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The fibered surfaces are shown to be finite branched coverings of products of alge-
braic curves. As a consequence, the fundamental group of a finite surface turns to be
commensurable with a product of the fundamental groups of Riemann surfaces.
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The compact Kahler surface S is said to be fibered if there is a surjective
holomorphic map S — C, with connected fibers onto a curve Cy of genus g > 2.
The work focuses on some properties of fibered surfaces S. The first section exhibits
S as a finite ramified covering S = Cy xCh, g+h = h':°(S) of products of curves. As
a consequence, the second section shows the commensurability of the fundamental
group 7, (S) of a fibered surface with the product 1 (C},) X 71 (Cp) of fundamental
groups of appropriate Riemann surfaces.

1. STRUCTURE RESULT

Proposition 1. Any fibered surface f; : S — Cy, g > 2, with non-isotropic
HY0(S) is a finite ramified covering f = (f1,f2) : S = Cy X Ch, g+ h < R10(S).

According to the Theorem of Castelnuovo de Franchis (cf. [1]), for any fibered
surface f1 : S = C, the subspace f{ HY9(C,) ¢ H1(S) is isotropic, which means
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that the wedge product of any two forms from f{H"9(C,) is zero. Let us start
with the following

Lemma 2. Let X be a compact complez manifold with functionally indepen-
dent 1,2 € HY*(X) and C-linearly independent 1,..., %y € HY(X). Sup-
pose that with respect to some coordinate covering X = Uye sW(®) there hold Y =

Z /\( )cp, for some local meromorphic functions /\(a) w@ 5 P, 1< j <m,

and k =1 or2. Then there ezist global holomorphic functions b;, d;, fi»9i + X = C,

such that w; := %, i = 1,2, are global holomorphic (1,0)-forms, as well as

¥; = fjwy in the case of k =1 and dj1p; = fjwy + g;ws in the case of k = 2.

Proof. The local rings Oy «) of the holomorphic functions on W@ are fac-
torial. Their fraction fields Myy () consist of the meromorphic functions on W(®)
ag-?)
C( a) Y

ag-f’), (*) € Ope. Since @; and 1/), are globally defined, at z € W(® n Ww®),

That allows to represent uniquely ,\(-?) = as ratios of relatively prime

one has 0 = ¢'§“) (z) — wj(,@ ) (z) = Z(/\(a) )\f ))cp,-(:c), which implies }\g?) = }\gf )

due to the functional independence of PYi.
One can represent the global meromorphic functions A;; : X — C by glo-
bal holomorphic numerators and denominators. Indeed, on W(®) N W(8) the

() ,.(8) _ (ﬂ) cle) : B R () :
Jl) ;; aj;"cj; requires aj to be divisible by a;”, according to

GCD( (@) (a)) =1. Exchangmg a with ﬂ, one obtains

.71’

relation a

& lwernwe = ue?al) lwenws, ¢ S lwwnwe = u{?? Nwnws

*) Due to the compactness of X, one can choose a

finite coordmate covermg and adjust all u{*?)ji = 1. After fixing some a (,), one

puts aJ, |w(a)nw(p) = aﬂ Iw(c)nW(B) for all ﬂ € {ﬂl, ,,Bk} with W(°‘> N W(ﬁ) #
@ and extends holomorphically a(ﬁ ) over the simply connected W(#). The same
procedure is applied to all 8 with W(f’) NWE) £z 1<i<k, etc.

for some locally invertible u(

In the case k = 2 let us consider the greatest common divisors d; :=
GCD(cj1,c¢j2) and introduce bj; := -‘;’7' forall 1 < j <m,i=1,2 Then §; :=
d;jy; = ‘é :ﬂ ;. For future convenience let us put b;; := ¢j1, 6; := ¢; = b,_,
for k = 1.

Multiplying 6; by bj3—; fori =1,2 and bearing in mind that GCD(a;i, bj;) =
1, GCD(bj3-i,bji) = 1, one concludes that bj; divide ¢, i.e., Z : are global holo-

morphic (1,0)-forms. The same holds if £ = 1. Then the least common multiples
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p; = LCM (bji|ll < j < m) divide ¢; and allow to define the global holomor-
. : k .

phic wi = % As a result, one obtains the representations 8; = 3 aj,-bb—'w,- as
i i=1 i

() x-linear combinations of w;, Q.E.D.

Proof of Proposition 1. The subspace U := fyH"°(C,) C H°(S) is
maximal isotropic, according to the connectedness of the fibers of fi. Therefore,

any C-basis uy,...,ugs of U is of the form u; = /\Ea)ul, 2 <1 < g, for some local
meromorphic functions A®) . W@ 5 P, on the coordinate charts W(® c S.

According to Lemma 2, there exist global holomorphic functions &;,...,§, and a
global holomorphic (1,0)-form w; € U such that u; = §uw;, 1 <1< g.
For a non-ruled fibered surface, U := fyfH"%(C,) is a proper subspace of

H'°(S). Any complement of U has a basis vy,...,vx, k = h1%(S) — g with
wr Avj # 0 for all 1 < j < k. The functionally independent wi, v1 on the sur-
face S generate H'0(S) over the fields My of local meromorphic functions.
That allows to represent v; = afa)wl + r,-(a)vl on W), a‘("),ri(“) € Mwi(.
The application of Lemma 2 yields global holomorphic functions by, b2, d;, A, 145,
wioo_n
bl y W2 = b2
dj‘Uj = /\J(:)T + pjw2, 2 < j<k. Let Vj be the C-span of Y1 =1 = bows = pyws,
p; = djv; — A\jwy = pows, 2 < j < k, and V be a maximal isotropic subspace of

1 < j < k, such that w; := are global holomorphic (1, 0)-forms and

9
H19(S), containing Vo. Wedging by vy an arbitrary v = ) ¢;i§iwy € VN U and

=1

g
bearing in mind that w; Av; # 0, one infers 3 ¢;§; = 0. As far as {wy, ...,
i=1

are C-linearly independent, there follows ¢; = 0 for all 1 < ¢ < g. In other words,
UNV = 0 and there exist maximal isotropic subspaces U,V with U®V C H9(S).

If dimc V > 2, Castelnuovo-de Franchis’ Theorem implies that there is a surjec-
tive holomorphic map f; : S — Cj with connected fibers, such that f3 H*°(Cy) =
V. The holomorphic map f = (fi1, f2) : S = Cy x C}, is generically of rankcdf = 2
since

fo=frefy HY(Cy x Cu) = HY(Cg) @ HY(Cy) » U@V C HY(S)

and f7, f5 are injective. According to Remmert’s Proper Mapping Theorem, f (S)
is a 2-dimensional complex analytic subspace of Cy X C. Therefore f(S) = Cyg X Cp,.
The generic fiber of f is a compact complex analytic 0-dimensional subspace of S,
i.e., finite number of points.

In the case of V = Spanc(v1), let us consider the dual V* C Hy(S,C) and
its quotient E := V*/V* N H1(S,Z) free modulo the free part of Hi(S,Z). As a
closed subtorus of the compact Albanese variety Alb(S) = H»?(S)*/H1(S,Z)free,
E is an elliptic curve. For any fixed so € S the holomorphic map f; : S = E,

8
£5(S) := [ vimoduloH (S, Z)ree is of rankcdf; = 1, whereas surjective. Since the

S0
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fibers of f; can be disconnected, we pass to Stein factorization fo : § — Cx, h > 1.
Then apply the rest of the proof for dime¢ V > 2, Q.E.D.

Remark. Generalization of Proposition 1 to higher dimensional compact
Kdahler manifolds. Catanese has generalized in [3] the theorem of Castelnuovo-de
Franchis. Let us say that the normal Kahler variety Y is of Albanese general type if
the irregularity A'°(Y") > dim¢ Y and the image of Albanese map o : Y — Alb(Y)
is of dim¢c a(Y) = dim¢cY. The compact Kahler manifold X, of dimc X, =
is Albanese general type k-fibration if it admits a surjective holomorphic map
fi + Xn — Y with connected fibers onto a normal k-dimensional Kihler vari-
ety of Albanese general type. Catanese has shown that a necessary and sufficient
condition for the existence of an Albanese general type k-fibration f; : X, — Y
is the presence of a maximal subspace U C H'9(X,) with A*+1UU = 0, contain-
ing a subspace Uy C U of dim¢Up > k + 1, whose k-wedge A*U, is embedded
in H*%(X,). A slight modification of the proof of Proposition 1 establishes that
if a compact Kéhler n-dimensional manifold X, admits an Albanese general type
(n — 1)-fibration f; : X, = X,,_1, whose generic fibers are different from P;, then
X, is a finite ramified covering f : X, = Xn_; X X of the product of X,,_; and a
Riemann surface X; of genus > 1. The study of the complements of Albanese gen-
eral k-fibrations f; : X, — X with an arbitrary k is obstructed by the condition
A"kUy < H™%0(X,.), which is not easy to be understood.

2. THE FUNDAMENTAL GROUP

Corollary 3. If the surface S is a finite ramified covering f = (f1,f2): S =
Cy X Ch, g > 2, h > 2, then its fundamental group m(S) is commensurable with
71 (Cm) X m1(Cp) for some m > g, n > h.

Proof. Campana has shown in [2] that for any surjective holomorphic map
X — C of a compact Kéhler manifold X onto a Riemann surface C there is a
finite etale cover » : X — X such that the Stein factorization f : X — C of
fr: X — C has no multiple fibers and there is a finite map p : C = C with
pf = fr. The application of this result to f; : S — C, yields a finite etale cover
Ty : 51 = S, a surjective holomorphic map f{ : S; = C,,, m > g, without multiple
fibers, and a finite map p; : Cp, = C, such that fir; = p; f{. The subsequent
application of the aforementioned result to for; : S; = C, provides a finite etale
cover 12 : Z — S1, a holomorphic surjection ¢, : Z — Cyp, n > h, without multiple
fibers, and a finite map p; : C,, = Ch with for;7y = pos. Consequently, the
composition ¢; = fire : Z — C,, of the unramified r, and f{ has no multiple
fibers. The Cartesian product ¢ = (p1,¢2) : Z = Cp x Cy, is a finite covering,
as far as ryry : Z = S is a finite etale, f = (f1, f2) : S = Cy x C}, is finite and
there is a projection (p1, p2) : Crn X Cp, = Cy x Cp,. We claim that ¢ is unramified
since the generic fibers of ¢, : Z = C,, and g2 : Z < C,, have no self-intersections.
Indeed, for apropriate ramified coverings py : C,, = Py and py : C,, = P, one
obtains linear pencils of divisors pyp; : Z — P, and paps : Z — Py. According
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to Bertini’s theorem, the generic fibers (pii)~(z) = ;' (p; '(z)), i = 1,2, have
00 singularities outside the base locus. Thus, Z = Cp x Cy, is a finite unramified
covering and m1(Z) is a finite index subgroup of 71 (Crm) x m(Cr). On the other
pand, 1172 : Z = S is finite and unramified, so that m (Z) is a finite index subgroup
of m1(S). That justifies the commensurability of my (S) and 71 (Crn) xm1(Cr), Q.E.D.
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