ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Том 94, 2000

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 94, 2000

FIBERED SURFACES*

AZNIV K. KASPARIAN

The fibered surfaces are shown to be finite branched coverings of products of algebraic curves. As a consequence, the fundamental group of a finite surface turns to be commensurable with a product of the fundamental groups of Riemann surfaces.

Keywords: fibered surfaces, fundamental groups

Mathematics Subject Classification 2000: 32J27

The compact Kähler surface S is said to be fibered if there is a surjective holomorphic map $S \to C_g$ with connected fibers onto a curve C_g of genus $g \ge 2$. The work focuses on some properties of fibered surfaces S. The first section exhibits S as a finite ramified covering $S \to C_g \times C_h$, $g+h=h^{1,0}(S)$ of products of curves. As a consequence, the second section shows the commensurability of the fundamental group $\pi_1(S)$ of a fibered surface with the product $\pi_1(C_m) \times \pi_1(C_n)$ of fundamental groups of appropriate Riemann surfaces.

1. STRUCTURE RESULT

Proposition 1. Any fibered surface $f_1: S \to C_g$, $g \ge 2$, with non-isotropic $H^{1,0}(S)$ is a finite ramified covering $f = (f_1, f_2): S \to C_g \times C_h$, $g + h \le h^{1,0}(S)$.

According to the Theorem of Castelnuovo de Franchis (cf. [1]), for any fibered surface $f_1: S \to C_g$ the subspace $f_1^*H^{1,0}(C_g) \subset H^{1,0}(S)$ is isotropic, which means

^{*} The work is partially supported under Contract MM1003/2000 by the National Foundation for Scientific Research.

that the wedge product of any two forms from $f_1^*H^{1,0}(C_g)$ is zero. Let us start with the following

Lemma 2. Let X be a compact complex manifold with functionally independent $\varphi_1, \varphi_2 \in H^{1,0}(X)$ and \mathbb{C} -linearly independent $\psi_1, \ldots, \psi_m \in H^{1,0}(X)$. Suppose that with respect to some coordinate covering $X = \bigcup_{\alpha \in A} W^{(\alpha)}$ there hold $\psi_j = \sum_{i=1}^k \lambda_{ji}^{(\alpha)} \varphi_i$ for some local meromorphic functions $\lambda_{ji}^{(\alpha)} : W^{(\alpha)} \to \mathbf{P}_1, \ 1 \leq j \leq m,$ and k = 1 or 2. Then there exist global holomorphic functions $b_i, d_j, f_j, g_j : X \to \mathbb{C}$, such that $\omega_i := \frac{\varphi_i}{b_i}$, i = 1, 2, are global holomorphic (1, 0)-forms, as well as $\psi_j = f_j \omega_1$ in the case of k = 1 and $d_j \psi_j = f_j \omega_1 + g_j \omega_2$ in the case of k = 2.

Proof. The local rings $\mathcal{O}_{W^{(\alpha)}}$ of the holomorphic functions on $W^{(\alpha)}$ are factorial. Their fraction fields $\mathcal{M}_{W^{(\alpha)}}$ consist of the meromorphic functions on $W^{(\alpha)}$.

That allows to represent uniquely $\lambda_{ji}^{(\alpha)} = \frac{a_{ji}^{(\alpha)}}{c^{(\alpha)}ji}$ as ratios of relatively prime $a_{ji}^{(\alpha)}, c_{ji}^{(\alpha)} \in \mathcal{O}_{W^{(\alpha)}}$. Since φ_i and ψ_j are globally defined, at $x \in W^{(\alpha)} \cap W^{(\beta)}$, one has $0 \equiv \psi_j^{(\alpha)}(x) - \psi_j^{(\beta)}(x) = \sum_{i=1}^k (\lambda_{ji}^{(\alpha)} - \lambda_{ji}^{(\beta)}) \varphi_i(x)$, which implies $\lambda_{ji}^{(\alpha)} = \lambda_{ji}^{(\beta)}$ due to the functional independence of φ_i .

One can represent the global meromorphic functions $\lambda_{ji}: X \to \mathbb{C}$ by global holomorphic numerators and denominators. Indeed, on $W^{(\alpha)} \cap W^{(\beta)}$ the relation $a_{ji}^{(\alpha)}c_{ji}^{(\beta)} = a_{ji}^{(\beta)}c_{ji}^{(\alpha)}$ requires a_{ji}^{β} to be divisible by $a_{ji}^{(\alpha)}$, according to $GCD(a_{ji}^{(\alpha)}, c_{ji}^{(\alpha)}) = 1$. Exchanging α with β , one obtains

$$a_{ji}^{(\alpha)}|_{W^{(\alpha)}\cap W^{(\beta)}} = u_{ji}^{(\alpha\beta)}a_{ji}^{(\beta)}|_{W^{(\alpha)}\cap W^{\beta}}, \quad c_{ji}^{(\alpha)}|_{W^{(\alpha)}\cap W^{\beta}} = u_{ji}^{(\alpha\beta)}c_{ji}^{(\beta)}|_{W^{(\alpha)}\cap W^{\beta}}$$

for some locally invertible $u_{ji}^{(\alpha\beta)}$. Due to the compactness of X, one can choose a finite coordinate covering and adjust all $u^{(\alpha\beta)}ji=1$. After fixing some $a_{ji}^{(\alpha)}$, one puts $a_{ji}^{(\beta)}|_{W^{(\alpha)}\cap W^{(\beta)}}=a_{ji}^{(\alpha)}|_{W^{(\alpha)}\cap W^{(\beta)}}$ for all $\beta\in\{\beta_1,\ldots,\beta_k\}$ with $W^{(\alpha)}\cap W^{(\beta)}\neq\emptyset$ and extends holomorphically $a_{ji}^{(\beta)}$ over the simply connected $W^{(\beta)}$. The same procedure is applied to all β with $W^{(\beta)}\cap W^{(\beta_i)}\neq\emptyset$, $1\leq i\leq k$, etc.

In the case k=2 let us consider the greatest common divisors $d_j:=GCD(c_{j1},c_{j2})$ and introduce $b_{ji}:=\frac{c_{ji}}{d_j}$ for all $1\leq j\leq m,\ i=1,2.$ Then $\theta_j:=d_j\psi_j=\sum_{i=1}^2\frac{a_{ji}}{b_{ji}}\varphi_i$. For future convenience let us put $b_{j1}:=c_{j1},\ \theta_j:=\psi_j=\frac{a_{j1}}{b_{ji}}\varphi_1$ for k=1.

Multiplying θ_j by $b_{j,3-i}$ for i=1,2 and bearing in mind that $GCD(a_{ji},b_{ji})=1$, $GCD(b_{j,3-i},b_{ji})=1$, one concludes that b_{ji} divide φ_i , i.e., $\frac{\varphi_i}{b_{ji}}$ are global holomorphic (1,0)-forms. The same holds if k=1. Then the least common multiples

 $b_i := LCM(b_{ji}|1 \le j \le m)$ divide φ_i and allow to define the global holomorphic $\omega_i := \frac{\varphi_i}{b_i}$. As a result, one obtains the representations $\theta_j = \sum_{i=1}^k a_{ji} \frac{b_i}{b_{ji}} \omega_i$ as \mathcal{O}_X -linear combinations of ω_i , Q.E.D.

Proof of Proposition 1. The subspace $U:=f_1^*H^{1,0}(C_g)\subseteq H^{1,0}(S)$ is maximal isotropic, according to the connectedness of the fibers of f_1 . Therefore, any \mathbb{C} -basis u_1,\ldots,u_g of U is of the form $u_i=\lambda_i^{(\alpha)}u_1,\, 2\leq i\leq g$, for some local meromorphic functions $\lambda_i^{(\alpha)}:W^{(\alpha)}\to \mathbf{P}_1$ on the coordinate charts $W^{(\alpha)}\subset S$. According to Lemma 2, there exist global holomorphic functions ξ_1,\ldots,ξ_g and a global holomorphic (1,0)-form $\omega_1\in U$ such that $u_i=\xi_i\omega_1,\, 1\leq i\leq g$.

For a non-ruled fibered surface, $U:=f_1^*H^{1,0}(C_g)$ is a proper subspace of $H^{1,0}(S)$. Any complement of U has a basis $v_1,\ldots,v_k,\ k=h^{1,0}(S)-g$ with $\omega_1\wedge v_j\neq 0$ for all $1\leq j\leq k$. The functionally independent $\omega_1,\ v_1$ on the surface S generate $H^{1,0}(S)$ over the fields $\mathcal{M}_{W^{(\alpha)}}$ of local meromorphic functions. That allows to represent $v_i=\sigma_i^{(\alpha)}\omega_1+\tau_i^{(\alpha)}v_1$ on $W^{(\alpha)},\ \sigma_i^{(\alpha)},\tau_i^{(\alpha)}\in\mathcal{M}_{W^{(\alpha)}}$. The application of Lemma 2 yields global holomorphic functions $b_1,b_2,d_j,\lambda_j,\mu_j,$ $1\leq j\leq k$, such that $\widetilde{\omega_1}:=\frac{\omega_1}{b_1},\ \omega_2:=\frac{v_1}{b_2}$ are global holomorphic (1,0)-forms and $d_jv_j=\lambda_j\widetilde{\omega_1}+\mu_j\omega_2,\ 2\leq j\leq k$. Let V_0 be the \mathbb{C} -span of $\varphi_1=v_1=b_2\omega_2=\mu_1\omega_2,$ $\varphi_j=d_jv_j-\lambda_j\widetilde{\omega_1}=\mu_2\omega_2,\ 2\leq j\leq k$, and V be a maximal isotropic subspace of $H^{1,0}(S)$, containing V_0 . Wedging by v_1 an arbitrary $v=\sum_{i=1}^g c_i\xi_i\omega_1\in V\cap U$ and bearing in mind that $\omega_1\wedge v_1\neq 0$, one infers $\sum_{i=1}^g c_i\xi_i=0$. As far as $\xi_1\omega_1,\ldots,\xi_g\omega_1$ are \mathbb{C} -linearly independent, there follows $c_i=0$ for all $1\leq i\leq g$. In other words,

 $U \cap V = 0$ and there exist maximal isotropic subspaces U, V with $U \oplus V \subseteq H^{1,0}(S)$. If $\dim_{\mathbb{C}} V \geq 2$, Castelnuovo-de Franchis' Theorem implies that there is a surjective holomorphic map $f_2: S \to C_h$ with connected fibers, such that $f_2^*H^{1,0}(C_h) = V$. The holomorphic map $f = (f_1, f_2): S \to C_g \times C_h$ is generically of $rank_{\mathbb{C}}df = 2$ since

$$f^* = f_1^* \oplus f_2^* : H^{1,0}(C_g \times C_h) = H^{1,0}(C_G) \oplus H^{1,0}(C_h) \to U \oplus V \subseteq H^{1,0}(S)$$

and f_1^*, f_2^* are injective. According to Remmert's Proper Mapping Theorem, f(S) is a 2-dimensional complex analytic subspace of $C_g \times C_h$. Therefore $f(S) = C_g \times C_h$. The generic fiber of f is a compact complex analytic 0-dimensional subspace of S, i.e., finite number of points.

In the case of $V = Span_{\mathbb{C}}(v_1)$, let us consider the dual $V^* \subset H_1(S,\mathbb{C})$ and its quotient $E := V^*/V^* \cap H_1(S,\mathbb{Z})_{free}$ modulo the free part of $H_1(S,\mathbb{Z})$. As a closed subtorus of the compact Albanese variety $Alb(S) = H^{1,0}(S)^*/H_1(S,\mathbb{Z})_{free}$, E is an elliptic curve. For any fixed $s_0 \in S$ the holomorphic map $f_2' : S \to E$, $f_2'(S) := \int_{s_0}^s v_1 modulo H_1(S,\mathbb{Z})_{free}$ is of $rank_{\mathbb{C}} df_2' = 1$, whereas surjective. Since the

fibers of f_2' can be disconnected, we pass to Stein factorization $f_2: S \to C_h$, $h \ge 1$. Then apply the rest of the proof for $\dim_{\mathbb{C}} V \ge 2$, Q.E.D.

Generalization of Proposition 1 to higher dimensional compact Kähler manifolds. Catanese has generalized in [3] the theorem of Castelnuovo-de Franchis. Let us say that the normal Kähler variety Y is of Albanese general type if the irregularity $h^{1,0}(Y) > \dim_{\mathbb{C}} Y$ and the image of Albanese map $\alpha: Y \to Alb(Y)$ is of $\dim_{\mathbb{C}} \alpha(Y) = \dim_{\mathbb{C}} Y$. The compact Kähler manifold X_n of $\dim_{\mathbb{C}} X_n = n$ is Albanese general type k-fibration if it admits a surjective holomorphic map $f_1: X_n \to Y_k$ with connected fibers onto a normal k-dimensional Kähler variety of Albanese general type. Catanese has shown that a necessary and sufficient condition for the existence of an Albanese general type k-fibration $f_1:X_n\to Y_k$ is the presence of a maximal subspace $U \subset H^{1,0}(X_n)$ with $\Lambda^{k+1}U = 0$, containing a subspace $U_0 \subseteq U$ of $\dim_{\mathbb{C}} U_0 \geq k+1$, whose k-wedge $\Lambda^k U_0$ is embedded in $H^{k,0}(X_n)$. A slight modification of the proof of Proposition 1 establishes that if a compact Kähler n-dimensional manifold X_n admits an Albanese general type (n-1)-fibration $f_1: X_n \to X_{n-1}$, whose generic fibers are different from \mathbf{P}_1 , then X_n is a finite ramified covering $f: X_n \to X_{n-1} \times X_1$ of the product of X_{n-1} and a Riemann surface X_1 of genus ≥ 1 . The study of the complements of Albanese general k-fibrations $f_1: X_n \to X_k$ with an arbitrary k is obstructed by the condition $\Lambda^{n-k}U_0 \hookrightarrow H^{n-k,0}(X_n)$, which is not easy to be understood.

2. THE FUNDAMENTAL GROUP

Corollary 3. If the surface S is a finite ramified covering $f = (f_1, f_2) : S \to C_g \times C_h$, $g \geq 2$, $h \geq 2$, then its fundamental group $\pi_1(S)$ is commensurable with $\pi_1(C_m) \times \pi_1(C_n)$ for some $m \geq g$, $n \geq h$.

Proof. Campana has shown in [2] that for any surjective holomorphic map $X \to C$ of a compact Kähler manifold X onto a Riemann surface C there is a finite etale cover $r: \widetilde{X} \to X$ such that the Stein factorization $\widetilde{f}: \widetilde{X} \to \widetilde{C}$ of $fr: \widetilde{X} \to C$ has no multiple fibers and there is a finite map $\rho: \widetilde{C} \to C$ with $\rho f = fr$. The application of this result to $f_1: S \to C_g$ yields a finite etale cover $r_1: S_1 \to S$, a surjective holomorphic map $f'_1: S_1 \to C_m$, $m \ge g$, without multiple fibers, and a finite map $\rho_1: C_m \to C_g$ such that $f_1r_1 = \rho_1 f_1'$. The subsequent application of the aforementioned result to $f_2r_1:S_1\to C_h$ provides a finite etale cover $r_2: Z \to S_1$, a holomorphic surjection $\varphi_2: Z \to C_n$, $n \geq h$, without multiple fibers, and a finite map $\rho_2: C_n \to C_h$ with $f_2r_1r_2 = \rho_2\varphi_2$. Consequently, the composition $\varphi_1 := f'_1 r_2 : Z \to C_m$ of the unramified r_2 and f'_1 has no multiple fibers. The Cartesian product $\varphi = (\varphi_1, \varphi_2) : Z \to C_m \times C_n$ is a finite covering, as far as $r_1r_2:Z\to S$ is a finite etale, $f=(f_1,f_2):S\to C_g\times C_h$ is finite and there is a projection $(\rho_1, \rho_2): C_m \times C_n \to C_g \times C_h$. We claim that φ is unramified since the generic fibers of $\varphi_1: Z \to C_m$ and $\varphi_2: Z \to C_n$ have no self-intersections. Indeed, for appropriate ramified coverings $p_1: C_m \to \mathbf{P}_1$ and $p_2: C_n \to \mathbf{P}_1$ one obtains linear pencils of divisors $p_1\varphi_1:Z\to \mathbf{P}_1$ and $p_2\varphi_2:Z\to \mathbf{P}_1$. According

to Bertini's theorem, the generic fibers $(p_i\varphi_i)^{-1}(x) = \varphi_i^{-1}(p_i^{-1}(x))$, i = 1, 2, have no singularities outside the base locus. Thus, $Z \to C_m \times C_n$ is a finite unramified covering and $\pi_1(Z)$ is a finite index subgroup of $\pi_1(C_m) \times \pi_1(C_n)$. On the other hand, $r_1r_2: Z \to S$ is finite and unramified, so that $\pi_1(Z)$ is a finite index subgroup of $\pi_1(S)$. That justifies the commensurability of $\pi_1(S)$ and $\pi_1(C_m) \times \pi_1(C_n)$, Q.E.D.

Acknowledgements. The author is extremely indebted to Prof. V. Tsanov for the useful advices and conversations.

REFERENCES

- Amor'os, J., M. Burger, K. Corlette, D. Kotschick, D. Toledo. Fundamental Groups of Compact Kähler Manifolds. Math. Surv. Mon., 44, Providence, 1996.
- Campana, F. Negativity of compact curves in infinite covers of projective surfaces. J. Alg. Geom., 7, 1998, 673-693.
- Catanese, F. Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Inv. Math., 104, 1991, 263-289.

Received July 16, 2000

Faculty of Mathematics and Informatics "St. Kliment Ohridski" University of Sofia 5 James Bourchier Blvd. BG-1164 Sofia, Bulgaria

E-mail: kasparia@fmi.uni-sofia.bg