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Let a1, ..., ar be positive integers and m = Z(a; — 1)+ 1. For a graph G the symbol
i=1

G — (a1,...,ar) means that in every r-colouring of the vertices of G there exists a

monochromatic a;-clique of colour %, for some i, 1 < i < r. In this paper we consider

the graphs G — (a1,...,a,) (vertex Folkman graphs) with cl(G) < m - 1.
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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V(G) and E(G),
respectively. We say that G is an n-vertex graph, when |V (G)| = n. For v € V(G)
we denote by Ad(v) the set of all vertices adjacent to v. We call a p-clique of G
a set of p vertices, each two of which are adjacent. The biggest natural number p
such that the graph G contains a p-clique is denoted by cl(G) (the clique number
of G). A set of vertices in a graph G is said to be independent if no two of them are
adjacent. The cardinality of any largest independent set of vertices in G is written
as a(G) (the independence number of G).

If W C V(QG), then: G[W] is the subgraph induced by W and G — W is the
subgraph induced by V(G) \ W.

In this paper we shall use also the following notations:

x(G) — the chromatic number of Gj
7(G) — the maximum number of independent edges in G
(the matching number of G);
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G — the complement of graph G

K, — the complete graph of n vertices;
P, — the path of n vertices;

C, — the simple cycle of n vertices.

By C, =vy,...,v, we denote that |
V(Cn) = {v1,...,vn} and E(Cp) = {[vi,vit1], i =1,...,n =1, [v1,v,]}.

Let G and G2 be two graphs without common vertices. We denote by G, +G»
the graph G for which V(G) = V(G,)U V(G2) and E(G) = E(G,)U E(G2) U E',
where E' = {[v1,v2], v1 € V(G1), v2 € v(G2)} |

2. THE VERTEX FOLKMAN GRAPHS

Definition. Let G be a graph, a,,...,a,, r > 2, be positive integers and
VIG)=Wu...uV,, VinV;=@, i#j,

be an r-colouring of the vertices of G. This r-coloring is said to be (ay,...,a,)-free
if for allz € {1,...,r} the set V; contains no a;-clique. The symbol G - (ay,...,a,)
means that every r-coloring of V(G) is not (ay,...,a,)-free.

It is obvious that:

Proposition 1. If m = Z i—1)+1, then K, = (a1,...,a,).
r=1
Proposition 2. For any r > 2.
G—-(2...,2) <= x(G)>r+1.
N —
T

Proposition 3. Let G — (ay,...,a,) and {b1,...,b0:} C {a1,...,ar}. Then
G—)(b}_,...,bt).

Proposition 4. Let A C V(G) be an independent set of G and G, = G — A.
Let also G — (a1,-..,a,), where a; > 2 for some i € {1,...,7}. Then G, —

(ar,...,a; = 1,...a.).

Proof. Assume the opposite and let V1U. ..UV, be an (a,,...,a;—1,. ,ar) free
r-colouring of V(G;). Then V3 U...U(V;UA)U...UV, is an (al, , @iy . . ., Qy)-free
r-colouring of V(G), which is a contradlctlon

Proposition 5. For any permutation ¢ of the symmetric group S, we have
G = (ar,...,a;) = G2 (apqa)--»8(r))-

Let ay,...,a,, r > 2, be positive integers. Then we put

m = Z (¢; —~1)+1 and a=max{ai,...,a,}. (1)
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We put also
H(ai,...,a:;9) ={G:G = (ai,...,a,;) and cl(G) < ¢}
F(ai,...,a;;q) =min{|V(G)| : G € H(a,...,a,;9)}

It is clear that if cl(G) < a, then there exists an (ay,...,a,)-free r-colouring
of V(G). Folkman has proved in [3] that if ¢ > a + 1, then H(ay,...,a,;q) # @.
The graphs of H(ai,...,ar;q), ¢ > a+1, will be called the vertex Folkman graphs.

The numbers F(ay,...,a,;q) are called vertex Folkman numbers.
It is clear that K, has an (ai,...,a,)-free r-colouring of V(K,,—1). It is
clear also that from x(G) < m — 1 it follows that G has an (ay,...,a,)-free vertex

r-colouring. Therefore we have the following:

Proposition 6. If G = (a1,...,a,), then x(G) > m.

Since Km — (@1,...,a,) and Kp—1 4 (a1,...,a.), if ¢ > m + 1, we have

F(ay,...,ar;q) =m.
For the numbers F(ay,...,a,;m) the following facts are known:

Theorem A ([6]). Let ay, a, ..., ar, v > 2, be positive integers and m and
a satisfy (1). If m > a+ 1, then F(ay,...,a,;m) =m + a.

Theorem B ([7]). Let a1, a3, ..., a,, r > 2, be positive integers and m
and a satisfy (1). If m > a+1, G € H(ay,...,ar;m) and [V(G)| = m + a, then
G=Kn-a1+ C'2a+1-

In the present paper we consider the vertex Folkman numbers F(ay,...,a,;m—

1), m>a+2.

From Proposition 5 follows that F'(ay,...,a,;q) is a symmetric function and
thus we may assume that a, <a < - < ar. Note that if a; = 1, then
F(ai,...,a;q) = F(aa,...,ar;q). Hence we may assume also a; > 2,i=1,...,r.

Theorem A yields F(2,2;3) = 5.

In the special case a; = --- = a, =2, r > 3, we have:

Theorem C. For any r > 3 it is true that

11, r=3orr=4
F(2,...,2,r)_{r+5’ > 5.

r

Mycielski, [8], presented an 11-vertex graph G € H(2,2,2;3), proving that
F(2,2,2;3) < 11. Chvatal, [2], show that Mycielski’s graph is the unique 11-
vertex graph in the class H(2,2,2;3) and hence F(2,2,2;3) = 11. The inequality
F(2,2,2,2;4) > 11 is proved in [11] and the inequality F(2,2,2,2,;4) < 11 is
proved in [10] and [15] (see also [4] and [12]). The equality F(2,...,2;7) =r + 5,

r > 5, is proved in [10], [15] and later in [7]. If r > 5, then K,_5 + C5 + C; is the
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unique (r + 5)-vertex graph in H(2,...,2;7), [10]. The class H(2,2,2, 2;4) contains
S—— ,

56 11-vertex graphs, [4]. In [4] it is proved also that F'(2,2,2,2;3) = 22. This is
the unique known vertex Folkman number F(a;,...,a,;q) for which ¢ <m — 2.

3. A LOWER BOUND ON THE VERTEX FOLKMAN NUMBERS
F(ay,...,a,;;m—1)

Theorem 1. Let ai, ..., a, be positive integers. Let a and m satisfy (1) and
m > a+ 2. Then
F(ay,...,ar;m—1)>m+a+2.

Proof. According to Proposition 5 we may assume that a; < a3 <:-- < ar = a.
Let G € H(ay,...,a,;m—1). Let also A be an independent set of G, | 4| = a(G) and
G, = C — A. It follows from m > a + 2 that a,—; > 2. According to Proposition 4,
G, € H(ay,...,a,—1—1,a,;m—1). According to Theorem A, [V(G1)] 2 m+a-1,
ie. |[V(G)| > m+a—1+a(G). Since a(G) > 2, it follows that [V(G)| 2 m+a+1.
We prove that |V (G)| # m+a+ 1. Assume the opposite. Then [V(G1)| =m+a-1
and a(G) = 2. According to Theorem B, G; = Km—a-24+C2a+1- Let A = {u1,uz},
V(Km—a-2) = {21, -+ Zm-a—2} and C2a41 = V1,2, ..., V2a+1-

Case 1. Ad(u;) 2 V(Km—a—2), © = 1,2. In this case x(G) = x(G1) =m — 1,
which contradicts Proposition 6.

Case 2. Ad(uy) 2 V(Km-a-2) and Ad(uz) 2 V(Km-a—2). Let uy and z; be
not adjacent. It follows from cl(G) < m — 2 that Ad(uz) 2 V(C2a41). Hence we
may assume that us and v; are not adjacent. The equality

V(G) = {z1,u1} U {22} U.. .U {zm-a—2} U {ug,v1} U{v2,03}U...U {von, Van+1}
implies x(G) < m — 1, which contradicts Proposition 6.
Case 3. Ad(u;) 2 V(Km-a-2), t = 1,2. We put
M={v_1:i=1,...,p— 1} CV(Caat1)-
It is clear that M is an (a — 1)-clique. We prove that
M ¢ Ad(u;), i=1,2. (2)
Assume the opposite and let M C Ad(uy). From cl(G) <m -2, {u1,v24-1,V24} is

an independent set, which contradicts a(G) = 2.
We put

V, — V(Km—-a—2) ) {v2a+l:v2a’v2a-l)v2a—-2}a G, = G[V’L

Vrl = V(62a+l) - {'U'2a+1av2ayv2a—l,v2a—2}, Ve = V,f U {uhu?}-

r—1
Obviously, x(G') = m —a = ¥ (a; — 1). This equality implies that there exists
i=1

an (ay,...,0a,-1)-free (r — 1)-colouring V1 U... U Vo of V(G'). Since M is the
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unique (a — 1)-clique in V, from (2) follows that V; contains no a-cliques. Hence
VU...UV, isan (a,...,a,)-free r-colouring of V(G), which is a contradiction.

Corollary. F(4,4;6) > 13.

In [13] it is proved that F'(4,4;6) < 14, but the exact value of F(4,4;6) is
unknown.

4. ON THE NUMBERS F(3,p;p+ 1) AND F(2,2,p;p + 1)

Lemma 1. Let V' CV(Capy1), V| =m and G = Copy1[V']. If m < 2p+ 1,

m

then cl(G) > | .
Proof. 1t follows from m < 2p + 1 that G is a subgraph of the graph P, (the
path of 2p vertices). Hence x(G) < 2. Let V(G) = V1 U V,, where V; and V> are

independent sets of G. Then a(G) > max{[V4]|,|Vz|}. Hence a(G) > [%1, ie.

m
Let C2p+1 =U1,V2,. -3, V2p41, P Z 3, and M1 = V(C2p+1) - {‘Ul,’vzp_l,’vgp_g}.
The map o defined by o(vi) = viy1, 1 = 1,...,2p, and o(v2p4+1) = v; is obviously
an automorphism of Capy1. We put M; = o*~ (M), i=1,...,2p+ 1. We denote
by I, the extension of Cyp+1 by adding the new vertices us, ..., U2p+1, €ach two
of which are not adjacent and such that Ad(u;) = M;,i=1,...,2p+ 1. The graph
I'3 is given on Fig. 1. This graph is published in [9].

Theorem 2. For any p > 3 we have I', € H(3,p;p + 1).

Proof. Since Caopi1[Mi] = Ka + Pap_y, cl(Cops1[Mi]) = p — 1. Hence
c(l'p) = p. _

Let Vi UV, be the 2-colouring of V(I'p). We put V] = V(C2p41) NV, G; =
Cop+1[V}], i = 1,2. Assume that cl(G;) < 3 and cl(G2) < p. Lemma 1 and
cl(G1) < 3 imply (V| € 4. Lemma 1 and cl(G2) < p yield |V5| < 2p - 2, i.e.
V(| > 3. So, |V{| =3 or |V]| = 4.

Case 1. |V{| = 3. Since cl(G;) < 3, V{ contains two non adjacent vertices.
Hence we may assume that vy, vy € V{. We put w = V{ = {v1,v2} and Q = {vap4 :
k=1,...,p}. Since Q is a p-clique and cl(G3) < p, we have w € Q.

Subcase la. w € Q — {vap—1,V2p+1}. If us € Vi, then {uy,v;,w} is a 3-clique
in Vi. Let up € Vo. We put Q' = {vor : k =2,...,p—1}. It is clear that Q' is a
(p—2)-clique. Since @' C Ad(uz) and vop4+1 € Ad(uz), Q' U{vopi1,us2} is a p-clique
in Vg.

Subcase 1b. w = vop_y. If upp € V4, then {v1,us,,v9p-1} is a 3-clique in Vj.
Let U2y € V2. We put Q" = Q - {'Uzp_l,’vgp_a}. Since Q" U {Uzp_z} C_: Ad(UQp),
Q" U {vp_2,usp} is a p-clique in V5.
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Fig. 1. Graph I'3

Subcase 1c. w = vgp41. This subcase is equivalent to w = v3 in subcase la.

Case 2. |V{| = 4. From cl(G;) < 3 and a(G,) = 2 it follows that E(G;)
contains two edges e;, ez without common vertex. Hence, we may assume that
e1 = {v1,v2} and e; = {v;,v;4;} for some i € {3,...,2p}.

Subcase 2a. 1 =2k, 2 < k <p. Let ug € Vi. If k = 2, then {ug,v2,v5} is a
3-clique in V;. If 3 < k < p, then {u4,vok,v2} is a 3-clique in V;. Let uq € V5.
Weput Q1 = {vaiq1 sl =1,...;k—1}and Qe = {vu : l=k+1,...,p}, k < p.
If kK = p, then Q2 = @. It is clear that @ = Q1UQ2is a (p— 1)-clique. Since
Q C Ad(us), QU {u4} is a p-clique in V3.

Subcase 2b. i =2k~1,2 < k < p. Let m = 2p—2k+3. Then 6™ (vo—1) = vy,
o™ (var) = V2, 6™(V1) = Um41, 0™ (V2) = V42 (the map o is defined above). Since
m is an odd number, the subcase 2b is equivalent to the subcase 2a.

Theorem 3. If p > 3, then
2p+4 < F(3,p;p+1) <dp+2. (3)
Proof. From Theorem 2, F(3,p;p+ 1) < |V(I['p)| = 4p + 2. The lower bound
in (3) has been proved in Theorem 1.

The inequality F'(3,3;4) < 14 is proved in [9]. The work [16] provides a
computer proof of the inequality F'(3,3;4) > 14 and thus F(3,3;4) = 14. In [13] it
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is proved that F'(3,4; 5) = 13. The exact value of F(3,p;p+1), p > 5, is unknown.

Theorem 4. If p > 3, then
2p+4< F(2,2,p;p+1) <4p+2. (4)

Proof. The lower bound in (4) has been proved in Theorem 1. Since I') = (3, p)
implies Fp - (212,17)’ we have F(2,2,p;p+ 1) < 4p + 2.

In [14] it is proved that F'(2,2,4;5) = 13. From Theorem 3, 10 < F(2,2,3;4) <
14. The exact value of F(2,2,3;4) is unknown.

5. ON THE NUMBERS F(2,...,2,p;p+7 — 1)
e’

r

We put
F(27 .,2,p;p+r - 1) = FT‘(2’p)’
[ —

M
H(2,...,2,p;p+r1—1)= H.(2,p).
s, e

r

Theorem 5. Let G € H(2,2,p;p + 1) = H(2,p). Then for any r > 2,
KT—'2 + G 6 Hr(z,p).

Proof. It follows from' cl(G) < p + 1 that cl(K,-2 + G) < p+r — 1. We prove

that

Kr—2+G_)(2:°"a2ap) (5)
N —’

by induction on r. The base r = 2 is clear, since G € H3(2,p). Assume that r >3

and

K,-._3+G—)(2,...,2,p). (6)
S —rt

r—1
Let Vi U...UV,41 be an (r 4 1)-colouring of V(K,-2 + G). Let w € V(K,-2) and
Ko+ G = {w}+ (K3 + Q). f V;NV(K,_3 + G) = @ for some i, then from
(6) it follows that Vi U...U V.4 is not (2,...,2,p)-free. Let
VinV(K,_3+G)# 2, i=1,...,r+1. (7)

Assume that V;, i = 1,...,r, are independent sets. From (7), w g Vi, i =1,...,r.
Hence w € Vrg1. Let V= Vigy \ {w}. Then ViU... UV, U(V; UV/.,) is an
r-colouring of V(K ,_3 + G). From (6), V; UV, contains a p-clique. Since V; is
an independent set, V,, ; contains a (p — 1)-clique. Hence V;.1, contains a p-clique.
Thus, (5) holds.

Theorem 6. For any p > 3 and r > 2, one has
2p+1+2< Fo(2,p) <4dp+r. (8)
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Proof. Theorem 2 yields I'y, € H(2,2,p; p+1). From Theorem 5 it follows that
Ky 2+ T}, € Hy(2,p). Hence F.(2,p) < 4p + r. The lower bound in (8) follows
from Theorem 1.

Theorem 7. For any r > 2, one has

r+10 < F(2,4) < r +11. (9)

Proof. Consider the 13-vertex graph @ (the complementary graph Q is given
on Fig. 2). It is proved in [14] that Q € H(2,2,4;5). From Theorem 5, K,_»+Q €
H,(2,4). Hence F,.(2,4) < r+11. The lower bound in (9) follows from Theorem 1.

6. ON THE NUMBERS F(3,...,3,p;2r +p— 1)
| S

r

We put
F@Q,....,3,p2r+p~1) = F.(3,p),
e —r’
T
H(3,...,3,p;2r + p—1) = H,(3,p).
|

T

Theorem 8. Let G € H(3,p;p+ 1) = Hy(3,p). Then for any r > 1,
K2r—2 + G € Hr(3)p)

Proof. From cl(G) < p+ 1 we have cl(K3,_2 + G) < 2r + p— 1. We prove
K2r—2+G — (3’-“’3’1)) (10)
——r
T

by induction on r. The base r = 1 is clear, since G € H;(3,p). Assume that r > 2
and
Kor_a+G—(3,...,3,p). (11)
1
Let V1 U...UV,4; be an (r + 1)-colouring of V(Ks,_5 + G) and suppose that
each V;, 1 =1,...,r, contains no 3-cliques. (12)
Let Kop—24+G = Ko+ (Kar—4+G), where V(K,) = {a,b}. T VNV (K3 4+G) = @
for some i, then from (11) it follows that V; U...U V.4, is not (3,...,3, p)-free.
Suppose that
VinV(Keyr4+G)# 2, i=1,...,7+1. (13)
Case 1. a,b € V; for some 7 € {1,...,r}. It follows from (13) that V; contains
a 3-clique, which contradicts (12).
Case 2. a € V;, be Vj, i # 7, 1,5 € {1,...,r}. We may assume that a € V),
beVy, Weput V/{ =V —{a}, Vi = Vo - {b}. From (12), V{ and V; are
independent sets. Hence V] UV, contains no 3-cliques. Consider an r-colouring
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(Vy UVa)UVaU...UVryy of V(Kzr—g + G). It follows from (11) and (12) that
V,41 contains a p-clique.

Case 3. a € Vi, i #r+ 1 and b € V,.;;. We may assume that a € V,.. We put
V! = Ve —a, Vi = Veyr — {b}. From (12), V! is an independent set. Consider an
r-colouring ViU...UV,_1U(V}UV/,,) of V(K2r_4+G). By (11) and (12), VUV,
contains a p-clique. Since V} is independent, V,,; contains a (p — 1)-clique. Hence
V,41 contains a p-clique.

Case 4. a,b € Viyy. Weput V| = Vo) — {a b}. Consider an r-colouring
ViuU...U(V:UVi,). From (11) and (12), V; UV, contains a p-clique. By (12),

7, contains a (p — 2)-clique. Hence V;4; contains a p-clique. Thus, (10) holds.

Theorem 9. Let p >3 andr > 1. Then
20+ 2r +2 < F,(3,p) <4p+ 2r. (14)
Proof. By Theorem 2 and Theorem 8, K, 2 +T'p € H.(3,p). Hence F;.(3,p) <
4p + 2r. The lower bound in (14) follows from Theorem 1.

Theorem 10. There holds
2r+ W0 < F.(3,4)<2r+11, r>1. (15)

Proof. The lower bound in (15) follows from
Theorem 1. Consider the 13-vertex graph @ (see
Fig. 2). It is proved in [13] that Q@ € H,;(3,4).
According to Theorem 8, Ko,_2 + Q € H,(3,4).
Hence F,(3,4) < 2r + 11.

Theorem 11. Let r > 2. Then

F.(3,3) = F(3,...,32r +2) < 2r + 10.
et
r41

Proof. We consider the graph @, which com- Fig. 2. Graph O
plementary graph Q is given on Fig. 2. Obviously,

a(Q) = 2 and it is true that cl(Q) = 4, [18]. We prove K; + Q € H(3,3,3;6) =
H,(3,3). From cl(Q) = 4 it follows that cl(K; + Q) = 5. Let Vi UV, U V3 be a
3-colouring of V(K; + Q) and V(K,) = {w}. We may assume w € V;. Assume
also that V; contains no 3-cliques. Then V{ = V] — {w} is an independent set of Q.
From a(Q) = 2 it follows |V/| < 2. Hence either |V2| > 6 or |[V3] > 6. Let V2| > 6
and G = Q[V»]. It is clear that &(G) = 2. From a(G) = 2 and |V2| > 6 it follows
cl(G) > 3, [18], i.e. V5 contains a 3-clique.

So, K1+ Q — (3,3,3) and cl(K; + Q) = 5. Hence K; + Q € Ho(3,3). By
induction on 7 it follows Kor—4 + (K; + Q) € Hy(3,3) (see the proof of Theorem
8). Hence F,.(3,3) < 2r + 10.
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7. ANEW PROOF OF THEOREM B

B. Toft has conjectured that if G is a (2p + 1)-vertex graph, o(G) = p and
(G — {u,v}) = a(G) for all u,v € V(G), then G = Capy1. This conjecture
is verified in [17] and [5] (see problem 8.26, p. 58). The proof in [5], actually,
establishes the following stronger statement:

Theorem D. Let G be a (2p + 1)-vertez graph, a(G) = p, a(G —v) = a(G)
for all v € V(G), and oG — {u,v}) = a(G) for any pair u,v adjacent vertices.
Then G = Copy.

Theorem D is proved also in [7]. In the proof of Theorem B we shall use the
following;:

Lemma 2. Let the graph G be such that cl(G — v) = cl(G) for all v € V(G).

Then w(G) > cl(G).
This lemma is proved in [17] (see also problem 8, p. 302, in [1]).

The proof of Theorem B. According to Proposition 5 we may assume that
a; < -+ < ar = a. We prove Theorem B by induction on m. By the inequality
m > a+ 1, the minimal admissible value of m is a + 1. The base of the induction
is then m = a+ 1. From m = a + 1 it follows that a; = --- = a,_, = 1,
ar-1 = 2, and cl(G) = a. According to Proposition 3, G - (2,a). By G = (2,a),
c(G) = (G —v) Yv € V(G) and cl(G — {u,v}) = cl(G) for each pair u,v non
adjacent vertices, i.e. the graph G satisfies the conditions of Theorem D. Hence
-G— = C2a+1, ie. G = 62a+1.

Let m > a+ 2. Let L be a graph such that V(L) = V(G), E(L) 2 E(G) and
cl(L) =m — 1. It is clear that L — (a1,...,a,). We prove that cl(L — v) < cl(L)
for some vo € V(L). Assume the opposite. According to Lemma 2, we have
m(L) > m — 1. Hence

x(L) <m -1+ ([V(L)|-2(m-1)) =a+1.

From m > a + 2 it follows x(L) < m — 1. This contradicts Proposition 6.

So, Jvg € V(L) such that cl(L—vp) < (L) =m—-1. Bym > a+2,a,_; > 2.
According to Proposition 4, L — v9g — (a}....,8,—) — 1,a,;). Hence L — vy €
H(ay,...,ar,—1 — 1,a,;m — 1). By the inductive hypothesis, L — vg = Kpm—q—2 +
Caq+1- The vertex vg is adjacent to each vertex of V(Kpm—q—2 + Caat1) (otherwise,
x(L) < m, which contradicts Proposition 6). Therefore, L = K,_q—1 + C2a+1-
Since each proper subgraph of K,;,—q—1 +C2441 has an (ay, ..., a,)-free r-colouring
of the vertices (see (7], Proposition 3), we have G = K, _q_; + Caq41.

The proof of Theorem B is complete.
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