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1. INTRODUCTION

Let T denote the class of totally monotonic functions

w=(z) = /: zdp(t) = ianz", z & [1,400],
n=1

1-—2t

where p(t) is a probability measure on [0, 1] and

1
an=/t""ldu(t), n=12,..., a;=1.
0

(1.1)

(1.2)
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In [1] it it noted that the largest common region of convergence of all Taylor
series at the point w = 0 of the inverse functions z = ¥(w) of the functions (1.1) is
the disk |jw| < 1/2. Let

oo
1
z=¢Pw)= ) buw", |wl <5 bh=1 1.3
b(w) X_jl wl < 5, b (13)
be such series, where in [1] the coefficients b, are determined explicitly by the

coefficients a, in (1.2). In [1] we found the minimum and the maximum of the
coefficients by, bz and by and conjectured that the extrema of all coefficiens by,

n=23,4,...,in (1.3) are attained only for the rational functions of the form
1-—
<p(z)==cz+(1 cz)ZET, 0<c<1, (1.4)

for suitable values of ¢, and, in addition,
bom > =1, m=12,..., (1.5)

and
boms1 <1, m=1,2,..., (1.6)

where the equalities in (1.5) and (1.6) hold only for the function
w o0
) = e _1\yn—1,.n )
v(w) = 7 — n§=1:( ™" w", (L.7)

inverse of the function (1.4) for ¢ = 0, respectively.
Now we verify these conjectures for the fifth coefficient bs in (1.3) as well.

2. SHARP ESTIMATES FOR bs

In [1, p. 41, Theorem 4] we have proved that the minimum (the maximum)
of the coefficients b,, n > 2, in (1.3) in the class T is attained only either in the
subclass of functions (1.4) or in the subclass of functions

P
_ Crz
D) =) 72T, 21)
k=1
where

1<p<m, n=2m, m=12,..., (2.2)
1<p<m+1, n=2m+1, m=12,..., (2.3)

P
0<ti<ty<- <t <1, 0<e <1, Y =1, (2.4)

k=1
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and t;, 1, ..., t, are among the numbers 0 and 1 and the roots in the interval
0 <t <1 of the equation

n
abﬂ -
P(t) = s—=1t°""=0, n>3. 2.5
(t) ; o1 > (25)
The function
= Ob
Q) =) z—t"1, Q't)=P(t), n>3, (2.6)
Odag
§=2
has equal values at any two adjacent points of the sequence t;, ta, ..., t, for p > 2,
i.e.
Q1) =Q(t2) =---=Q(t,), p>2. (2.7)
The equations (2.7) are necessary conditions for the extrema of b, with respect
to cy, ¢, ..., ¢p. In fact, b, depends on as, a3, ..., a,, which by (2.1) are equal to
P
a3=chtz“1, 2<s<n, n>3, p>2 (2.8)
k=1

From (2.8) and the last equation in (2.4) we have

Oas
aci

=t =i, 1<k<p, p>2, tp =t. (2.9)

Having in mind (2.9) and (2.6), we obtain the formula

b, %, Ob, Oa, _
Bor = ; B0, o = Qtr) — Qt+1), (2.10)
nZ?’a ISkSP, p221 Q(tp+l)=Q(t1)

Since b, /8ci. = 0 at the extrema of b,, formula (2.10) yields (2.7).

Theorem 2.1. The coefficient bs in (1.3) satisfies the sharp inequalities
—0.1317545 ... = 14¢" — 35¢® + 30c* — 10c+ 1 < b5 < 1, (2.11)
where
c=0.294997..., 0.294997 < ¢ < 0.294998, (2.12)
is the smallest positive root of the equation

56¢® — 105¢% + 60c — 10 = 0, (2.13)
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and the equalities hold only for the following extremal functions: on the left-hand
side of (2.11) — for the inverse function of the function (1.4) for ¢ determined by
(2.11)-(2.13), and on the right-hand side of (2.11) — for the function (1.7).

Proof. In terms of the coefficients a3, as, a4, as in (1.2), the coefficient b5 in
(1.3) has the following explicit form (see Theorem 3 and its proof in [1]):

bs = —as + bazayg + 3a§ — 2la3az + 14a§. (2.14)

According to our general theorem, expressed by means of (2.1)-(2.7) applied to
n = 5 and (2.14), the only possible extremal functions for bs are the functions of

the form (1.4), and

4

= T, <t<1, 2.15
ple) =7, €T, 0=t< (2.15)
(1-2¢)z

¢(z)=cz+~i—t;€T, 0<e<l, 0<t<], (2.16)
cz (1-c¢)z

- T 1, 0<t<l1, 2.17

v(2) 1—tz+ T €T, 0<c<l, <t< (2.17)
cz (1-¢)z

= T, 0 1, 0<t <t <1, 2.18

(p(Z) 1*t12+1—t226 <e< S & ( )

CoZ c3z
e T, 2.19
(2) clz+1_tz+1_z€ (2.19)

0<e,23<1, aa+ecatecz=1 0<t<]1
(in general ¢ is different for each function), with the corresponding equations
P(t) = 6aq — 42a3a3 + 56a3 + (6az — 21a3)2t + 18axt® — 4t> =0 (2.20)
in ¢ and functions
Q(t) = (6as — 42aza3 + 56a3) t + (6a3 — 21a3) t* + 6ayt® — t* (2.21)

with Q'(¢t) = P(t). For the latter and for the corresponding functions (1.4), (2.16)-
(2.19) we have the equations

Q(0) = Q(1), (2.22)
P(t) =0, Q(0)=Q(), (2.23)
P(t) =0, Q) =Q(1), (2.24)

P(t}) =0, P(t2) =0, Q(t1)=Q(t2), (2.25)

P(t)=0, Q(O0)=Q(), Q@) =Q(1), Q@)=Q(0). (2.26)

(i) First, we examine the function (1.4). From it we find the Taylor coefficients

as=1-¢, a3=1-¢, ag=1-¢, as=1-c. (2.27)
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From (2.27) and (2.14) we obtain that

bs = 14c* — 35¢® + 30¢% — 10¢ + 1 (2.28)
1 7+ V21 7-+21
_ _ _:z _ _ o= <e<l.
14(c 1)(c 2) (c 72 )(c 71 ) bs(c), 0<c<1
It follows from (2.28) that the derivative equation
b (c) = 56¢® — 105¢* +60c— 10 =0 (2.29)
has three real roots
¢ =0.294997..., 0.294997 < ¢' < 0.294998, (2.30)
" =0.652..., 0.652< " <0.653,
¢" =0.9270..., 0.9270 < " < 0.9271
for which
min bs(c¢') = —0.1317545.... ., (2.31)
max bs(c") = 0.062235... .,
min bs(c"') = —0.03281....
In addition,
bs(0) =1, bs5(1) =0. (2.32)

The derivative equation (2.29) follows from formula (2.10) and equation (2.22)
as well. In fact, we have

bi(c) = Q(0) — Q(1) = 56¢® — 105¢® + 60c — 10 = 0 (2.33)

by (210) forn =5, k=1,p=2,¢) =c¢, t; =0, t = 1, and (2.21) for the values
(2.27) and (2.22).

(ii) Second, we examine the function (2.15). Converting (2.15) or by means of
the coefficients of (2.15) and (2.14), we obtain

bs =t', 0<t<1, minbs=0, maxbs=1. (2.34)
(iii) Third, we examine the function (2.16). From (2.16) we find the coefficients
az2=(1-c)t, az=(1-0)t?, as=(1-0t as=(1-c)t" (2.35)

From (2.20), (2.21) and (2.23) we obtain

% [P(t) - %Q(t)] = 2a3 — 7a2 + 4dast — 12 = 0. (2.36)
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It follows from (2.35)-(2.36) that

7(1-¢)?-6(1-¢c)+1=0. (2.37)
From (2.37) and (2.35) we find
+ . + /2 3+ /2
of = 2= v2, - ﬁtz, af = > f’rs» ay = ft“, (2.38)
7 7 7 7
respectively. Now (2.38) and (2.14) yield
~13 + 16v2
4 _ 44 y
by =t 343 , 0<t <], (2.39)
respectively. Equations (2.39) lead to the corresponding boundaries
inf b7 =0, supbi =0.0280682..., 0<t<1, (2.40)
inf by = —0.10387..., supb; =0, 0<t<L (2.41)

(iv) Fourth, we examine the function (2.17). From (2.17) we find the coefficients
a=clt—1)+1,a3=c(t*-1)+1, a4 = c(t® —1)+1, a5 =c(t* — 1) + 1. (2.42)
From (2.20), (2.21) and (2.24) we obtain

5 {Po - e -om} (2.49)
= 6az — 21a% 4+ 6az(2t +1) —3t* =2t — 1 = 0.
It follows from (2.42)-(2.43) that
21(1 — t)%c? = 6(1 — t)(5 — 3t)c + (3t* + 2t + 16) = 0. (2.44)
The discriminant of the equation (2.44) in c is
3(1 —t)?[2(3t — 52) —37) <0, 0<t<1l (2.45)

From (2.45) we conclude that the equation (2.44) has no real roots for ¢, and hence,
the function (2.17) is not extremal for bs.
(v) Fifth, we examine the function (2.18). From it we find the coefficients

ay = c(ty —ta) +t2, az= (‘( tz) + 12, (2.46)
ag = c(td = t3) +13, a5 = c(t] — t3) + 15
On the other hand, from (2.20), (2.21) and (2.25) we obtain

1
2(ty — t2)

{P(t1)+P(t2 t))]} =3ay —t; — to =0,

(2.47)
ty + 12 .
3

a9 =
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Further, from (2.21) and (2.25) we get
)—(t——l*—gn)—[l)(f]) — P(t_»)j = Gay — 21(1;’; + Q(Ig(h + t-_w) — Q(t.']z + 6ty + f:;) = ().
-\ ‘l - '.!_
(2.48)
It follows from (2.47) and (2.48) that

267 4 Uity + 2t3
0

(2.49)

a3 =

Finally, from (2.20), the first cquation in (2.25), (2.47) and (2.49) we obtain

2(f1 -+ t;z)(?t"f — 4ttty + Tté)
81

(2.50)

g ==

Now, identifying the both expressions of a» in (2.46) and (2.47), we find

t) — 2ty

c= 36 6 (2.51)

Having in mind (2.51), the identification of the corresponding expressions of as and
a: in (2.46), (2.49) and (2.50) leads to the system of equations

t] — dtyty +t5 =0, 13¢7 — 46,1, + 1362 = 0. (2.52)
Setting t5 = kt) in (2.52), we obtain the equations
B2 —4k+1=0, 13k%— 46k +13 =0, (2.53)

But equations (2.53) have no common root, whence it follows that the function
(2.18) is not extremal for bs.
(vi) Sixth, we examine the function (2.19). From (2.19) we find the coefficients

1') 2
tr = ot +-c3, a3 =ct” + ez, ag =cot’ + 03, as = ot + o3 (2.54)

On the other hand, from (2.21) and (2.26) we have Q(0) = 0.
%()(t) = Bay - 420203 + 5643 + (6ag — 21a3)t + 6agt? — £ = 0,  (2.55)

f—i-;- [Qt) — QU] = 6ay — 42aza; + 5643 + (6as — 21a2)(t + 1) (2.56)
, — 1

- Bar (B +t+1) — (L4 1)+ 1) = 0.
Q(1) = (6ay ~ 42aza3 + 56a3) + (6az — 21a3) + 6as — 1 = 0. (2.57)

Subtracting (2.57) from (2.56), we obtain

(6as — 21a3)t + 6ay(1* + fy—t" =1 —t=0. (2.58)
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If we add (2.58) to (2.56) and subtracting this sum from (2.20), then we find
2t +1

ay =~ (2.59)
It follows from (2.58)—(2.59) that
162 + 4t + 7
az = 7 : (2.60)
From (2.57) and (2.60) we find
22413 + 48t + 42t 1
ag = L N + 9 * (261)

1296

Now the identification of the corresponding expressions of a; and a3 in (2.54) and
(2.59)—(2.60) leads to the values

16t2 — 20t — 5 8t2 + 8t -7
5 = g == . .62
“ -1 0 T -1 (2.62)
From (2.54) and (2.62) we find
1663 — 4t? -t + 7
= 2.
a4 = (2.63)
and
1661 — 483 —9t2 —t + 7
_ . 64
as 79 (2.64)
The identification of (2.61) and (2.63) yields the equation
641> — 120t> — 60t + 35 = 0. (2.65)

The equation (2.65) has three real roots lying in the intervals (—o0,0), (0, 1) and
(1,4+0c), respectively, where the root in the interval (0,1) is

t' =0.3668..., 0.3668 <t < 0.3669. (2.66)
The value (2.14) for (2.59)-(2.60) and (2.63)-(2.64) is

128" — 320t% — 240> + 280t — 91

bs =5 = bs(t). (2.67)

From (2.66)-(2.67) we obtain
bs(t') = —0.0065704 . .. (2.68)

Now comparison of (2.30)-(2.32), (2.34), (2.40)--(2.41) and (2.68) leads to
(2.11)-(2.13), which completes the proof of Theorem 2.1.

For the next coefficients bg, b7, ... we can proceed in the same way. In accor-
dance with our conjecture, for the functions (1.4) we can expect that the functions
(2.1)-(2.4) different from the functions (1.4) are not extremal for b,, n > 6.
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3. AN EXPLICIT FORM OF THE COEFFICIENTS
OF THE INVERSE FUNCTIONS OF THE FUNCTIONS (1.4)

The function (1.4) can be rewritten in the form

oo
=goc(z):=z(%::—z)=z+(l—c)2z"€T, |2} <1, 0<e<1 (3.1)

n=2

The branch of the two-valued inverse function of (3.1) determined by the values
2 = 0 for w = 0 is the function

2 = olw) = l+w-\/1—226(2c—1)w+w2 (3.2)

2w
1+w+4/1-2(2c- 1w+ w?

with v/1 = 1, analytic and univalent in the w-plane cut along the two two-times-
describable rays

1-c¢

w=<p6(1+iy)=20—1+i(cy+ ), —o00 <y < +00,

connecting the branch points

TN c(l—c
wh,2 ‘:(Pc(zl,z) =2¢c-1+2 c(l—c), 210 = ],:ti__(._c____).,
through the point at infinity, which correspond to the equations

6‘Pc("v’l,2)
0z

According to our earlier results for the univalence of the class T of functions
(1.1), their derivatives ¢’(z) vanish on the straight line Rez = 1 only for the
functions (1.4) with 0 < ¢ < 1 (see [2, pp. 417-418, Theorem 1; Eq. (4) contains a
misprint where an inequality sign is reversed], [3, p. 120, Theorem 1], [4] and [5]).
Hence the image of the half-plane Rez < 1 by each function (1.1) of the class T
except the functions (1.4) for 0 < ¢ < 1 has exterior points.

=0.

Theorem 3.1. The inverse function (3.2) has the Taylor ezpansion
o
2 =te(w) = Y balchw”, bi()) =1, [u|<1, (3.3)
n=1

where

(=1)n-1-v n—-1+v\ ,
Z ) )¢ m=12, (3.4)
V=
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Proof. By the first representation in (3.2) we obtain

:" Wi
z =0 (u) = l(1 +w) | 1—4/1— —-qu—.- . (3.5)
e 2¢ (1 +w)? \

it follows for sufficiently small values of |w| that

-“-_4(;10 1 /20 =2 y 2y .
1‘\/177:;)—2:22;(”_1)6“’V(”"') " o
v=]
o0 oC
_ 1 (20 -2 v n—w v+n—1 o
_2;;(1/_1)0 }_:< 1 ( e )w
o0 n
| (- "2 -2\ {v+n—-1
=2 L W S v
nz_:lw sz:l v v—1 n—v (

Now (3.5)—(3.6) lead to (3.3)-(3.4), which completes the proof of Theorem 3.1.
In particular, for ¢ = 1 and ¢ = 1/2, the coeflicients of (3.2) are b,(1) = 0,

n > 2, and
1 (-=1)" [2n —2 |
2n\ 5 ) — 5 : 2n 51 =Y 2> 1,
b2 (2) n2~"“1(n—1) bants (2 0, n

respectively, which compared with (3.4) yield the corresponding identities.
Formula (2.10) forn >3, k=1,p=2,¢) = ¢, t; =0, ty = 1 is reduced to the
formula

by (c) = Q(0) — Q(1),

where b, (¢), Q(0) = 0 and Q(1) are determined by (3.4) and (2.6), respectively (for
n = 5 this formula is noted in (2.33)).
Let

My = 1117111 b,. M, = max b, n=2,3,..., (3.7)

where b,, n > 2, are those in (1.3).
If the conjecture for the function (1.4) is true, then

my, = min b,(c), M, = max by(c), n=23...., (5.8)

0<egl 1<e<

where b, (c), n > 2, arc those in (3.4).
For n = 2, 3, 4. 5 it follows from (3.4) that

bo(c) = ~1+4+¢. ba(e) =1 -3¢+ 22, (3.9)
bi(c) = =1+ 6¢c — 10¢” + 5c3.
bs(c) = 1 —10¢ + 30¢® — 35¢° + 1462,
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By formulas (3.7)-(3.8) applied to the polynomials (3.9) we obtain the explicit
values of m,, and M, for n = 2, 3, 4, 5 as follows:

my = —1(c=0), My (¢=1); (3.10)
mMa = —% (c = %) . My=1(c=0); (3.11)
my = —1 (¢ = 0), (3.12)
My = 5—%\5-[—19 = 0.13073415. .. (\c = W = .45584816...) ;

ms = —0.1317545 ... (¢ =0.294997...)), M5 =1 (¢ =0); (3.13)

where m,, and M,, for n = 2, 3, 4, 5 are realized only by the functions (1.4)
(or (3.1)-(3.2)) for the values of ¢ indicated in the parentheses and (2.12)-(2.13),
respectively.

The equations (3.10)-(3.12) for n = 2, 3, 4 and the equations (3.13) for n == 5
are proved in {1} and Theorem 2.1 above, respectively.

For n =6, 7, ... the values of mg, mz, ..., Mg, My, ... can be obtained by
the conjectural formulas (3.8) applied to the polynomials (3.4) for n =6,7,...
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