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0. INTRODUCTION

The genericity and set genericity, as defined by Copestake in [2], are widely
explored and have an important role in studying the structure of the enumeration
degrees.

In this paper we consider the genericity relative a set of natural numbers, which
is in fact a set n-genericity. We refer to some well-known facts in this area, most
of which can be found in [2] and [1] and can be used to prove similar properties for
the relative genericity.

Further we provide some results concerning regular enumerations of the set of
natural numbers that we use to prove a characterization theorem. Concerning the
regular enumerations, the used notions and results are taken mostly from Soskov’s
course on Recursion Theory and the author’s Master’s Thesis.

Basic notions and definitions

By w we denote the set of all natural numbers, 2w denoting the set of all even
and 2w + 1 — the set of all odd natural numbers; by [0..n — 1], where n € w, we
denote the set {z € w |z < n}. We use N to denote an arbitrary denumerable set.
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We use bijective recursive coding of pairs of natural numbers (-, -), the notation
(z1,%2,...,2) meaning (z1,(2,...,2x)), and of finite sets, where D, denotes the
finite set with code v. By ¢, 9, ... we denote partial functions from w into w
and let Gr(p) = {(z,y) | ¢(z) = y} be the graph of the function . The notation
¢(z)| means z € Dom(yp), and ¢(z)1 means z ¢ Dom(yp). The notation C is
used to denote inclusion between sets, extension between functions, w-strings or
0-1-strings, considered as finite functions.

By C'4 we denote the semicharacteristic function of a set A C w, and by x4 —
its characteristic function, where

(z) = 0, ifze€ A,
XAT) =11, ifzdA.

If each of P and @ denotes some property of natural numbers, we use the
following abbreviation:

myew [QW)&P(y)], if 3y(P(y)&Q)),
1yew[QWIPW)] = { pye. [Q)], if y(Q(y)) and ~(P(y)&Q(y)),
Ta if Vy(""Q (y))a

where pye,[Q(y)] is the least y having the property Q.

Let A, B and C... be sets of natural numbers. We use the following standard
definitions and notations:

A <. B if and only if A = ¥,(B) for some e-operator ¥,, defined as ¥,(B) =
{z | 3v((z,v) € W, & D, C B)}, where W, is the recursively enumerable set with
Godel code a. A =, B if and only if A <, B and B <. A. The enumeration degree
(e-degree) of the set A is the equivalence class Deg.(A) = {BCw | A =, B}. We
denote the e-degrees by a, b, ¢ ...

We use the standard join operation of two sets A®B = {2z | z € A}U{2z+1 |
z € B} having the property that Deg.(A ® B) is the least upper bound of Deg,(A)
and Deg.(B).

A set of natural numbers C is said to be total if its complement is e-reducible
to C,i.e. C <, C (which is equivalent to C =, C*, where we define C* = C @ C,
and thus for every set C* =, Gr(xc¢)).

1. B-GENERIC SETS

Definition 1.1. w-string is a finite function from w into w with domain an
initial segment of w. @, denotes the nowhere defined function, considered as an
empty w-string; note that length of o, is lh(o,) = px [—Ely(aw(x) =y)].

0-1-string (or 2-valued string) is an w-string «,, such that Rng(a,) C {0,1}.
For every 0-1-string «,, we define the set of = {z | a,,(z) ~ 0}.
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Definition 1.2. The set A is B-generic, for B C w, if and only if for every set
S, such that S is a set of 0-1-strings and S <, B,

3o, C xa(ow € SVVB, D au(B, €5)).

The set A is quasi-minimal over B if and only if
(1) B<. A, but A £, B; and
(2) if C is a total set such that C' <. A, then C <. B.

The set A is minimal-like over B if and only if

(1) B <. A, but A £, B; and

(2) for every partial function ¢ such that ¢ <. A, there exists a partial function
1 such that ¢ C ¥ and ¥ <. B.

In analogue to the definitions in [1], an e-degree containing such set is said to
be strongly minimal-like over B.

Here we mention some of the properties of the B-generic sets that we will
need later: A4 is B-generic if and only if A is B-generic; if A is B-generic, there is
no infinite e-reducible to B subset of A; every B-generic set A is infinite and not
e-reducible to B.

Concerning the existence of a B-generic set, a minimal-like set over any set B
and the existence of a quasi-minimal set over any set B, see [1, 2], it is proven that
for an arbitrary B-generic set A, the set A @ B is minimal-like and quasi-minimal
over B.

Theorem 1.3. Let By, By,...,By,... be a sequence of sets of natural numbers.
There ezists a set of natural numbers A, which is minimal-like over this sequence,
i. e. such that the next two conditions hold:

1) Vn(B, <. A);

2) For every partial function ¢ such that ¢ <. A, there exist a partial function
¢ and a natural number n such that ¢ C ¢ and ¢ <, Bo ® --- @ Bn.

o0
Proof. In the following proof the notation Vz P(z) is equivalent to yVz(x > y
= P(z)). We define a set A, satisfying two requirements:

(a) Vno‘;')a:((x,n) € A&z € B,), and

(b) ‘v’e(lIle(A) is a function => 3 (¥e(4) C Y&t <c Bo® ... @Bge+1)), and

build finite sets 4g C ... C A, C ..., having the property:
Vs((z,m) € As41 \ As&m < s =z € B) for all z and m.

Stage 0. Let Ap = 9.
Stage 2e + 1. Aj; is built, where s = 2e. We have two cases:
Case 1. There exists (z,n) such that z € B, and (z,n) € As;. Then we
can define Ag41 = As U {{z,n)} for the first such (z,n) = u(z,n).
Case 2. Otherwise, define Asy; = A;.



Stage 2e + 2. A, is built, where s = 2e + 1. Again we have two cases:
Case 1. There exists a finite set D, such that 4, C D, and ¥.(D,) is not
a function (i. e. 3z3y3z such that y # z& (z,y) € ¥.(D,) & (z,2) € ¥.(D,)) and
such that YtVm((t,m) € D, \ A;&m < s =t € Bp,).
Define A4 to be the least D, (i. e. having the least code v) with this property.
Case 2. Otherwise, define A, = A;.
End.

o0
Finally, define A = U Ag.
s=0
For this set we can prove the properties (a) and (b), from which our theorem
follows.

The interesting direction of the proof of (a) is (=). We can prove that

Vno‘;’)z ((z,n) € A = z € Bp). Assume it is not true, i.e. there exist n and
infinitely many zo < ... < z; < ... such that (z;,n) € A and z; € B,. Therefore
Vi;3s;((zi,n) € As, 41\ As;). But at every stage s the set A,y \ Ay is finite, then
there exist infinitely many z,,...,2,,,... from this sequence such that at stages
50 <...<s; <...wehave (z,,n) € A;, 41\ As,. But z,, € B, and then the stages
si + 1 must be even (i. e. s; + 1 = 2e; + 2), and we have Case 1, i. e. Ay, 41 = D,
where D, 2 Ay, and VtVm((t,m) € D, \ Ay, &m < s; = t € B,,). Therefore for
every s; > n if (z4,,n) € As,+1 \ As,, then x4, € By, which is a contradiction.

The proof of (b) consists in the following: supposing ¥.(A) to be a graph of
some function, at Stage 2e + 2, for s = 2e + 1 we have Case 2. Define the set
Gy = {(z,y) | 3Dy(Dy 2 As & (z,y) € ¥e(Dy) & Y{t,m)((t,m) € D, \ A; &
m < s =t € Bp,))}. Therefore the following conditions hold:

o Gy<eBy®...® By;

o Gy =Gr(y),i. e. Gy is agraph of some function ¥, since assuming it is not
true, there exist z and y; # y2 such that (z,1:1) € Gy and (z,y1) € Gy. Therefore
there exist finite sets D,, and D,,, both extending A, such that (z,y;) € ¥.(D,,)
and Y(t,m)((t,m) € D,, \ A;&m < s =t € By). Then for D, = D,, UD,,,
V¥,.(D,) is not a function and V(t,m)({t,m) € D,\A; &m < s = t€ B,), which is
a contradiction with Case 2;

o Y. (A) C Gy, since assuming there is (z,y) € ¥.(A4) \ Gy, there ex-
ists As+p 2 Ag such that (z,y) € V(Asyp) and I(t,m) ((t,m) € Agsp \ As&
m < s&t g B,,). It follows that there is 7, such that 0 < 7 < p and (t,m) €
Astitr \ Asti, and therefore m < s+ 1. Since Agyivy \ As+i # 9, we have Case 1
at Stage s+t = 2e; + 1 or Case 1 at Stage s +1 = 2¢;. But in both cases it follows
that ¢t € B,,, which is a contradiction.

This proves our proposition. 0

As a corollary of the above theorem we obtain the existence of strongly mini-
mal-like e-degree over an infinite ascending sequence of e-degrees.
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2. B-GENERIC REGULAR ENUMERATIONS

In this section we illustrate briefly some results obtained using the relative
generic regular enumerations and many of the proofs will be only sketched.

Definition 2.1. Let B C w be a non-empty set of natural numbers.

1) The total and surjective function f : w—w is called B-regular w-enumeration
if f(2w) = B, where f(2w) = {f(2z) | z € w}.

2) An w-string 7, is B-regular if 7, (2w) C B, where 7, (2w)={y | 3z (1, (2z) =
y)}-

3) The B-regular w-enumeration f is called B-generic if for every e-reducible
to B set of w-strings F the following holds:

3o, C f(ow € FVV7, D ou(r & F)).

For every non-empty set B one can iteratively build a B-generic B-regular
enumeration f at stages, using w-strings to satisfy the requirements in the definition
of f.

It is true that f £. B for every B-generic B-regular enumeration f. This
can be proved assuming f <. B and defining the e-reducible to B set of w-strings
S={r, | 7(2w) CB&7, € f}, that will lead to the contradiction.

Proposition 2.2. For every B-generic B-regqular enumeration f, for every
set R such that R <. B, R<. B, RN B # @ and RN B # @, the set f~'(R) is
B-generic.

Proof. Since f~'(R) = {z | f(z) € R}, we have that xs-1(g) = xro f. Assume
f~'(R) is not B-generic, i. e. there is an e-reducible to B set of w-strings such that

Vaw(aw Cc Xf-1(R) = Ou Q’F&Bﬂw(ﬁw 2 a, & B, € F)) (1)

Define S = {0, | 3o, (0w € F& xr o0, = ay)}, where xg 0 0, = a,, if and
only if ({h(ew) = lh(0w) &Vz < k() (0w (z) = 0 & 0u(z) € R)), therefore S is a
set of B-regular w-strings and S <. B. But f is a B-generic B-regular enumeration,
so there is 0, C f such that either o, € S or V7, D 0, (7, € S).

Assuming o, € S, there is o, € F such that xg oo, = oy, but ¢, C f and
then xg o f 2 @, i. €. &, C Xy-1(r), wWhich is a contradiction with (1). Therefore
for that o, the following holds: ,

V7, 2 0u(Tw € S). (2)

Define a,, = xr © 0, Since o, C f, then o, C xr o f = xs-1(r), and from
(1) it follows that there exists 3, such that 8, 2 a, and B, € F. Therefore
B, D xro0, = @, and Lh(B,) > lh(ay,). If we fix two elements of B — a € RN B
and b € RN B, we can define an w-string 7, such that 7, D gy, lh(r,) = lh(B.)
and Yz (lh(o,) < z < h(rw) = (Bu(z) =06 7u(2) € R)),i.e. By =XxroTw 2
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XR©0, = . Since 3, € F and xgot, = B, then 7, € S, which is a contradiction
with (b). Therefore f~!(R) is not B-generic set. 0

The next corollary follows directly from Proposition 2.2 and the properties of
relative generic sets in Section 1.

Corollary 2.3. For every B-generic B-regular enumeration f, for every set
R such that R<. B, R<. B, RNB # @ and RN B # @, the set f"'(R) ® B is

quasi-minimal over B.

Lemma 2.4. Let A be B-generic. Let R C w such that R <. B, R <. B,
RNB # @ and RN B # @. Let §, be an w-string, having the properties (1) and
(2). Then:

(1) 6. is B-regular;

(2) Vz < lh(d,) (z € A & d,(z) € R).

For every S such that S is an e-reducible to B set of w-strings, there exists an
w-string o, having the properties (a)-(d):

(a) 0w 2 du;

(b) o is B-regular;

(c) Vz < lh(o,) (z € A& o,(z) € R);

(d)o, €S V V1,(r, Do, => 7, €95).

Proof. Let us denote by a,, ~g 0, the property
Vz € Dom(o,)(aw(z) =0 o.(z) € R),

where a,, is a 0-1-string, o, is an w-string and R C w.

Define the set P = {ay, | Jow (0w € S & 0, 2 6, & 0,(2w) C B & lh(a,,) =
lh(o,) & @, ~R 0,)} that is e-reducible to B. Since A is B-generic, we have two
possibilities:

Case 1. 3a, C x4 (a, € P). In this case there exists o, — a B-regular
extension of d, in S with the same length as «,, such that a, ~p o,. But
a, C x4, then

Vz < lh(o,)(z € A & 0,(z) € R),

i. e. o, has the properties (a)—(d).
Case 2. 3a,, C xoV0, 2 aw(By € P). In this case
3o C xa(lh(ds) < Th(ow) & VB, 2 aw(B, € S)).

Fix two elements: a in RNB # @ and bin RN B # @. Now we can define an
w-string o, such that o, O 4, and lh(o,) = lh(a,) and for the arguments z,
where lh(é,) < z < lh(ay), we have o,(z) ~ a if a,(z) = 0; and o,(z) ~ b if
a,(z) = 1. Since §, is B-regular, then o, is B-regular, too. And from (2) and
a, C xa follows that Vz < lh(o,,) (z € A & 0,(z) € R). So, g, has the properties
(a)-(c). It remains to verify (d).
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First, notice that a,, ~r 0,,. Assume that there exists 7, such that 7, D o, D
4., and 7, € S (then 7, is B-regular). Therefore there exists a 0-1-string 8, such
that 8, 2 a, and lh(B,) = lh(7,), and for the arguments lh(a,) < = < lh(T,)
we have B,(z) ~ 0 if ,(z) € R, and B.(z) ~ 1 if 7,(z) € R. Since o, ~g 0y,
for this 3, it follows that Vz < lh(B,) (Bu(z) = 0 7.(z) € R),i.e. By ~Rr Tw,
and therefore g3, € P, which is a contradiction with Case 2. Then the property (d)
holds.

In both cases we have found an w-string satisfying (a)-(d). O

Proposition 2.5. Let A be B-generic and R be such that RNB # &, RN B #
@, R <. B and R <. B. There erists a B-generic B-reqular enumeration f such

that A = f~'(R).

Proof. Since f~Y(R) = {z | f(z) € R}, A = f~!(R) is equivalent to VYz(z €
A& f(z) €R).

We build a sequence of w-strings 6% C ol C...0% C ... such that each o¢ has
the properties (1) and (2):

(1) o3 is B-regular, i.e. 04 (2w) C B;

(2) Vz < lh(cd) (z € A & ol(x) € R).

If (1) holds for all o¢, then f(2w)C B. If (2) holds for each ¢9, then from (3)
it follows that 4 = f~(R).

At Stage (2e + 1) we insure f to be total, surjective and f(2w) C B, i. e.

(3) Vg = 2e + 1 (lh(c%™) > Ih(0)));

(4) Vz € w 3¢ =2e +1 (z € Rng(al));

(5) Vz € B3g=2e+1 (z € 0 (2w)).

At Stage (2e + 2) we insure f to be B-generic, i. e.

(6) Vg = 2e + 2 ( if ¥.(B) is a set of B-regular w-strings, then
(08 € W(B) V7, 2 ot (r. € ¥e(B))) ).

Stage 0. Define 0 = 2.

Stage 2e + 1. At this stage o is built with ¢ = 2e.

Let zo, =1, z2 and z3 be the first numbers, greater or equal to lh(c?), that
belong to 2w N A, (2w + 1) N A, 2wN A4 and (2w + 1) N A, respectively. Such z;
exist, because assuming, for example, Vz (z > lh(0%) & = € 2w = = € A), the set
Co = {z | z > lh(0%) & z € 2w} is infinite and recursively enumerable and Cy C A,
which is a contradiction with the properties of the B-generic sets.

Let m = max{zo, Z1,Z2,Z3}. Define 09! such that 09! D 0% and lh(c%t!) =
m + 1 > lh(c), and for the arguments lh(cf) < & < m define as follows:
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((uwyly€e RN Bl[ly¢ Rng(od)], z€2w&z€ A,
ryly€ RN Blly¢ Rng(al)], z€2w&adA,
nyly € Ry ¢ Rng(ad)], TE2w& TE A,

\ yly € Ry ¢ Rng(a?))], 2wl g A

Stage 2e + 2. At this stage oZ is built with ¢ = 2e + 2.

Define G = {0, | 0,(2w) C B & ¥z < lh(o,) (z € A & ou(z) € R)}, i.e.
G = {0, | for g, (1) and (2) hold true}. We have two possibilities:

Case 1. 3o, D o (aw € G & (0, € U(B)VVr, D ou(r, & \Pe(B)))).
Define 69! to be the least such o,,.
Case 2. Yo, 2 of (aw €G = (0w € Ye(B) & 37, Doy, (1, € ‘Ile(B)))).

+1
Define ¢4** = oJ.
End.

o8t (z) =«

- oo

Define f = U al.

q=0

Using an induction on g, one can prove that for each o4 the conditions (1) and
(2) hold. At Stage 2e + 1 we satisfy the requirements (3)—(5). It follows that f is
a B-regular enumeration and A = f~1(R).

From (1) and (2) for o,, it follows that for every e € w, if ¥.(B) is a set of
B-regular w-strings, then there exists o,,, having the properties (a)-(d) of Lemma
24,i.e o, 2 of, o, is B-regular, Vz < lh(o,) (x € A & o,(z) € R) and
(0w € Ye(B)VV7, (1w 2 04 = 7, € e(B))). This means that if ¥.(B) is a set
of B-regular w-strings, at Stage 2e + 1, we never have Case 2, i. e. the requirement
(6) is satisfied.

Therefore our f is a B-generic B-regular enumeration such that A = f~1(R).

O

Theorem 2.6. Let B be a non-empty set of natural numbers. Any set A C w is
B-generic if and only if there exist a set R and a B-generic B-regular enumeration
f such that R <, B and R <. B, and A = f~1(R).

Proof. (<) The Proposition 2.2.

(=) If A is B-generic and there exist at least two different elements in B (oth-
erwise B is recursively enumerable and therefore e-equivalent to a set containing at
least two different elements) a # b. Then for R = {a} the conditions in Proposition
2.5 hold and therefore there exists a B-generic B-regular enumeration f such that
A = f7!(R), and for the existence of B-generic B-regular enumeration we need
only B # @. O
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