and G — W is
the subgraph of G induced by V(G) \ W. We shall use also the following notations:

GG — the complement of the graph G

a(G) — the independence number of G;

Ng(v), v € V(G) — the set of all vertices of G adjacent to v;
K, — the complete graph of n vertices;

Cn — the simple cycle of n vertices;

x(G) — the chromatic number of G.

Let G and G2 be two graphs without common vertices. We denote by G + G2
the graph G for which V(G) = V(G;) U V(G2) and E(G) = E(G,) U E(G3) U E',
where E' = {[z,y], z € V(G1), y € V(G2)}.
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The Ramsey number R(p, q) is the smallest natural n such that for an arbitrary
n-vertex graph G either a(G) > p or c}(G) > ¢. We need the equality R(3,3) = 6,

3]
2. VERTEX FOLKMAN NUMBERS AND THE MAIN RESULT

Definition 2.1. Let G be a graph, ay, ..., a, be positive integers and let
VIG)=Viu...uV,, VinV;=0,1i#j,

be an r-coloring of the vertices of G. This coloring is said to be (ay,...,a,)free
if for all 4 € {1,...,7} the graph G does not contain a monochromatic a;-clique of
color i. The symbol G — (aj,...,a,) means that every r-coloring of V(G) is not
(ai,.-.,ar)-free.

The graph G such that G = (as,...,a,) is called a vertex Folkman graph. We

put
F(ay,...,ar:q) =min{|V(G)|: G = (a1,...,a,;) and cl(G) < ¢}.

It is clear that from G — (ai,...,a,) it follows that cl(G) > max{a;,...,a}.
Folkman, [2], proves that there exists a graph G such that G — (ay,...,a,) and

cl(G) = max{ay,...,a,}. Therefore, if ¢ > max{ay,...,ar}, then the numbers
F(a1,...,a,;q) exist. Those numbers are called vertex Folkman numbers.
Let ay, ..., a, be positive integers. We put
T
m=Z(ai—-1)+l and p = max{ay,...,ar}. (1)

i=1

Obviously, Ky = (a1,...,a,) and Ky—q # (a1,...,a,). Hence, if g > m + 1,
then F(ay,...,ar;q) = m. The numbers F(ay,...,a,;m) exist only if m > p+ 1.
For those numbers the following is known:

Theorem A ([4]). Let ay, ..., a, be positive integers and let m and p satisfy
(1), where m > p+ 1. Then F(ai,...,a;;m) = m + p. If G - (a1,...,ay),
c(G) <m and |V(G)| =m +p, then G = Kpm—p—1 + Copsa.

Remark. The proof of Theorem A, given in [4], is based on {4, Lemma 1, p.
251]. But the proof of this lemma is not correct, because the sentence ”If we delete
both endpoints of any its edges adjacent to {z,y}, then a(G) decreases again.” is
not true (see p.252).

A correct proof of Theorem A is given in [13] (see also p.66, Theorem 7.4 in
this volume).

The numbers F(ay,...,a,;m — 1) exist only if m > p + 2. For those numbers
the following is known:

Theorem B ([13]). Let a1, ..., a, be positive integers. Let m and p satisfy
(1), where m > p+ 2. Then F(ay,...,ar;m—1) > m+p+ 2.
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Theorem C ([14]). Letay, ..., a, be positive integers and let m and p satisfy
(1). Let m > p+2, G = (ay,...,a,) and cl(G) < m — 1. Then:

(@) [V(G)| 2m+p+a(G) -1

(b) if V(G)|=m+p+a(G)—1, then |V(G)| > m + 3p.

It is clear that for each permutation ¢ of the symmetric group S,

G — (al,...,a,.) = G- (aw(l),...,a‘p(,.)).

Note that if a; = 1, then F(a,,...,a,;q) = F(ay,...,ar;q). Therefore, we can
assume that 2 < a; < --- <a,.
The next theorem implies that, in the special situation a; = -+ = a, = 2,

r > 5, the inequality from Theorem B is exact.

Theorem D.

11, r=3orr =4

F(u"):{ws, r>5.

T

It is clear that G — (2,...,2) <= x(G)>r+1.
Nt e’

Mycielski in [5] presents an 11-vertex graph G such that G — (2,2,2) and
cl(G) = 2, proving that F(2,2,2;3) < 11. Chvé4tal, [1], proves that Mycielski
graph is the smallest such graph and hence F(2,2,2;3) = 11. The inequality
F(2,2,2,2;4) > 11 is proved in [8] and inequality F'(2,2,2,2;4) < 11 is proved in
[7] and [12] (see also [9]). The equality F(2,...,2;7) =r+5,r > 5, is proved in [7],

[12] and later in [4]. Only few other numbers of the type F(ai,...,a,;m — 1) are
known, namely: F(3,3;4) = 14 (the inequality F'(3,3;4) < 14 is proved in [6] and
the opposite inequality F(3,3;4) > 14 is verified by means of computers in [18]);
F(3,4;5) = 13, [10}; F(2,2,4;5) = 13, [11}; F(4,4;6) = 14, [15); F(2,2,2,4;6) =
F(2,3,4;6) = 14, [16].

In this paper we will calculate another two numbers of this type.

Theorem 2.1. F(2,2,2,3;5) = F(2,3,3;5) = 12.

3. THE LEMMAS

We consider the graph P, whose complementary graph P is given in Fig. 1.
For this graph we put

A= {al,...,ag}, B = {bl,bz,b3,b4}.
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Fig. 1. Graph P

Lemma 3.1 (Main Lemma). P — (2,3,3).

To prove the main Lemma, we make use of the next lemmas.

Lemma 3.2. Let W C V(P) and PW] = Cs.

(a) If WN B = {b1}, then W = {b1,a1,a2,a7,ag}.
(b) If WnB= {bz}, then W = {bg,(ll,ag,a;;,a,;}.
(c) If WN B = {b3}, then W = {b3,a3,a4,05,06}
(d) If WNnB= {bs}, then W = {b4,a5,a6,a7,a8}.

Proof. 1t is sufficient to prove the proposition (a).

Let WNB = {b;}. From by,bs ¢ W and P[W] = Cs it follows that a3, a7 € w.
From a; € W it follows that ag € W or as € W. From ap, € W it follows that
a; € W or az € W. Since in {a1,a3,a6,as} only a1 and ag are adjacent in P, we
have W = {bl,al,ag,a7,a8}. O

Lemma 3.3. Let W C V(P), P[W] = Cs and [W N B| = 2. Then the two
vertices of W N B are adjacent in P.

Proof. Assume the contrary and let for example W' = {b1, b3}. From P[W] =
Cs it follows that there exists u € W such that u € Ng(by) N Np(bs). Since
N5(b1) N Ng(bs) = {b2, b4}, this contradicts equality W = {b,b3}. O

Lemma 3.4. Let W C V(P) and P[W] = Cs.

(a) If WNB = {b1, bz}, then W = {by,b2,01,0a7,a8} or W = {b1,b2,a2,03,04}
(b) If WNB = {by, b3}, then W = {bz,b3,a1,0a2,a3} or W = {bo, b3, a4, 05,06}
(c) If WNB = {bs,bs}, then W = {bs,bs,a3,a4,a5} or W = {bs, bs,a6,a7,08}.
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(d) If WNB = {by, by}, then W = {by, by, as,a6,a7} or W = {by, by, a;,0a2,as}.

Proof. 1t is sufficient to prove the proposition (a).

Let WN B = {b,b2}. From b; € W and by ¢ W it follows that ax € W or
a; € W. Let ap € W. Since Play, ag, by, ba] = Cy, we have a; ¢ W. Hence, a3 € W.
Therefore, from P[W] = Cj it follows that W = {b,bs,as,a3,a4}. Let ay € W.
From P[W] = Cj it follows that ag € W or ag € W. Since Ny(ag) N Ni(ba) = {b3}
and b3 ¢ W, we have ag € W. From Ng(ag) N Ng(b2) = {a1} it follows that
W = {b],bz,al,aq,as}. d

Lemma 3.5. Let W C V(P) and P[W)| = Cs.
(a) If WnB = {bl,bz,b3}, then

W = {bl,bg,bg,,ag,a;;} or W = {bl,bz,bg,as,a'r}.
(b) If WnNnB= {bz,b3,b4}, then

W = {bg,bg,b4,a4,a5} or VV = {bg,b3,b4,al,ag}.
(¢) If WN B = {b1,b3,bs}, then

W = {bl,bg,b,;,ae,a'z} or W = {bl,b3,b4,a2,(lg}.
(d) If W N B = {by, by, by}, then

W = {bl,bz,b4,al,as} or W = {b;,bg,b4,a4,a5}.

Proof. Tt is sufficient to prove the proposition (a). Let W N B = {b;, b2, b3}.
From b; € W and P[W] = Cs it follows that a; € W or a7 € W. Let ay € W.
Since Np(az) N Np(bs) = {as}, we have W = {b;,b,b3,0a2,a3}. If a7 € W, then
from N'];((Iq) N Nﬁ(b;;) = {as} it follows that W = {bl,bg,b:g,ae,aq}. d

4. A PROOF OF THE MAIN LEMMA

Assume that P + (2,3,3) and let V; UV, U V3 be a (2,3, 3)-free 3-coloring of
V(P). From a(P) = 2 it follows that

<2 (2)

Since Vi, i = 2,3, contains no 3-clique, from a(P) = 2 and R(3,3) = 6 it follows
that
Vil <5, i=23. (3)

The equality |V(P)] = 12 together with (2) and (3) imply that |Vj| = 2,
Wy = |Va| = 5. We put G; = P[V;], i = 2,3. Since a(G;) = cl(G;) = 2, from
\Vi| = 5,1 = 2,3, it follows that G2 = G3 = Cs. Obviously, P[A] = Cs. Hence
VinB #0,i=2,3. Assume that |Vo N B| < |V3N B|. From |B| = 4 it follows that
1<|VanB|<2.

Case 1. |Vo N B| = 1. Without a loss of generality we can assume that
15N B = {b}. According to Lemma 3.2(a), Vo = {b1, a1, a2,ar,as}.

Subcase 1la. |[V3NB| = 1. Suppose that V3N B = {bs} or V3N B = {bs}. Then,
according to Lemma 3.2, Vo N V3 # 0, which is a contradiction. Let V3N B = {b3}.
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Then Vi = {b3,as,a4,as,a6} (see Lemma 3.2(c)). Hence Vi = {bs,bs}. This
contradicts the assumption that V) is independent in P.

Subcase 1b. |Va N B| = 2. According to Lemma 3.3, V3N B = {by,b3} or
VaNB = {bs,bs}. Without a loss of generality we can assume that VanNB = {ba,b3}.
From Vi N Vs = B and Lemma 3.4(b) it follows that Vi = {bs, b3, a4, as,as}. Hence
Vi = {as,bs}. This contradicts the assumption that V; is independent in P.

Subcase 1c. [V3NB| = 3. It is clear that V3N B = {bz,b3,bs}. From V;NV3 =0
and Lemma 3.5(b) it follows that V3 = {bs, b3, b4, a4,as}. Hence Vi = {as,a¢}. This
contradicts the assumption that V; is an independent set in P.

Case 2. |Va N B| = 2. It is clear that |V3 N B| = 2. According to Lemma 3.3,
we can assume that VoN B = {by,b2} and V3N B = {b3, bs}. Because of the Lemma
3.4(a) we have the following two subcases:

Subcase 2a. Vi = {by,b2,a2,a3,a4}. From Lemma 3.4(c) and V2 NV3 = it
follows that V3 = {b3,bs,a6,a7,a3}. Hence Vi = {ay,as}. This contradicts the
assumption that V] is independent in P.

Subcase 2b. Vo = {by,bs,a1,a7,as}. From Lemma 3.4(c) and Vo nNVz =0 it
follows that Vi = {bs,bs,a3,a4,as}. Hence Va2 = {az,as}. This contradicts the
assumption that V} is independent in P.

5. A PROOF OF THEOREM 2.1

It is obvious that from G — (2,3,3) it follows that G — (2,2,2,3). Therefore
F(2,2,2,3;5) < F(2,3,3;5).

From the above inequality it becomes clear that it is sufficient to prove that
F(2,3,3;5) <12 and F'(2,2,2,3;5) > 12.

1. Proof of the inequality F(2,3, 3;5) < 12. According to the main Lemma,
P - (2,3,3). Since cl(P) = 4 and |V (P)| = 12, we have F(2,3,3;5) < 12.

2. Proof of the inequality F(2,2,2,3;5) > 12. According to Theorem B,
F(2,2,2,3;5) > 11. Assume that F'(2,2,2,3;5) = 11 and let G be a graph such
that |[V(G)| = 11, cl(G) < 5 and G = (2,2,2,3). From Theorem C(a) it follows
that a(G) < 3. According to Theorem C(b), a(G) # 3. Hence

a(G) = 2. (4)

Assume that there exist u,v € V(G) such that Ng(u) 2 Ng(v). It is clear
that {u,v} ¢ E(G). From F(2,2,2,3;5) > 11 it follows that G — v -+ (2,2,2,3).
Consider an arbitrary (2,2, 2, 3)-free 4-coloring of G — v. If we color the vertex v
with the same color as the vertex u, we will obtain (2,2, 2, 3)-free 4-coloring of G,
which is a contradiction. Therefore:

Ng(v) € Ng(u) for all u,v € V(G). (5)
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If [Neg(v)] = |V(G)| - 1 for some v € V(G), then (G —v) < 4 and
G —v —(2,2,2,2). This contradicts Theorem D. Hence, [Ng(v)| # V(G)] - 1,
Vv € V(G). This, together with (5) imply that

ING(v)| < |V(G)| -3 for all v € V(G). (6)

From F'(2,2,4;5) = 13, [11], it follows that G - (2,2, 4). Let V;UV,UV; be (2,2,4)-
free 3-coloring of V(G). It follows from (4) that |V;| < 2, [Va] < 2. According to
(6) and (4), we may assume that |V;] = |V;| = 2. We put Gy = G[V3]. 1t is clear
that from G — (2,2,2,3) it follows that G; — (2,3). According to Theorem A,
Gy = C7 (Fig. 2). Let V; = {a,b}, Vo = {c¢,d} and G, = Gla,b,c,d]. From (4) it
follows that E(G2) contains two independent edges. Without a loss of generality
we can assume that [a,c], [b,d] € E(G2). It is sufficient to consider the next two

cases.
5

s m V4

L5 U2

Fig. 2. Graph C-

Case 1. E(G3) = {[a,d], [b,d]}. From cl(G) < 5 it follows that one of the
vertices a, c is not adjacent to some of the vertices vy, ..., v; (see Fig. 2). Without
a loss of generality we may assume that v; and a are not adjacent. Consider the
4-coloring

{’U4,’U5} U {’06,’07} U {C, d} U {’vl,’U2,'03,a,b}.
Since G = (2,2,2,3), we have that {vy,v2,v3,a,b} contains a 3-clique. Hence
vi,v3 € Ng(b). Similarly, vi,vg € Ng(b). So, vi,v3,vs € Ng(b). Similarly,
v1,v3,v6 € Ng(d). Hence {vy,v3,vs,b,d} is a 5-clique, which is a contradiction.

Case 2. E(G2) 2 {[a,c], [b,d], [a,d]}. As in case 1, we may assume that a
and v; are not adjacent. Then from (4) it follows that v2,v7 € Ng(a). From (4)

it follows also that a is adjacent to some of the vertices vq, vs. Without a loss of
generality we may assume that v4 and a are adjacent. So,

v9,v4,v7 € Ng(a). (7)
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From (7) and cl(G) < 5 it follows that d is not adjacent to any of the vertices vs,
vs, v7. Hence, it is sufficient to consider the next three subcases.
Subcase 2a. The vertex d is not adjacent to ve. Consider the 4-coloring

{vs,vg}u{vl,w}u{a,b}U{vg,vg,v4,c, d} (8)

of V(G). From G — (2,2,2,3) it follows that {v2,v3,v4,¢,d} contains a 3-clique.
Hence, va,v4 € Ng(c). Similarly, v2,v7 € Ng(c). From (7) it follows that
{va,v4,v7,0,c} is a 5-clique, which contradicts cl(G) < 5.

Subcase 2b. The vertex d is not adjacent to v4. Consider the 4-coloring (8).
As in the subcase 2a it follows that ve,v4 € Ng(c). Similarly, from the 4-coloring

{vi,v7} U {v2,v3} U {a, b} U {vs,vs,ve,¢,d}
it follows that v4,vs € Ng(c). So,
va,v4, 6 € Ng(c). (9)

According to (7), (9) and cl(G) < 5, the vertex c is not adjacent to v7. Consider
the 4-coloring

{vs,v4} U {vs,v6} U {a, b} U {v1,v2,v7,¢,d}.

Since G — (2,2,2,3), then {v,v2,v7,¢,d} contains a 3-clique. Hence, vy,v7 €
Ng(d). Similarly, from G — (2,2,2,3) and the 4-coloring

{U;,‘Uz} U {1)3,1)4} U {a, b} U {‘U5,1)5,'U7,C, d}
it follows that vs,v7 € Ng(d). Then
V2, Vs, V7 € NG(d) (10)

From (7), (9) and cl(G) < 5 it follows that a and v are not adjacent. From (7),
(10) and cl(G) < 5 it follows that @ and vs are not adjacent. So, the vertex a is
not adjacent to vs and vg, which contradicts (4).

Subcase 2¢. The vertex d is not adjacent to v7. This subcase is analogous with
subcase 2b.

6. THE EXTREMAL GRAPHS

By G —e, e € E(G), we denote the subgraph of G such that V(G —e) = V(G)
and E(G —e) = E(Q) \ {e}.

Consider the graph P from Fig. 1. For this graph we set: Py = P, P, =
P—[ay,a6), P, = P—{ay, as], Ps = Py —[as,as), Py = Py —{a4,a7], Ps = Py—[as, az),
Ps = P, — [as,ag), Pr = P — [a3,a7], Ps = P3 — [a4,a7), Py = P; — [as,ag],
Pyo = P — [a3,as), P1y = Py — [a4, as).

We need the next theorem.
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Theorem E, [17). Let the graph G be such that V(G)| = 12, cl(G) = 4 and
a(G) = 2. Then G is isomorphic to one of the graphs P;, i = 0,...,11.

Definition 6.1. We say that the graph G is extremal if IV(G)] = 12, cl(G) < 5,
G (2,3,3) or G — (2,2,2,3).

According to Theorem C(a), if G is extremal, then a(G) < 4. From Theorem
C(b) it follows that a(G) # 4. Hence a(G) = 2 or a(G) = 3. In this section we
describe all critical graphs G with a(G) = 2.

Theorem 6.1. Let G be eztremal graph such that G — (2,3,3) and a(G) = 2.
Then G is isomorphic to the graph P.

Proof. According to Theorem E, the graph G is isomorphic to one of the graphs
Piy1=0,...,11. The 3-coloring

{az,a8} U {bs,a1,0a4,05,a6} U {b1,b3,b4, a2, a3)
of P is (2,3, 3)-free and the 3-coloring
{a1,a5} U {by,b,,a2,0a3,a4} U {b3, b4, a4, a7,a5}
of P is (2,3, 3)-free. Hence G is not a subgraph of P; and . Thus G = P. O

Theorem 6.2. P, — (2,2,2, 3),i=0,...,11. If an extremal graph G 1s such
that G — (2,2,2,3) and o(G) = 2, then G is isomorphic to one of the graphs P;,
1=0,...,11.

Proof. Let ViUV, UV3 UV, be a 4-coloring of V(F;) and V;, i = 1,2,3, be
independent. From a(P;) = 2 it follows that Vil £2,i=1,2,3. Hence |V4| > 6.
Irom a(P;) = 2 and R(3,3) = 6 it follows that V4 contains a 3-clique. Thus P
does not have a (2,2,2, 3)-free 4-coloring and hence P; — (2,2,2, 3). According to
Theorem E, the graph G is isomorphic to one of the graphs P;,1=0,...,11.

7. THE VERTEX FOLKMAN NUMBERS F(2,...,2,p;q)
AND THE RAMSEY NUMBERS R(3,q)

Theorem 7.1. Let p > 2, r and q be positive integers such that
R(3,p) +2r < R(3,q). : (11)

Then F(2,...,2,p;q) < R(3,p) + 2r.
n F( p;q) < R(3,p) + 2r

Proof. Let G be a graph such that V(G)| = R(3,p) + 2r, cl(G) < q and
a(G) = 2. (12)
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According to (11), the graph G exists. Let V; U... UV, be an (r + 1)-coloring
of V(G). Suppose that V;, i = 1,...,r, are independent. From (12) it follows
that |V;] < 2,7 =1,...,r. Hence |V;41] > R(3,p). According to the definition of
R(3,p) and (12), V;.41 contains a p-clique. Thus G does not have a (2,...,2,p)-free

coloring and hence G = (2,...,2,p). From cl(G) < ¢ and |V(G)| = R(3,p) + 2r it
——

r

follows that F(2,...,2,p;q) < R(3,p) +2r. O
oy s’

r

Consider the table of the known Ramsey numbers R(3,p), [19]:

p |3|4
R(3,p) | 6 |9

[y
=N
—
Qo
N
o
[\~]
oooo
(]
(=]
=S
T
=
(¥&)

From this table and Theorem 7.1 it follows:

F(2,2,4;5) < 13 (in [11] it is proved F(2,2,4;5) = 13);

F(2,2,6;7) <22 (in [11] it is proved F(2,2,6;7) < 26);

F(2,2,7;8) < 27 (in [11] it is proved F(2,2,7;8) < 30);

F(2,2,8:9) < 32 (in [11] it is proved F(2,2,8;9) < 34);

F(2,2,9;10) < 40 if R(3,10) # 40 (in [11] it is proved F(2,2,9;10) < 38);
F(2,2,2,3;5) < 12 (according to Theorem 2.1, F'(2,2,2,3;5) = 12);
F(2,2,2,5;7) <20 (in [11] it is proved F(2,2,2,5;7) < 23).

8. ON THE NUMBERS F(2,...,2,p;p+71 —1)
e —t

.
We put F(2,...,2,p;p+1—1) = F.(2,p).
O

T
The proof of Theorem 5 from [13] establishes the following statement:

Theorem F. Let G — (2,...,2,p). Then K, + G — (2,...,2,p) for anyr.
e —’ S —
8 r+s

From Theorem 2.1, Theorem F and Theorem B it follows that
r+8< F(2,3)<r+9, r>3.

The exact value of F5(2,3) = F(2,2,3;4) is unknown.
From Theorem B, Theorem F and the inequalities F5(2,6) < 22, F»(2,7) < 27,
F5(2,8) <32 and F(2,2,2,5;7) <20 it follows that

r+14 < F.(2,6) <r+20, r>2
r+16 < F.(2,7) <r+25 1r>2
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r+18< F.(2,8)<r+30, r>2;
r+12 < F.(2,5) <r+17, r>3.
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