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Generalizations of Redfield’s master theorem and the superposition theorem are proved
by using decomposition of the tensor product of several induced monomial representa-
tions of the symmetric group Sy into transitive constituents. As direct consequences,
several corollaries concerning superpositions of graphs are obtained.
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INTRODUCTION

In the present paper we prove a generalization of Redfield’s master theorem as
a direct consequence of the decomposition of the tensor product of several induced
monomial representations of the symmetric group into its transitive summands.
The underlying permutation representations give rise to the original Redfield’s
group-reduced distributions, or, equivalently, to Read’s equivalence relation of “T'-
similarity” and superpositions. The most important examples of superpositions
are the superpositions of several graphs I';,...,T'x, each on the same number of
vertices. A superposition of I'y,..., T’y is a graph that is obtained by superposing
I'»» on the same set of vertices and by keeping their edges apart. The superposition
theorem counts the number of superpositions of the graphs I';,, in terms of their
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automorphism groups W,,, < S4. The corresponding generalization enables us to
count those superpositions whose automorphism groups have certain properties in
case one of the automorphism groups W,,, m = 1,...,k, has an one-dimensional
character of special type.

The paper is stratified as follows. In Section 1 we note that the tensor product
of several induced monomial representations of the symmetric group Sy is a mono-
mial one. Then we discuss the corresponding permutation representation of S, and,
in particular, show that there is a canonical bijection between the Sy-orbit space
thus obtained and the set of Read’s equivalence classes from [4, Sec. 3]. Section 2
contains two equivalent statements that generalize Redfield’s master theorem and
a generalization of the superposition theorem. In Section 3 we find the number of
all superpositions with certain properties of several graphs.

1. TENSOR PRODUCT OF INDUCED MONOMIAL
REPRESENTATIONS OF S,

Throughout the paper we assume that K is an algebraically closed field of
characteristic zero and that all group characters are K-valued.

Let R? be the Abelian group consisting of all generalized characters of the sym-
metric group Sq, and let A be the Abelian group of homogeneous degree d symmet-
ric functions with integer coefficients in a countable set of variables zg, 1,72, ...
If u, v € R%, we denote by (u,v) their (integer-valued) scalar product. According
to 3, Ch. I, Sec. 4], we can define an integer-valued scalar product ( , ) on the
group A%, such that the characteristic map ch: R% — A9 (see [3, Ch. I, Sec. 7)) is
an isometric isomorphism of Abelian groups.

Let W < S; be a permutation group and x: W — K be an one-dimensional
character. We set

Z(X D1, - ,pd) = “/Vl Z o') ci{o) Cd(ﬂ)’
ceW

where ps = Y i,z are the power sums, and c¢s(0) is the number of cycles of
length s in the cyclic decomposition of the permutation ¢. The symmetric function
Z(x) = Z(X;p1,-..,pa) is said to be generalized cyclic index of the group W. For
¢ € Sa, we denote by o(¢) the corresponding partition (1¢:(9), ... d%¢(9)) of the
natural number d.

The tensor product of two finite-dimensional K-linear representations of Sy
with characters u and v has character uv. If f = ch(u) and g = ch(v), where u
and v are generalized characters of Sy, one defines internal product f * g of two
symmetric functions f,g € A? by f x g = ch(uv). With respect to the internal
product, the Abelian group A% becomes a commutative and associative ring such
that the complete symmetric function hq = ch(ls,) is an identity element (see [3,
Ch. I, Sec. 7]).
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Let W be a subgroup of the symmetric group Sq and let x: W — K be an one-
dimensional character of W. The field K has a natural structure of left KW -module
given by oc = x(o)c, where 0 € W, ¢ € K. We denote by K, the corresponding
one-dimensional K-linear representation of W. Let I be a left transversal of W in
S4. The induced monomial representation [/ ndf{,’(x) = KSq®Kw K, has a natural
basis (e;)icr, i =1 ® 1, as a K-linear space. Since for any ( € Sq and i € I there
exist unique j € I and o € W such that (i = jo, we obtain a group homomorphism
s:Sq — S(I) defined by the formula

(s(Q)@)~"Cie W.

Moreover, the permutation group s(Sg) is transitive on the set I. We have (e; =
((®1)=((i)®1=(jo)®1=37® (01). Therefore the action of Sy on Indﬁ‘,‘(x)
is given by
Cei = Bi({)es(¢) (i)

where 5;(¢) = x(o) = x((s(()(@)) " ¢i).

For the rest of the paper we introduce the following notation:

(W, )k _, is a finite family of subgroups of the symmetric group Sg;

(xm)X 1) Xm: Wm = K, is a family of one-dimensional characters;

Im, (&i)ier,., Sm:Sa = S(In) and (ﬂgm))iejm, are the above ingredients for

the induced monomial representation Indyl (xm), wherem =1,...,k.
The rule
C(ih <o 1ik) - (SI(C)(?:I)’ o ,Sk(C)(ik)), (11)
where (iy,...,1x) € [; X --- X I} and { € S4, defines an action of the group S; on

theset I =I; x --- x I.

We denote by W° the group W with the opposite group structure. The Carte-
sian product of groups Sg x W x --- x W2 acts on the set Sg x - -+ X Sy by virtue
of the rules

(C) Wy, .. ,wk)(als R ’ak) = (Calwl yrrey Cak'UJk) (12)

and
(Cwy,. .., wi).(ay,...,a5) = (wi'laIC"l,...,wkflak('l). (1.3)

The next obvious lemma follows from the definitions of the actions of the corre-
sponding groups and paves the way for some combinatorial applications.

Lemma 1.1. The following four statements hold:

(i) two k-tuples (iy,...,%) and (j1,...,Jk) are in the same Sy-orbit in I if and
only if there exist ( € Sq and wy, € Wi such that jm = (iqwy, form =1,...,k;

(ii) the stabilizer of the k-tuple (iy,...,ix) € I in the symmetric group Sy is
the intersection i, Wlil'1 n... ﬂz’kai;l;

(iii) the inclusion Iy X -+- X I C Sg X -+ x Sy induces a bijection between the
orbit space Sq\I and the orbit space Sg x WP x -+ x WZ\Sq x - - - x Sq with respect
to the action (1.2);

93



(iv) the inversion
Sd X o»oe X Sd — Sd X - X de (al,...,ak) — (a,i“lt_..,a;l)’
is an isomorphism of the actions (1.2) and (1.3) of the group Sa x WP x ... x W¢.

Remark 1. (i) The set of the orbits of the action (1.2) coincides with the
factor-set of Sq X - -+ x Sy with respect to the equivalence relation “T-similarity”,
defined in [4, Sec. 3]. Therefore, according to Lemma 1.1, (iii), there is a bijec-
tion between the orbit space S;\I and the set of all distinct superpositions of &
graphs with d vertices each (multiple edges and loops allowed), see [4, Sec. 4].
Moreover, the stabilizer iy Wii; ' N...Ni Wiy ' is the automorphism group of the
superposition (iy,...,%).

(ii) The orbits of the action (1.3) are Redfield’s group-reduced distributions,
determined in [5, p. 434]. Lemma 1.1, (iii), (iv), yields that there is a bijection
between the orbit space S;\I and the set of all distinct group-reduced distributions.

Proposition 1.1. The tensor product
Indyi (x1) ®k -+ @ Indyd, (xx) (1.4)

is a monomial K -linear representation of Sq with basis (e; = €;, ®---®e;, )icy, the
action of Sq being given by the rule

Cei = Bi({)es(e) i)
where 8;(¢) = B (¢) ... B (©).

Proof. 1t is clear that the family (e;)icr is a basis for the K-linear space (1.4).

k
We have (e; = (e;, ® - ® (e, = ﬂ,(,l)(C)---ﬁg,,)(C)esx(c)(il) @ ® e (¢)(in) =
Bi({)es¢)(iy- In particular, (1.4) is a monomial representation of Sy. [J

Due to [1, Lemma 1], the characteristic of the tensor product (1.4) is the
internal product Z(x1) * -+ * Z(xx). We set

C(Wh,...,Wi) =

{(o1y...,0k) EWy X - - X Wi | cs(01) = -+ =c4(or), s=1,...,d}.
Obviously, ((1),...,(1)) € C(Wy,...,Wy).
For any o = (0y1,...,01) € C(W,..., W) we define ¢5(0) = cs(oy) = -+ =
cs(ox) for s =1,...,d. Moreover, we set z, = Hle s (@ eg (o).
The next proposition links the present definition of internal product to Read’s
one from [4, Subsec. 3.3].

Proposition 1.2. It holds
Z(x1) * -+ * Z(xx)

Cd(”).

1 -
1§+ k c€C(Wy,..., Wk)
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Proof. The proof is an immediate consequence of [3, Ch. I, Sec. 7, (7.12)]. O

2. REDFIELD’S ANSATZ

In this section we generalize the Redfield’s master theorem and the superposi-
tion theorem.

Theorem 2.1. It holds

Indﬁ‘,‘l (x1) ®k - @Kk Indf{,’k (xx)

~ Sa
= D) W, WA w10 W (Y(wr,eorwr))s

where T (Wy,...,Wy) is a system of distinct representatives of the Sg-orbits in
the Cartesian product I = I} X --- x I}, with respect to the action (1.1) of Sq, and
V(wr,....wn) 18 the one-dimensional character of the group w; W;wl‘l n.. .ﬂkakw;I,

.....

which is the restriction of the expression

B (¢) = xa((51(O)(w1)) ™ ¢wr) - - xk (35 (C) (wr)) ™" Cwi)

from Proposition 1.1.

Proof. Due to Proposition 1.1, the tensor product (1.4) is a monomial repre-
sentation of Sy, so it gives an induced monomial representation on each Sy-orbit in
the set I and (1.4) is the direct sum of these transitive constituents. Now, Lemma
1.1, (ii), finishes the proof. O

Transferring this result by virtue of the characteristic map ch on the Abelian
group A%, we obtain a direct generalization of the Redfield’s master theorem.

Theorem 2.2. It holds
Z(x1)* - x Z(xx) = > Z(P(ur,...on))-

(w; ..... wk)ET(‘Vl,...,VVk)

Following R. C. Read, if A is a polynomial in several variables p;,...,pq, we
denote by N(A) the sum of its coefficients.

Theorem 2.3. The number of the elements w € T (Wy,...,Wy) such that
V(wy,...wn) = 1 on the stabilizer wlwlwl_1 ﬂ...ﬂkakw;l 18

N(Z(x1) * -+ * Z(xx))-

Proof. Applying the operation N on the two sides of the equality from Theorem
2.2, we obtain

N(Z(x1) * -+ * Z(xx)) = > N(Z(Wer,...on)))-
(wy ,...,wk)ET(W1 yeens W)

95



Given a group G < Sy and an one-dimensional character ¥:G — K, we have
N(Z)) = (¥, 1¢)g, where (, ) is the standard scalar product of functions on the
group G (see {3, Ch. I, Sec. 7). Since (¥, 1g)¢ = 0 when v # 1g, and (¢, 15)g =1
when ¥ = 14, the proof is done.

Remark 2. When x,, = lw,, for m = 1,...,k, Theorem 2.2 (respectively,
Theorem 2.3) turns into the Redfield’s master theorem (respectively, turns into the
superposition theorem).

3. GRAPHICAL COROLLARIES

Here is how the above machinery applies to the graph theory. Combining The-
orem 2.3 and Remark 1, we establish Theorem 3.1 and several graphical corollaries
of it. In accordance with Remark 1, these statements can also be formulated in the
language of Redfield’s ranges and the associated range-groups, see [5, p. 434].

Let I'y,...,['x be graphs with d vertices (loops and multiple edges allowed)
and let W; < Sg,..., W) < S4 be their automorphism groups, respectively. Let
Xm: Wm — K be an one-dimensional character of W,, m = 1,..., k. Suppose that
X2 = lw,, ..., Xk = lw,, and set W = W, x = x1.

Theorem 3.1. Let G be a set of subgroups of the symmetric group Sq, which
is closed with respect to conjugations. Let H < W be the kernel of the character
x. Let us assume that the set of all subgroups of W, which belong to G, coincides
with the set of all subgroups of H. Then the number of those superpositions of the
graphs 'y, ..., Tk, whose automorphism groups belong to G, is N(Z(x) * Z(1w,) *
% Z(lw,)).

Proof. For any subgroup H' < W we have H' € G if and only if x;;» = 1p.
The automorphism group A, = wiWiwy 'n...n wpWiw, b oof any superposi-
tion w = (wi,...,wx) is a subgroup of w;Ww;'. Obviously, the subgroups of
wiWw;? from G are exactly the subgroups of the kernel wyHw;' of the one-
dimensional character x(wfl(wl) of the group wyWwy 1. On the other hand,
the one-dimensional character ),({) of A, from Theorem 2.2 is the restriction
of x(wj'¢wy). Thus, A, € G if and only if 1, (¢) is identically 1 on A,,. Therefore
Theorem 2.3 implies the result. [

Given a cyclic group of order b and a divisor a of b, let o(® be an one-
dimensional character of this cyclic group, whose kernel has order a. If G is the set
of all cyclic subgroups of S; of order that divides a, Theorem 3.1 yields

Corollary 3.1. If the group W = W) is cyclic of order b and if a is a divi-
sor of b, then the number of all superpositions of I'y,..., Tk, which have a cyclic
automorphism group of order dividing a, is

N(Z(&") % Z(lw,) %+ * Z(1w,)).
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In the particular case a = 1, we obtain

Corollary 3.2. If the permutation group W = Wy is cyclic, then the number
of all superpositions of I'y,..., Ty, having a trivial automorphism group, is

N(Z(o) * Z(lw,) * - * Z(1w,)),
where p: W — K is an injective one-dimensional character of W.

Now, let G be the set of all subgroups of Sy, consisting of even permutations.
Then Theorem 3.1 implies

Corollary 3.3. The number of all superpositions of T'y,..., 'y, whose auto-
morphism group consist of even permutations, is

N(Z(e) x Z(1w,) * - - - * Z(1w,)),
where : Wy — K is the restriction of the alternating character of Sy on Wj.

Let r be a natural number. We suppose that:

(a) W = W, has a normal solvable subgroup R of order r such that the factor-
group W/R is cyclic of order relatively prime to r.

Then the group W itself is solvable. According to the generalized Sylow the-
orems (cf [2, Ch. 9, Theorem 9.3.1]), R is the only subgroup of W of order r.
Moreover, any subgroup of W of order that divides r is contained in R.

Denote by 7 an one-dimensional character of W with kernel R. If G is the set
of all subgroups of Sy of order dividing r, we obtain

Corollary 3.4. If the group W = Wy satisfies condition (a), then
N(Z(m)* Z(lw,) x---* Z(1w,))

is the number of all superpositions of I'y,..., Tk, whose automorphism groups are
of order dividing r.

Now, we formulate an important version of Corollary 3.4. Let ¢ be a prime
number. Suppose that:

(b) the group W = W, has a normal g-subgroup R such that the factor-group
W/R is cyclic of order relatively prime to gq.

In accordance with Sylow theorems (see [2, Ch. 4, Theorems 4.2.1 - 4.2.3)), R
is the only Sylow g-subgroup of W. Moreover, any g-subgroup of W is contained
in R.

Denote by ¢ an one-dimensional character of W with kernel R. If G is the set
of all g-subgroups of S;, then we get

Corollary 3.5. If the group W = W, satisfies condition (b), then
N(Z() = Z(1w,) x -+ *x Z(1w,))
is the number of all superpositions of I'y,..., [y, whose automorphism group is a

q-group.
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Remark 3. Examples of abstract groups W = W; which satisfy the hypothesis
(a) (respectively, the hypothesis (b)) can be obtained by constructing a semi-direct
product of a solvable group R of order r (respectively, a g-group R) with a cyclic
group C of order relatively prime to r (respectively, relatively prime to g). The
Schur-Zassenhaus’ theorem (see {6, Ch. IV, Sec. 8, IV.7.c]) asserts that there are
no other examples. In the symmetric group Sy, it is enough to choose R < S, and
C < S4 with the above-mentioned properties so that RC' = CR, RN C = {(1)}
and R is a normal subgroup of the group W; = RC.
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