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In the present note a certain generalization of the well-known Voigt-Reuss bounds
on the effective conductivity x* of a binary medium is proposed. For a fixed binary
constitution the scalar function f(a) that gives the undimensional effective conductivity
as a function of the ratio @ of the constituents conductivities is considered. Certain
inequalities for the derivative f’'(a) of this function, which include a, f(a) and the
volume fractions of the constituents, are derived. The inequalities are sharp if these
fractions are solely known. More precisely, they turn into equalities for the familiar
laminate media loaded along and across the layers. The Voigt and Reuss bounds on
k* follow from the proposed inequalities, but the latter are stronger than the former
bounds, since estimates are put here on the rate at which the effective conductivity
changes when the constituents properties are varied at a fixed binary constitution of the
medium. It is in this sense, namely, when it is claimed that our inequalities generalize
the Voigt-Reuss bounds.
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1. INTRODUCTION

The aim of this note is to report some inequalities, concerning the rate of
variation of the effective properties of a two-phase medium when, at a fixed random
constitution, the properties of the constituents are varied. The heat conduction
context is chosen for the sake of simplicity. The random constitution is assumed
statistically homogeneous and isotropic.
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Let x; and ko be the conductivities of the constituents, x;,k2 > 0. The
random conductivity field x(z) of the medium takes then the values x; or ko,
depending on whether z lies in the phase ‘1’ or ‘2’, respectively. If E denotes
the prescribed macroscopic temperature gradient imposed upon the medium, the
governing equations of the problem, at the absence of body sources, read

V-g(z) =0, q(z)=r(z)E(), (1.1a)
where E(x) = Vé(z). Eq. (1.1a) is supplied with the condition
(Vé(z)) = B, (1.1b)

which plays the role of a “boundary” one. In (1.la) g(z) is the flux vector and
§(x) is the random temperature field. Hereafter (-) denotes ensemble averaging.
Having solved somehow the random problem (1.1), one can evaluate all mul-
tipoint moments of the temperature field #(x) and the joint moments of #(x) and
x(z) by means of the known moments of the conductivity field, see [1, 9]. In par-
ticular, among the joint moments, the simplest one-point moment of the flux g(z)
defines the well-known effective conductivity £* of the medium through the relation

Q = (g(z)) = (r(z)E(x)) = " E (1.2)

(assuming statistical homogeneity and isotropy).

Note that the definition (1.2) of the effective conductivity x* reflects the “ho-
mogenization” of the problem under study in the sense that from a macroscopic
point of view, when only the macroscopic values of the flux and temperature gra-
dient are of interest, the medium behaves as if it were homogeneous with a certain
macroscopic conductivity «*. This interpretation explains why x* and its coun-
terparts, say, the effective elastic moduli, have been extensively studied in the
literature on homogenization, see, e.g. [8, 14] et al., as well as the recent survey
[10]. A well-known fact is to be only recalled, namely that £* can be defined also

“energetically”:
5*E* = (k(z)|VO(z)|*) . (1.3)

Besides x*, other statistical characteristics of the fields F(z) and g(x) deserve
attention and, above all, the (undimensional) variances of these fields, defined as

follows:
_(BEP) L, _(g@P)
e"'—'_'E"_z_; aq—T- (14)
The primes denote in what follows the fluctuating parts of the respective randomn
fields, so that, in particular, E'(z)f = E(z) — E, and hence (E'(z)) = 0.
It is to be noted immediately that for any two-point medium the variances o2
and o7 are simply interconnected:

a

I{, R * —_ * —
o2 = _F1F2 o (67— m)(8 —Ka) (13)
n K*2
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This formula, derived in [11}, is a straightforward consequence of the fact that the
medium under study is binary and hence the field x(z) takes the values k; or ks
solely.

The variances (1.4) provide us with useful information about the deviation of
the random fields under studies from their mean values. Also, they are connected
to the mean energy of the appropriate fields, accumulated within the phases. That
is why they have attracted some attention in the literature on heterogeneous media.

To the best of the authors’ knowledge, an investigation of the variances, in
addition to the effective properties in the scalar conductivity context, has been
initiated by Beran et al., [2, 4, 3]. In particular, Beran [2] has obtained bounds on
the variances through the effective properties. The Beran estimates are quite crude
and this is inevitable since they are applicable to any statistically homogeneous
and isotropic medium. More restrictive bounds are derived in [11], but only for
dispersions of spheres, correct to the order “square of concentration.”

Note that an application of such variances, concerned with the deviation from
the Hooke law in heterogeneous materials, can be found in the recent authors’ paper
[12].

The above mentioned results of Beran indicate that there may exist more inti-
mate connection between variances and effective properties. Indeed, as shown first
by Bergman [5], see also [7, 13], the variance is simply connected to the derivatives
of the effective conductivity k* = x*(k;, %), treated as a function of the material
properties x; and k2 of the constituents in a binary medium, at a fixed random con-
stitution. This is an interesting and important result, but its practical application
is limited by the fact that very rarely rigorous analytical formulae for k*(k;, k1)
are known for realistic random constitution. Rigorous bounds on x*(x;, ;) are
well-known, of course, but they obviously cannot supply any estimates for the
above-mentioned derivatives.

It turns out that the variances (1.4) can be simply represented by means of
x* and its derivatives 9x*/dk; and dk* /9K, with respect to the constituents prop-
erties, having fixed the random constitution. The appropriate formulae are direct
consequences of the Bergman formula [5], which will be rederived in Section 2. In
turn, this formula will yield certain inequalities between the effective conductivi-
ties k* and its derivatives dx*/0k; and 9x* /0K, (Section 3). These inequalities,
when transformed into dimensionless form, have as a consequence the Voigt and
Reuss bounds (Section 4). Both these bounds are, to say the least, well-known.
The important point, however, is that the inequalities derived here bound not only
the effective properties, but also the rate of their change when the constituents
properties are varied. The proposed inequalities are closely connected as well to
the convexity of the function f(a), discussed in Section 5. The latter easily follows
from the spectral representation of f(a), due again to Bergman [5]. A certain ap-
pealing geometrical interpretation of the Voigt bound is proposed as a consequence
of the convexity of the function f(a), namely, that this function should lie below
each of its tangents and, in particular, below its tangent, drawn at the point a = 1.
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2. THE BERGMAN FORMULA

For the sake of completeness, we shall provide here a derivation of the Bergman
formula. It is a bit more rigorous than the original one due to Bergman [5], since
ensemble (instead of volume) averaging will be utilized. In the papers [7, 13], where
the same formula has been rederived later on, volume averaging is used, similarly
to the original Bergman reasoning.

The starting point is the energy definition (1.3) of the effective conductivity
k*. Let us change the conductivity field of the medium, «(z), by the infinitesimal

quantity
§(z) = x1(z)dk1 + x2(x)dk2, (2.1)

where x1(x) and x2(z) are the characteristic functions of the regions, occupied by
the constituents ‘1’ and ‘2, respectively. Then, at fixed E = V8(x), the field §(x)
will change by d6(x) and the effective conductivity — by dx*. According to (1.3),
we have

(k* + 0k%) E? = ((s(x) + ok (x)) |VO(z) + V0(z)[?)

(2.2)
= (k(x)|VO()|?) + (6x(x)|VO(2) ) + 2(x(z) VO(z) - Véh(x))

having neglected terms of order (6k)°. The first term in the right-hand side of (3.2)
equals k*E?, see (1.3), and the underlined term there vanishes, since

V - (&(z)d0(x)Vo(x)) = (36(x)V - (r(z)VO(x)))
+ (k(x) VO(z) - V§b(x)) = 0,
having taken (1.la) into account. The reason is that the field
k(x)d8(x)VEO(x) is statistically homogeneous and therefore its mean value is con-

stant.
Hence

6k*E? = (6k(z)|VO(z)[*)
= 0Ky (x1(2)|VO(@)]?) + k2 (xa2(x)|VO(2)|?) .
The latter implies

g:: El, (xi(x)|VO(z)]*), i=1,2, (2.3)

which is exactly the Bergman formula [5]. It obviously means that the mean value
of the temperature gradient square within the constituent ‘i’ is proportional to the
derivative k™ [0k, 1 = 1,2.
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3. THE INEQUALITIES FOR THE DERIVATIVES 0k*/0k;
Note first that

7 (B@P) = 77 (a@IBE@))

1 ok*  Ok®
— E(x)®) = —
+ 5 Ce@IE@)F) = 7= + 2

and hence

102
o2 =LEDN _ L1 (B@)P) - 28 (B@) + 5]
1 E(z)2 1= ok*  OKk” 3.1
=5 (|E(=)*) - = ar T omg

- 1.

Formula (3.1) provides us with the interconnection between the variance of the
temperature gradient and the partial derivatives of the effective conductivity con-
sidered, at a fixed two-phase geometry, as a function of the constituents conductiv-
ities.

To recast (3.1) into dimensionless form, recall the obvious fact that x* =
k*(k1, k2) is a homogeneous function of first order, i.e.

k*(AK1, AKk2) = AK"(K1,K2), VA >0.

This fact allows us to apply the Euler formula

oK* K ok* .
= K ’
Ok 2 9Ky

K1

l.e. . . .
oK K Ko OK

3&1 B K1 K1 3&2 '
Let us now fix the conductivity s, of the first of the constituents and introduce
the dimensionless variables

(3.2)

a==2 , a€(0,00),
K1
* (3.3)
f(a)='~$-—, f(a)ZO
1

Here f(a), for the fixed two-phase geometry under discussion, depends on the
dimensionless ratio a solely. Using (3.2) and (3.3) into (3.1) gives

oK™  OK*

2
ol = -1
€ 3"&1 6[‘82
(3.4)
K* K2 O(Kk*/Ky)
== (2 1) 2B g
K1 K1 6(&2/&1)
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ie.
;= fla) =1~ f'(a)(a-1). (3.5)
Hence any theory that predicts f(a), i.e. the effective conductivity as a function
of a automatically predicts the variance o2, since (3.4), as a consequence of the
Bergman formula (2.3), is an ezact relation.
The situation with the variance o7 of the heat flux is fully similar. In this case

we should combine (1.5) and (3.6). The final result reads
o _ala=Df(e) - f(@) (fle) = 1) 5.6

‘ f*(a)
2 2

It remains now to note that both variances o7 and o are nonnegative, as it
follows from their definitions (1.3). Together with (3.5) and (3.6), this obvious fact
yields the inequalities

flo) (fla) —1) flla)(a—-1) < fla)-1. (3.7)

«

Formula (3.7) is our generalization of the Voigt-Reuss bounds for a two-phase
heterogeneous medium. The reason to call it generalization will become clear in
the next section, where two basic consequences of (3.7) will be derived, namely,
both the Voigt and Reuss bounds on the effective conductivity.

4. SOME CONSEQUENCES OF INEQUALITY (3.7)

Recall first the well-known perturbation expansion of the effective conductivity

2

(—Z—)zl—az(%) toen (4.1)

due to Brown [6]. Here (k) = c1k1 + c2k2, [K] = &2 — &1 and ¢; is the volume
fraction of the constituent ', i = 1,2, so that ¢; + ¢ = 1. In (4.1) a2 = %clc-z,
but this fact will not be needed here, since it affects only the (a — 1)2-term in the
Taylor expansion (4.2) below.

In the dimensionless variables (3.3), Eq. (4.1) is recast as

f(a):—Z{-=1+cz(a—1)+o(|a—1|), o — 1] <« 1. (4.2)

Assume now that « > 1. Rewrite the right-hand side inequality in (3.7) in the

form af(e) q
o a
< > 1
fla)-1 " a-1" @z
and integrate the latter from 1+ ¢ to a, € > 0. This gives
fla) -1 a—1
] <Ilpn——
rlf(1+5)—1 =M
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and hence

fmy—lg[ﬂ1+a—1]g.

Choosing now € = 1 + 0 in the latter inequality yields
fla) <1+ ex(a—1), (4.3)

having taken into account (4.2) as well. Repeating the above reasoning for a <
1 produces the same result (4.3). Hence (4.3) holds for arbitrary values of the
constituents conductivities x; and k2. Using the definition (3.3) of @ and f(a)
allows us to recast (4.3) as

K" <K', K =c1Kk) + kg, (4.4)

and this is the familiar Voigt estimate upon the effective conductivity of the medium.
The treatment of the left-hand side inequality in (3.7) is fully similar. In this
case, at & > 1, we have
da df(a)
< .
ala—1) = fla)(f(a) - 1)

An elementary integration of both sides of (4.5) over the interval (1 + ¢, @) gives

(4.5)

a—1 £ fla) -1 f(l+e)-1
In o ——lnmgln——w—ln f(1+€) N

which simplifies as
ca(a—1) < fla) -1
a = fla) 7

having again taken (4.2) into account. Hence

o
a—cz(a— 1)

< f(a).

Recalling the definition (3.3), the latter can be recast as

-1

c C

Mgm,ﬂz(i+l) (4.6)
K1 K2

and this is just the familiar Reuss bound on the effective conductivity.

It is important to point out that the inequalities (3.7) are sharp, i.e. they
cannot be improved provided only the volume fractions ¢;, ¢» are known.

Indeed, if the temperature gradient is along the layers of a laminate medium,
the Voigt approximation (4.4) provides the exact value of the effective conductivity
and hence

f(a) =1+ca— 1).

The latter function turns the right-hand side of (3.7) into equality.
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Similarly, if the temperature gradient is across the layers of a laminate medium,
the Reuss value (4.6) represents exactly the effective conductivity . Then

«
a—cy(a—1)

fla) =

and this function assures equality sign in the left-hand side of (3.7).

5. DISCUSSION

Let us point out first that, since f(1) = 1,
fla) =1= f(§)(a-1), (5.1)

where £ € (1,a) or £ € (e,1), depending on whether @ > 1 or a < 1, respectively.
(This is the well-known Lagrange theorem from the elementary calculus.) Together
with the right-hand side of (3.7), Eq. (5.1) implies that for each a there exists an
“intermediate” £ € (1,a) or £ € (a, 1), depending again on whether @ > 1 or a < 1,
such that

flla) (€, &<e (5.2)

From (5.2) it follows that f”(1) < 0 and hence the function f(a) is convex in a
certain vicinity of & = 1. (This is indeed so, because the coefficient a», proportional
to f"(1), in the Taylor expansion of f(a) about & = 1 is negative, see the beginning
of Section 4.) We do not know, however, whether (5.2) suffices to claim that the
function f(«) is convex globally, i.e. f"(a) < 0 on the whole semiaxis a € (0, c0).

However, the convexity of f(a) easily follows from the well-known spectral
(pole) representation’

fla) =1-F(s), F(s)=Y_

)
B S—Sn

(5.3)

s = ) BHZO’

due again to Bergman [5] (see also [9]). Indeed, a straightforward differentiation of
(5.3) shows that f"(a) <0, Va € (0,00) (recall that B,, > 0).

The convexity of f(a) means geometrically that the function lies below each
of its tangents, i.e.

f(a) S f’(a()) (CI - aO) + f(aO) ’ Vasaﬂ € (03 00) (54)

In particular, the Voigt bound can be interpreted geometrically as the obvious fact
that the function f(a) falls below its tangent, drawn at the point a = 1, see Fig. 1.

'The authors thank D. Bergman for this observation (in a private communication).
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Fig. 1

Obviously, the inequality (5.4) reduces to the right-hand side of (3.7) if ap = 1.
It is clear, however, that (5.4) is of little practical use, because f(ap) and f'(ao)
are unknown, in general, unless g = 1.

Recall also that the convexity of f(a) can be alternatively defined by the
requirement that its graph in the interval (a;, a2) lies higher than the chord between
the points (a1, f(a1)) and (as, f(as2)), see Fig. 1. In other words, the following
inequality holds:

flen) = flea) | | enflaa) —aaflan) _ po

01 — Qi a) — Q2

Va € (ay,az), ai,as € (0,00). Hence (5.5) provides a certain lower bound on the
effective conductivity provided we have somehow measured the values of the latter
for two given values ay, ay of the ratio of the constituents conductivities. Observe,
however, that (5.5) is a lower bound only in the interval a € (a;,az). Outside this
interval (5.5) becomes an upper bound on f(a).

6. CONCLUDING REMARKS

We have derived certain inequalities, cf. (3.7), for the rate of change f'(a) of the
dimensionless effective conductivity f(a) of a binary medium when the constituents
properties are varied at fixed random constitution. The inequalities are of first
order, in the sense that they include, besides f(a) and the dimensionless ratio a
of the constituents conductivities, only the volume fractions of the constituents.
They indicate that the above-mentioned rate of change f'(«) cannot be arbitrary
for a realistic binary constitution. It is rather “guided” by the value f(a) of the
effective conductivity at any given a. Presumably, higher-order counterparts of the
inequalities (3.7) exist as well. They should provide tighter estimates for f'(a)
at the expense of including the appropriate higher-order statistical information for
the medium.
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