ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 94, 2000

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"
FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 94, 2000

ON A CLASS OF VERTEX FOLKMAN GRAPHS

NEDYALKO NENOV

Let a_1, \ldots, a_r be positive integers and $m = \sum_{i=1}^r (a_i - 1) + 1$. For a graph G the symbol

 $G \to (a_1, \ldots, a_r)$ means that in every r-colouring of the vertices of G there exists a monochromatic a_i -clique of colour i, for some $i, 1 \le i \le r$. In this paper we consider the graphs $G \to (a_1, \ldots, a_r)$ (vertex Folkman graphs) with cl(G) < m-1.

Keywords: vertex Folkman graphs, vertex Folkman numbers Mathematics Subject Classification 2000: 05C55

1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges. The vertex set and the edge set of a graph G will be denoted by V(G) and E(G), respectively. We say that G is an n-vertex graph, when |V(G)| = n. For $v \in V(G)$ we denote by Ad(v) the set of all vertices adjacent to v. We call a p-clique of G a set of p vertices, each two of which are adjacent. The biggest natural number p such that the graph G contains a p-clique is denoted by cl(G) (the clique number of G). A set of vertices in a graph G is said to be independent if no two of them are adjacent. The cardinality of any largest independent set of vertices in G is written as $\alpha(G)$ (the independence number of G).

If $W \subseteq V(G)$, then: G[W] is the subgraph induced by W and G - W is the subgraph induced by $V(G) \setminus W$.

In this paper we shall use also the following notations:

- $\chi(G)$ the chromatic number of G;
- $\pi(G)$ the maximum number of independent edges in G (the matching number of G);

 \overline{G} — the complement of graph G;

 K_n — the complete graph of n vertices;

 P_n — the path of n vertices;

 C_n — the simple cycle of n vertices.

By $C_n = v_1, \ldots, v_n$ we denote that

$$V(C_n) = \{v_1, \dots, v_n\}$$
 and $E(C_n) = \{[v_i, v_{i+1}], i = 1, \dots, n-1, [v_1, v_n]\}.$

Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[v_1, v_2], v_1 \in V(G_1), v_2 \in v(G_2)\}$

2. THE VERTEX FOLKMAN GRAPHS

Definition. Let G be a graph, $a_1, \ldots, a_r, r \geq 2$, be positive integers and $V(G) = V_1 \cup \ldots \cup V_r, \quad V_i \cap V_i = \emptyset, \ i \neq j$,

be an r-colouring of the vertices of G. This r-coloring is said to be (a_1, \ldots, a_r) -free if for all $i \in \{1, \ldots, r\}$ the set V_i contains no a_i -clique. The symbol $G \to (a_1, \ldots, a_r)$ means that every r-coloring of V(G) is not (a_1, \ldots, a_r) -free.

It is obvious that:

Proposition 1. If
$$m = \sum_{r=1}^{r} (a_i - 1) + 1$$
, then $K_m \to (a_1, ..., a_r)$.

Proposition 2. For any $r \geq 2$

$$G \to (\underbrace{2, \dots, 2}_{r}) \iff \chi(G) \ge r + 1.$$

Proposition 3. Let $G \to (a_1, \ldots, a_r)$ and $\{b_1, \ldots, b_t\} \subseteq \{a_1, \ldots, a_r\}$. Then $G \to (b_1, \ldots, b_t)$.

Proposition 4. Let $A \subseteq V(G)$ be an independent set of G and $G_1 = G - A$. Let also $G \to (a_1, \ldots, a_r)$, where $a_i \geq 2$ for some $i \in \{1, \ldots, r\}$. Then $G_1 \to (a_1, \ldots, a_i - 1, \ldots a_r)$.

Proof. Assume the opposite and let $V_1 \cup ... \cup V_r$ be an $(a_1, ..., a_i - 1, ..., a_r)$ -free r-colouring of $V(G_1)$. Then $V_1 \cup ... \cup (V_i \cup A) \cup ... \cup V_r$ is an $(a_1, ..., a_i, ..., a_r)$ -free r-colouring of V(G), which is a contradiction.

Proposition 5. For any permutation φ of the symmetric group S_r we have

$$G \to (a_1, \dots, a_r) \iff G \to (a_{\varphi(1)}, \dots, a_{\varphi(r)}).$$

Let $a_1, \ldots, a_r, r \geq 2$, be positive integers. Then we put

$$m = \sum_{i=1}^{r} (a_i - 1) + 1$$
 and $a = \max\{a_1, \dots, a_r\}.$ (1)

We put also

$$H(a_1, \ldots, a_r; q) = \{G : G \to (a_1, \ldots, a_r) \text{ and } cl(G) < q\}$$

 $F(a_1, \ldots, a_r; q) = \min\{|V(G)| : G \in H(a_1, \ldots, a_r; q)\}$

It is clear that if cl(G) < a, then there exists an (a_1, \ldots, a_r) -free r-colouring of V(G). Folkman has proved in [3] that if $q \ge a + 1$, then $H(a_1, \ldots, a_r; q) \ne \emptyset$. The graphs of $H(a_1, \ldots, a_r; q)$, $q \ge a + 1$, will be called the vertex Folkman graphs. The numbers $F(a_1, \ldots, a_r; q)$ are called vertex Folkman numbers.

It is clear that K_{m-1} has an (a_1, \ldots, a_r) -free r-colouring of $V(K_{m-1})$. It is clear also that from $\chi(G) \leq m-1$ it follows that G has an (a_1, \ldots, a_r) -free vertex r-colouring. Therefore we have the following:

Proposition 6. If $G \to (a_1, \ldots, a_r)$, then $\chi(G) \geq m$.

Since $K_m \to (a_1, \ldots, a_r)$ and $K_{m-1} \not\to (a_1, \ldots, a_r)$, if $q \ge m+1$, we have $F(a_1, \ldots, a_r; q) = m$.

For the numbers $F(a_1, \ldots, a_r; m)$ the following facts are known:

Theorem A ([6]). Let $a_1, a_2, \ldots, a_r, r \geq 2$, be positive integers and m and a satisfy (1). If $m \geq a+1$, then $F(a_1, \ldots, a_r; m) = m+a$.

Theorem B ([7]). Let $a_1, a_2, \ldots, a_r, r \geq 2$, be positive integers and m and a satisfy (1). If $m \geq a+1$, $G \in H(a_1, \ldots, a_r; m)$ and |V(G)| = m+a, then $G = K_{m-a-1} + \overline{C}_{2a+1}$.

In the present paper we consider the vertex Folkman numbers $F(a_1, \ldots, a_r; m-1)$, $m \ge a+2$.

From Proposition 5 follows that $F(a_1, \ldots, a_r; q)$ is a symmetric function and thus we may assume that $a_1 \leq a_2 \leq \cdots \leq a_r$. Note that if $a_1 = 1$, then $F(a_1, \ldots, a_r; q) = F(a_2, \ldots, a_r; q)$. Hence we may assume also $a_i \geq 2$, $i = 1, \ldots, r$.

Theorem A yields F(2,2;3) = 5.

In the special case $a_1 = \cdots = a_r = 2$, $r \geq 3$, we have:

Theorem C. For any $r \geq 3$ it is true that

$$F(\underbrace{2,\ldots,2}_r;r) = \begin{cases} 11, & r = 3 \text{ or } r = 4\\ r+5, & r \ge 5. \end{cases}$$

Mycielski, [8], presented an 11-vertex graph $G \in H(2,2,2;3)$, proving that $F(2,2,2;3) \leq 11$. Chvatal, [2], show that Mycielski's graph is the unique 11-vertex graph in the class H(2,2,2;3) and hence F(2,2,2;3) = 11. The inequality $F(2,2,2;4) \geq 11$ is proved in [11] and the inequality $F(2,2,2;4) \leq 11$ is proved in [10] and [15] (see also [4] and [12]). The equality $F(2,\ldots,2;r) = r+5$,

 $r \geq 5$, is proved in [10], [15] and later in [7]. If $r \geq 5$, then $K_{r-5} + C_5 + C_5$ is the

unique (r+5)-vertex graph in $H(\underbrace{2,\ldots,2};r)$, [10]. The class H(2,2,2,2;4) contains 56 11-vertex graphs, [4]. In [4] it is proved also that F(2,2,2,2;3)=22. This is the unique known vertex Folkman number $F(a_1,\ldots,a_r;q)$ for which $q\leq m-2$.

3. A LOWER BOUND ON THE VERTEX FOLKMAN NUMBERS $F(a_1, \ldots, a_r; m-1)$

Theorem 1. Let a_1, \ldots, a_r be positive integers. Let a and m satisfy (1) and $m \geq a + 2$. Then

$$F(a_1,\ldots,a_r;m-1)\geq m+a+2.$$

Proof. According to Proposition 5 we may assume that $a_1 \leq a_2 \leq \cdots \leq a_r = a$. Let $G \in H(a_1, \ldots, a_r; m-1)$. Let also A be an independent set of G, $|A| = \alpha(G)$ and $G_1 = C - A$. It follows from $m \geq a+2$ that $a_{r-1} \geq 2$. According to Proposition 4, $G_1 \in H(a_1, \ldots, a_{r-1}-1, a_r; m-1)$. According to Theorem A, $|V(G_1)| \geq m+a-1$, i.e. $|V(G)| \geq m+a-1+\alpha(G)$. Since $\alpha(G) \geq 2$, it follows that $|V(G)| \geq m+a+1$. We prove that $|V(G)| \neq m+a+1$. Assume the opposite. Then $|V(G_1)| = m+a-1$ and $\alpha(G) = 2$. According to Theorem B, $G_1 = K_{m-a-2} + \overline{C}_{2a+1}$. Let $A = \{u_1, u_2\}$, $V(K_{m-a-2}) = \{z_1, \ldots, z_{m-a-2}\}$ and $C_{2a+1} = v_1, v_2, \ldots, v_{2a+1}$.

Case 1. $Ad(u_i) \not\supseteq V(K_{m-a-2}), i = 1, 2$. In this case $\chi(G) = \chi(G_1) = m - 1$, which contradicts Proposition 6.

Case 2. $\operatorname{Ad}(u_1) \not\supseteq V(K_{m-a-2})$ and $\operatorname{Ad}(u_2) \supseteq V(K_{m-a-2})$. Let u_1 and z_1 be not adjacent. It follows from $\operatorname{cl}(G) \leq m-2$ that $\operatorname{Ad}(u_2) \not\supseteq V(\overline{C}_{2a+1})$. Hence we may assume that u_2 and v_1 are not adjacent. The equality

$$V(G) = \{z_1, u_1\} \cup \{z_2\} \cup \ldots \cup \{z_{m-a-2}\} \cup \{u_2, v_1\} \cup \{v_2, v_3\} \cup \ldots \cup \{v_{2n}, v_{2n+1}\}$$
 implies $\chi(G) \leq m-1$, which contradicts Proposition 6.

Case 3. $Ad(u_i) \supseteq V(K_{m-a-2}), i = 1, 2$. We put

$$M = \{v_{2i-1} : i = 1, \dots, p-1\} \subseteq V(\overline{C}_{2a+1}).$$

It is clear that M is an (a-1)-clique. We prove that

$$M \not\subset \mathrm{Ad}(u_i), \quad i = 1, 2.$$
 (2)

Assume the opposite and let $M \subseteq Ad(u_1)$. From $cl(G) \le m-2$, $\{u_1, v_{2a-1}, v_{2a}\}$ is an independent set, which contradicts $\alpha(G) = 2$.

We put

$$V' = V(K_{m-a-2}) \cup \{v_{2a+1}, v_{2a}, v_{2a-1}, v_{2a-2}\}, \quad G' = G[V'],$$

$$V'_r = V(\overline{C}_{2a+1}) - \{v_{2a+1}, v_{2a}, v_{2a-1}, v_{2a-2}\}, \quad V_r = V'_r \cup \{u_1, u_2\}.$$

Obviously, $\chi(G') = m - a = \sum_{i=1}^{r-1} (a_i - 1)$. This equality implies that there exists an (a_1, \ldots, a_{r-1}) -free (r-1)-colouring $V_1 \cup \ldots \cup V_{r-1}$ of V(G'). Since M is the

unique (a-1)-clique in V'_r , from (2) follows that V_r contains no a-cliques. Hence $V_1 \cup \ldots \cup V_r$ is an (a_1, \ldots, a_r) -free r-colouring of V(G), which is a contradiction.

Corollary. $F(4, 4; 6) \ge 13$.

In [13] it is proved that $F(4,4;6) \leq 14$, but the exact value of F(4,4;6) is unknown.

4. ON THE NUMBERS F(3, p; p + 1) AND F(2, 2, p; p + 1)

Lemma 1. Let $V' \subseteq V(\overline{C}_{2p+1})$, |V'| = m and $G = \overline{C}_{2p+1}[V']$. If m < 2p+1, then $cl(G) \ge \left\lceil \frac{m}{2} \right\rceil$.

Proof. It follows from m < 2p + 1 that \overline{G} is a subgraph of the graph P_{2p} (the path of 2p vertices). Hence $\chi(\overline{G}) \leq 2$. Let $V(\overline{G}) = V_1 \cup V_2$, where V_1 and V_2 are independent sets of \overline{G} . Then $\alpha(\overline{G}) \geq \max\{|V_1|, |V_2|\}$. Hence $\alpha(\overline{G}) \geq \left\lceil \frac{m}{2} \right\rceil$, i.e. $\operatorname{cl}(G) \geq \left\lceil \frac{m}{2} \right\rceil$.

Let $C_{2p+1} = v_1, v_2, \ldots, v_{2p+1}, p \geq 3$, and $M_1 = V(C_{2p+1}) - \{v_1, v_{2p-1}, v_{2p-2}\}$. The map σ defined by $\sigma(v_i) = v_{i+1}, i = 1, \ldots, 2p$, and $\sigma(v_{2p+1}) = v_1$ is obviously an automorphism of \overline{C}_{2p+1} . We put $M_i = \sigma^{i-1}(M_1), i = 1, \ldots, 2p+1$. We denote by Γ_p the extension of \overline{C}_{2p+1} by adding the new vertices u_1, \ldots, u_{2p+1} , each two of which are not adjacent and such that $\operatorname{Ad}(u_i) = M_i, i = 1, \ldots, 2p+1$. The graph Γ_3 is given on Fig. 1. This graph is published in [9].

Theorem 2. For any $p \geq 3$ we have $\Gamma_p \in H(3, p; p+1)$.

Proof. Since $\overline{C}_{2p+1}[M_i] = \overline{K}_2 + \overline{P}_{2p-4}$, $\operatorname{cl}(\overline{C}_{2p+1}[M_i]) = p-1$. Hence $\operatorname{cl}(\Gamma_p) = p$.

Let $V_1 \cup V_2$ be the 2-colouring of $V(\Gamma_p)$. We put $V_i' = V(\overline{C}_{2p+1}) \cap V_i$, $G_i = \overline{C}_{2p+1}[V_i']$, i = 1, 2. Assume that $cl(G_1) < 3$ and $cl(G_2) < p$. Lemma 1 and $cl(G_1) < 3$ imply $|V_1'| \le 4$. Lemma 1 and $cl(G_2) < p$ yield $|V_2'| \le 2p - 2$, i.e. $|V_1'| \ge 3$. So, $|V_1'| = 3$ or $|V_1'| = 4$.

Case 1. $|V_1'| = 3$. Since $\operatorname{cl}(G_1) < 3$, V_1' contains two non adjacent vertices. Hence we may assume that $v_1, v_2 \in V_1'$. We put $w = V_1' - \{v_1, v_2\}$ and $Q = \{v_{2k+1} : k = 1, \ldots, p\}$. Since Q is a p-clique and $\operatorname{cl}(G_2) < p$, we have $w \in Q$.

Subcase 1a. $w \in Q - \{v_{2p-1}, v_{2p+1}\}$. If $u_2 \in V_1$, then $\{u_2, v_1, w\}$ is a 3-clique in V_1 . Let $u_2 \in V_2$. We put $Q' = \{v_{2k} : k = 2, ..., p-1\}$. It is clear that Q' is a (p-2)-clique. Since $Q' \subseteq \mathrm{Ad}(u_2)$ and $v_{2p+1} \in \mathrm{Ad}(u_2)$, $Q' \cup \{v_{2p+1}, u_2\}$ is a p-clique in V_2 .

Subcase 1b. $w = v_{2p-1}$. If $u_{2p} \in V_1$, then $\{v_1, u_{2p}, v_{2p-1}\}$ is a 3-clique in V_1 . Let $u_{2p} \in V_2$. We put $Q'' = Q - \{v_{2p-1}, v_{2p-3}\}$. Since $Q'' \cup \{v_{2p-2}\} \subseteq \operatorname{Ad}(u_{2p})$, $Q'' \cup \{v_{2p-2}, u_{2p}\}$ is a p-clique in V_2 .

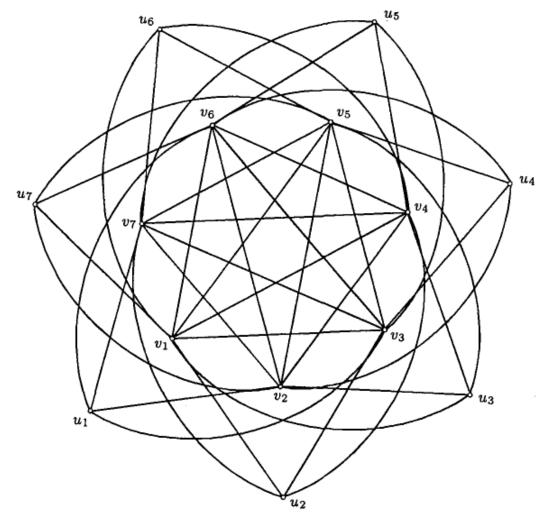


Fig. 1. Graph Γ₃

Subcase 1c. $w = v_{2p+1}$. This subcase is equivalent to $w = v_3$ in subcase 1a.

Case 2. $|V_1'|=4$. From $\mathrm{cl}(G_1)<3$ and $\alpha(G_1)=2$ it follows that $E(\overline{G}_1)$ contains two edges $e_1,\ e_2$ without common vertex. Hence, we may assume that $e_1=\{v_1,v_2\}$ and $e_2=\{v_i,v_{i+1}\}$ for some $i\in\{3,\ldots,2p\}$.

Subcase 2a. $i=2k, 2 \leq k \leq p$. Let $u_4 \in V_1$. If k=2, then $\{u_4,v_2,v_5\}$ is a 3-clique in V_1 . If $3 \leq k \leq p$, then $\{u_4,v_{2k},v_2\}$ is a 3-clique in V_1 . Let $u_4 \in V_2$. We put $Q_1 = \{v_{2l+1} : l=1,\ldots,k-1\}$ and $Q_2 = \{v_{2l} : l=k+1,\ldots,p\}, \ k < p$. If k=p, then $Q_2 = \varnothing$. It is clear that $\widetilde{Q} = Q_1 \cup Q_2$ is a (p-1)-clique. Since $\widetilde{Q} \subseteq \mathrm{Ad}(u_4), \ \widetilde{Q} \cup \{u_4\}$ is a p-clique in V_2 .

Subcase 2b. i=2k-1, $2 \le k \le p$. Let m=2p-2k+3. Then $\sigma^m(v_{2k-1})=v_1$, $\sigma^m(v_{2k})=v_2$, $\sigma^m(v_1)=v_{m+1}$, $\sigma^m(v_2)=v_{m+2}$ (the map σ is defined above). Since m is an odd number, the subcase 2b is equivalent to the subcase 2a.

Theorem 3. If $p \geq 3$, then

$$2p + 4 \le F(3, p; p + 1) \le 4p + 2. \tag{3}$$

Proof. From Theorem 2, $F(3, p; p + 1) \leq |V(\Gamma_p)| = 4p + 2$. The lower bound in (3) has been proved in Theorem 1.

The inequality $F(3,3;4) \leq 14$ is proved in [9]. The work [16] provides a computer proof of the inequality $F(3,3;4) \geq 14$ and thus F(3,3;4) = 14. In [13] it

is proved that F(3,4;5) = 13. The exact value of F(3,p;p+1), $p \ge 5$, is unknown.

Theorem 4. If $p \geq 3$, then

$$2p + 4 \le F(2, 2, p; p + 1) \le 4p + 2. \tag{4}$$

Proof. The lower bound in (4) has been proved in Theorem 1. Since $\Gamma_p \to (3, p)$ implies $\Gamma_p \to (2, 2, p)$, we have $F(2, 2, p; p + 1) \le 4p + 2$.

In [14] it is proved that F(2,2,4;5) = 13. From Theorem 3, $10 \le F(2,2,3;4) \le 14$. The exact value of F(2,2,3;4) is unknown.

5. ON THE NUMBERS
$$F(\underbrace{2,\ldots,2}_r,p;p+r-1)$$

We put

$$F(\underbrace{2,\ldots,2}_{r},p;p+r-1) = F_r(2,p),$$
 $H(\underbrace{2,\ldots,2}_{r},p;p+r-1) = H_r(2,p).$

Theorem 5. Let $G \in H(2, 2, p; p + 1) = H_2(2, p)$. Then for any $r \geq 2$, $K_{r-2} + G \in H_r(2, p)$.

Proof. It follows from $\operatorname{cl}(G) < p+1$ that $\operatorname{cl}(K_{r-2}+G) < p+r-1$. We prove that

$$K_{r-2} + G \to (\underbrace{2, \dots, 2}_{r}, p)$$
 (5)

by induction on r. The base r=2 is clear, since $G \in H_2(2,p)$. Assume that $r \geq 3$ and

$$K_{r-3} + G \to (\underbrace{2, \dots, 2}_{r-1}, p).$$
 (6)

Let $V_1 \cup \ldots \cup V_{r+1}$ be an (r+1)-colouring of $V(K_{r-2}+G)$. Let $w \in V(K_{r-2})$ and $K_{r-2}+G=\{w\}+(K_{r-3}+G)$. If $V_i \cap V(K_{r-3}+G)=\emptyset$ for some i, then from (6) it follows that $V_1 \cup \ldots \cup V_{r+1}$ is not $(2,\ldots,2,p)$ -free. Let

$$V_i \cap V(K_{r-3} + G) \neq \emptyset, \quad i = 1, \dots, r+1. \tag{7}$$

Assume that V_i , i = 1, ..., r, are independent sets. From (7), $w \notin V_i$, i = 1, ..., r. Hence $w \in V_{r+1}$. Let $V'_{r+1} = V_{r+1} \setminus \{w\}$. Then $V_1 \cup ... \cup V_{r-1} \cup (V_r \cup V'_{r+1})$ is an r-colouring of $V(K_{r-3} + G)$. From (6), $V_r \cup V'_{r+1}$ contains a p-clique. Since V_r is an independent set, V'_{r+1} contains a (p-1)-clique. Hence V_{r+1} contains a p-clique. Thus, (5) holds.

Theorem 6. For any $p \geq 3$ and $r \geq 2$, one has

$$2p + r + 2 \le F_r(2, p) \le 4p + r. \tag{8}$$

Proof. Theorem 2 yields $\Gamma_p \in H(2,2,p;p+1)$. From Theorem 5 it follows that $K_{r-2} + \Gamma_p \in H_r(2,p)$. Hence $F_r(2,p) \leq 4p + r$. The lower bound in (8) follows from Theorem 1.

Theorem 7. For any $r \geq 2$, one has

$$r + 10 \le F_r(2,4) \le r + 11. \tag{9}$$

Proof. Consider the 13-vertex graph Q (the complementary graph \overline{Q} is given on Fig. 2). It is proved in [14] that $Q \in H(2,2,4;5)$. From Theorem 5, $K_{r-2} + Q \in H_r(2,4)$. Hence $F_r(2,4) \leq r+11$. The lower bound in (9) follows from Theorem 1.

6. ON THE NUMBERS
$$F(\underbrace{3,\ldots,3}_r,p;2r+p-1)$$

We put

$$F(\underbrace{3,\ldots,3}_{r},p;2r+p-1) = F_{r}(3,p),$$

$$H(\underbrace{3,\ldots,3}_{r},p;2r+p-1) = H_{r}(3,p).$$

Theorem 8. Let $G \in H(3, p; p + 1) = H_1(3, p)$. Then for any $r \ge 1$, $K_{2r-2} + G \in H_r(3, p)$.

Proof. From cl(G) < p+1 we have $cl(K_{2r-2}+G) < 2r+p-1$. We prove

$$K_{2r-2} + G \to (\underbrace{3, \dots, 3}_{r}, p) \tag{10}$$

by induction on r. The base r=1 is clear, since $G \in H_1(3,p)$. Assume that $r \geq 2$ and

$$K_{2r-4} + G \to (\underbrace{3, \dots, 3}_{r-1}, p).$$
 (11)

Let $V_1 \cup \ldots \cup V_{r+1}$ be an (r+1)-colouring of $V(K_{2r-2}+G)$ and suppose that

each
$$V_i$$
, $i = 1, ..., r$, contains no 3-cliques. (12)

Let $K_{2r-2}+G=K_2+(K_{2r-4}+G)$, where $V(K_2)=\{a,b\}$. If $V_i\cap V(K_{2r-4}+G)=\varnothing$ for some i, then from (11) it follows that $V_1\cup\ldots\cup V_{r+1}$ is not $(3,\ldots,3,p)$ -free. Suppose that

$$V_i \cap V(K_{2r-4} + G) \neq \emptyset, \quad i = 1, \dots, r+1.$$
 (13)

Case 1. $a, b \in V_i$ for some $i \in \{1, ..., r\}$. It follows from (13) that V_i contains a 3-clique, which contradicts (12).

Case 2. $a \in V_i$, $b \in V_j$, $i \neq j$, $i, j \in \{1, ..., r\}$. We may assume that $a \in V_1$, $b \in V_2$. We put $V_1' = V_1 - \{a\}$, $V_2' = V_2 - \{b\}$. From (12), V_1' and V_2' are independent sets. Hence $V_1' \cup V_2'$ contains no 3-cliques. Consider an r-colouring

 $(V_1' \cup V_2') \cup V_3 \cup \ldots \cup V_{r+1}$ of $V(K_{2r-4} + G)$. It follows from (11) and (12) that V_{r+1} contains a p-clique.

Case 3. $a \in V_i$, $i \neq r+1$ and $b \in V_{r+1}$. We may assume that $a \in V_r$. We put $V'_r = V_r - a$, $V'_{r+1} = V_{r+1} - \{b\}$. From (12), V'_r is an independent set. Consider an r-colouring $V_1 \cup \ldots \cup V_{r-1} \cup (V'_r \cup V'_{r+1})$ of $V(K_{2r-4} + G)$. By (11) and (12), $V'_r \cup V'_{r+1}$ contains a p-clique. Since V'_r is independent, V'_{r+1} contains a p-clique. Hence V_{r+1} contains a p-clique.

Case 4. $a, b \in V_{r+1}$. We put $V'_{r+1} = V_{r+1} - \{a, b\}$. Consider an r-colouring $V_1 \cup \ldots \cup (V_r \cup V'_{r+1})$. From (11) and (12), $V_r \cup V'_{r+1}$ contains a p-clique. By (12), V'_{r+1} contains a (p-2)-clique. Hence V_{r+1} contains a p-clique. Thus, (10) holds.

Theorem 9. Let $p \geq 3$ and $r \geq 1$. Then

$$2p + 2r + 2 \le F_r(3, p) \le 4p + 2r. \tag{14}$$

Proof. By Theorem 2 and Theorem 8, $K_{2r-2} + \Gamma_p \in H_r(3, p)$. Hence $F_r(3, p) \le 4p + 2r$. The lower bound in (14) follows from Theorem 1.

Theorem 10. There holds

$$2r + 10 \le F_r(3,4) \le 2r + 11, \quad r \ge 1.$$
 (15)

Proof. The lower bound in (15) follows from Theorem 1. Consider the 13-vertex graph Q (see Fig. 2). It is proved in [13] that $Q \in H_1(3,4)$. According to Theorem 8, $K_{2r-2} + Q \in H_r(3,4)$. Hence $F_r(3,4) \leq 2r + 11$.

Theorem 11. Let $r \geq 2$. Then

$$F_r(3,3) = F(\underbrace{3,\ldots,3}_{r+1};2r+2) \le 2r+10.$$

Proof. We consider the graph Q, which complementary graph \overline{Q} is given on Fig. 2. Obviously,

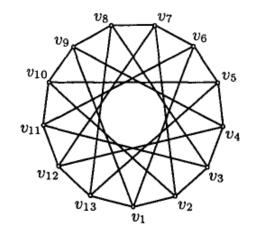


Fig. 2. Graph \overline{Q}

 $\alpha(Q)=2$ and it is true that $\operatorname{cl}(Q)=4$, [18]. We prove $K_1+Q\in H(3,3,3;6)=H_2(3,3)$. From $\operatorname{cl}(Q)=4$ it follows that $\operatorname{cl}(K_1+Q)=5$. Let $V_1\cup V_2\cup V_3$ be a 3-colouring of $V(K_1+Q)$ and $V(K_1)=\{w\}$. We may assume $w\in V_1$. Assume also that V_1 contains no 3-cliques. Then $V_1'=V_1-\{w\}$ is an independent set of Q. From $\alpha(Q)=2$ it follows $|V_1'|\leq 2$. Hence either $|V_2|\geq 6$ or $|V_3|\geq 6$. Let $|V_2|\geq 6$ and $G=Q[V_2]$. It is clear that $\alpha(G)=2$. From $\alpha(G)=2$ and $|V_2|\geq 6$ it follows $\operatorname{cl}(G)\geq 3$, [18], i.e. V_2 contains a 3-clique.

So, $K_1 + Q \to (3,3,3)$ and $\operatorname{cl}(K_1 + Q) = 5$. Hence $K_1 + Q \in H_2(3,3)$. By induction on r it follows $K_{2r-4} + (K_1 + Q) \in H_r(3,3)$ (see the proof of Theorem 8). Hence $F_r(3,3) \leq 2r + 10$.

7. A NEW PROOF OF THEOREM B

B. Toft has conjectured that if G is a (2p+1)-vertex graph, $\alpha(G)=p$ and $\alpha(G-\{u,v\})=\alpha(G)$ for all $u,v\in V(G)$, then $G=C_{2p+1}$. This conjecture is verified in [17] and [5] (see problem 8.26, p. 58). The proof in [5], actually, establishes the following stronger statement:

Theorem D. Let G be a (2p+1)-vertex graph, $\alpha(G) = p$, $\alpha(G-v) = \alpha(G)$ for all $v \in V(G)$, and $\alpha(G - \{u, v\}) = \alpha(G)$ for any pair u, v adjacent vertices. Then $G = C_{2p+1}$.

Theorem D is proved also in [7]. In the proof of Theorem B we shall use the following:

Lemma 2. Let the graph G be such that cl(G - v) = cl(G) for all $v \in V(G)$. Then $\pi(\overline{G}) \ge cl(G)$.

This lemma is proved in [17] (see also problem 8, p. 302, in [1]).

The proof of Theorem B. According to Proposition 5 we may assume that $a_1 \leq \cdots \leq a_r = a$. We prove Theorem B by induction on m. By the inequality $m \geq a+1$, the minimal admissible value of m is a+1. The base of the induction is then m=a+1. From m=a+1 it follows that $a_1=\cdots=a_{r-2}=1$, $a_{r-1}=2$, and $\operatorname{cl}(G)=a$. According to Proposition 3, $G\to(2,a)$. By $G\to(2,a)$, $\operatorname{cl}(G)=\operatorname{cl}(G-v) \ \forall v\in V(G)$ and $\operatorname{cl}(G-\{u,v\})=\operatorname{cl}(G)$ for each pair u,v non adjacent vertices, i.e. the graph \overline{G} satisfies the conditions of Theorem D. Hence $\overline{G}=C_{2a+1}$, i.e. $G=\overline{C}_{2a+1}$.

Let $m \geq a+2$. Let L be a graph such that V(L)=V(G), $E(L)\supseteq E(G)$ and $\operatorname{cl}(L)=m-1$. It is clear that $L\to (a_1,\ldots,a_r)$. We prove that $\operatorname{cl}(L-v_0)<\operatorname{cl}(L)$ for some $v_0\in V(L)$. Assume the opposite. According to Lemma 2, we have $\pi(\overline{L})\geq m-1$. Hence

$$\chi(L) \le m - 1 + (|V(L)| - 2(m - 1)) = a + 1.$$

From $m \ge a + 2$ it follows $\chi(L) \le m - 1$. This contradicts Proposition 6.

So, $\exists v_0 \in V(L)$ such that $\operatorname{cl}(L-v_0) < \operatorname{cl}(L) = m-1$. By $m \geq a+2$, $a_{r-1} \geq 2$. According to Proposition 4, $L-v_0 \to (a_1,\ldots,a_{r-1}-1,a_r)$. Hence $L-v_0 \in H(a_1,\ldots,a_{r-1}-1,a_r;m-1)$. By the inductive hypothesis, $L-v_0 = K_{m-a-2} + \overline{C}_{2a+1}$. The vertex v_0 is adjacent to each vertex of $V(K_{m-a-2} + \overline{C}_{2a+1})$ (otherwise, $\chi(L) < m$, which contradicts Proposition 6). Therefore, $L = K_{m-a-1} + \overline{C}_{2a+1}$. Since each proper subgraph of $K_{m-a-1} + \overline{C}_{2a+1}$ has an (a_1,\ldots,a_r) -free r-colouring of the vertices (see [7], Proposition 3), we have $G = K_{m-a-1} + \overline{C}_{2a+1}$.

The proof of Theorem B is complete.

REFERENCES

- Berg, C. Graphs and Hypergraphs. Mathematical Library, 6, North-Holland, 1976.
- Chvatal, V. The minimality of the Mycielski graph. In: Lecture Notes Math., 406, 1974, 243-246.
- Folkman, J. Graphs with monochromatic complete subgraph in every edge coloring. SIAM J. Appl. Math., 18, 1970, 19-24.
- Jensen, T., G. Royle. Small graphs with chromatic number 5: a computer search. J. Graph Theory, 19, 1995, 107-116.
- Lovasz, L. Combinatorial problems and exercises. Akademiai Kiado, Budapest, 1979.
- Luczak, T., S. Urbanski. A note on the restricted vertex Ramsey numbers. Periodica Math. Hungarica, 33, 1996, 101-103.
- Luczak, T., A. Rucinski, S. Urbanski. On the minimal vertex Folkman graphs. Discrete Math., 236, 2001, 245-262.
- 8. Mycielski, J. Sur le coloriage des graphes. Coll. Math., 3, 1955, 161-162.
- 9. Nenov, N. An example of a 15-vertex (3,3)-Ramsey graph with clique number 4. C. R. Acad. Bulg. Sci., 34, 1981, 1487-1489 (in Russian).
- Nenov, N. On the Zykov numbers and some its applications to Ramsey theory. Serdica Bulgaricae math. publicationes, 9, 1983, 161-167 (in Russian).
- Nenov, N. The chromatic number of any 10-vertex graph without 4-cliques is at most
 C. R. Acad. Bulg. Sci., 37, 1984, 301-304 (in Russian).
- Nenov, N. On the small graphs with chromatic number 5 without 4-cliques. Discrete Math., 188, 1998, 297-298.
- Nenov, N. On the vertex Folkman number F(3,4). C. R. Acad. Bulg. Sci., 54, 2001, No. 2, 23-26.
- Nenov, N. On the 3-colouring vertex Folkman number F(2, 2, 4). Serdica, Math. Journal, 27, 2001, 131-136.
- Nenov, N. Ramsey graphs and some constants related to them. Ph.D. Thesis at University of Sofia, Sofia, 1980.
- Piwakowski, K., S. Radziszowski, S. Urbanski. Computation of the Folkman number F_e(3, 3; 5). J. Graph Theory, 32, 1999, 41–49.
- Vizing, V., L. Melnikov. Solution of a Toft problem. Diskret. Analiz, 19, 1971, 11-14 (in Russian).
- Greenwood, R., A. Gleason. Combinatorial relation and chromatic graphs. Canad. J. Math., 7, 1955, 1-7.

Received December 13, 2000

Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 James Bourchier Blvd. BG-1164 Sofia, Bulgaria

E-mail: nenov@fmi.uni-sofia.bg