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1. INTRODUCTION

In this paper we study the solvability of boundary value problems (BVPs) of
the form
ft,z,2',2") = 0, telo,1], (1.1)
Wi(z) = Vi(z), i1=1,2 '

Here the scalar function f(t,z,p,q) is continuous and has continuous first deriva-
tives only on suitable subsets of [0,1] x R3,

Vi(z) = ¢ (2(0),2'(0),2(1),2'(1)), Va(z) = ¢ ((0),2'(0),2(1),2'(1)),
é,v : R* = R are continuous, and (W, (z), Wz (z)) are of the type

(M) (2(0),2'(1)), (M) (z'(0),z(1)) or (D) (x(0),2(1)).
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Further, we will write as (M, ), (M2) and (D) the BVP (1.1) in the cases (M;),
(M) and (D), respectively.

The solvability of BVPs for the equation z” = f(t,z,z’) with various nonlinear
boundary conditions is studied in [1-8], for example, under various conditions on
f(t,z,p).

The results [9-14], see also [15], guarantee the existence of C20, 1]-solutions
to BVPs for the equation " = f(t,z,z', ") — y(t). Moreover, the solutions satisfy
mixed boundary conditions (M;) or (M) in [9], periodic ones in [10}, Neumann ones
in [9, 11], Dirichlet or periodic ones in [9, 12, 13], and either Dirichlet, Neumann,
Sturm-Liouvile, periodic or antiperiodic ones in {14]; in the last work uniqueness
results are also obtained. Moreover, the growth of f(¢,z,p,q) is linear with respect
to z,p and ¢ in [10-12], semilinear in [13], quadratic with respect to p and linear
with respect to ¢ in [14]). In addition f satisfies various further conditions. The
results [16] guarantee an existence and an uniqueness of C?[0, 1]-solution to the
BVP for the equation z"” = f(¢,z,z’,z") with boundary conditions of the form

a;12(0) + a;52'(0) + apz(l) + az'(1) = 0,i = 1,2.

In [16] f(t, z, p, q) satisfies a growth condition, which is a Nagumo one with respect
to p and a linear one with respect to ¢, and some further conditions. The ap-
proach [10-14, 16] relies on the topological transversality [8] or similar arguments.
The existence results [17] guarantee W2*[0, 1]-solutions or C?[0, 1]-solutions to
the Dirichlet BVP for the equation (1.1). The function f(t,z,p,q) is defined on
[0,1]x R*x R® xY', where Y is a non-empty closed connected and locally connected
subset of R". Growth conditions on f are not used. The approach [17] follows that
introduced in (18] with regard to the Cauchy problem. The results [19] guarantee an
existence of C(0, 1]-solutions to the BVP for the equation z” + g(t,z,z’, ") = y(t)
with either Dirichlet, Neumann or mixed boundary conditions. The authors use
conditions of Lipschitz type on g and barrier strips (20].

In this paper we also do not use assumptions on the growth of f. Using again
the barrier strips technique [20], see also [19] for similar conditions, we obtain some
uniformely a priori bounds for 2/, z and z"” (in this order) for the eventual solutions
z(t) € C?[0,1] to the family of BVPs

{ Kz = XMKz"+ f(t,z,2',2"), te[o,1],

Wi(z) = Mi(z), i=1,2, (1.1)x

where A € [0,1], and K is a suitable positive constant; further, we will write as
(M1)x, (M2)x and (D), the family (1.1), in the cases (M;), (M2) and (D), respec-
tively. Then the solvability of the problems considered follows by a basic existence
result (Theorem 4.1) proved by an application of the topological transversality
theorem [8].
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2. HYPOTHESES

We will say that (A1) holds for the constants F and L if:
(A;) L > F and there are functions F7(t),LE(t) € C[0,1],i=1,2, such that
Li(1) > L,F > F (1),
L} (¢) is nonincreasing and Fy” (t) is nondecreasing on [0, 1],
Li(t)> L) and Fy(t)>Fy(t) for t€ [0,1],
and there is a constant K > 0 for which
f(t,z,p,q) 2 —Kg
on {(t,x,p,q) .zeR.q€ (~00,0),t€[0,1] and LT () <p < L;(t)},

f(t,z,p,q) < —Kq
on {(t,a:,p,q) .z € R,q € (0,00),t € [0,1] and Fy(t)<p< Fl‘(t)}.

14

We will say that (Az) holds for the constants F and L if:
(Az) L > F and there are functions Fit (t), L; (t) € C[0, 1], i = 1,2, such that
L7 (0) > L, F > F{"(0),
L (t) is nondecreasing and F¥ (t) is nonincreasing on [0, 1],
Ly(t)> L7 (t) and F{'(t) > F;F(t) for tel0,1],
and there is a constant K > 0 for which
f(t,z,p,q) < —Kq
on {(t,z,p,q) . z € R, q € (0,00), t €[0,1] and LT(t)<p< L;(t)},

f(t,l?,p,Q) Z —Kq
on {(t,z,p,q) .z €R,ge(~00,0),t€[0,]]and F () <p< F;“(t)}.

Remark. The constant K from (A;) and the constant K from (As) could be
different.

Lemma 2.1. Let the condition (A1) hold for some F and L and z(t) € C*[0,1]
be a solution to (1.1)x (with the constant K from (A1)). Suppose there is an interval
T, C [0,1] such that

L) <a'(t) < Lf(t) for t€Th. (2.1)
Then " (t) > 0 for t € T1. If there is an interval Ty C [0,1] such that
Fy(t) <2'(t) S Fy (t) for tE€ Ty,
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then z"(t) <0 for t € To,

Proof. We will show only that (2.1) yields z"(t) > 0 for t € T). The assertion
is true for A = 0. Now let A € (0, 1]. Assume there is to € T} such that " (t0) <O.
Then

0> Kz"(to) = A[Kz"(to) + flto, z(to), 2' (to), 2" (t0))]) > 0.
The contradiction obtained yields the assertion. J

Lemma 2.2. Let the condition (A») hold for some F and L and z(t) € C?[0,1]
be a solution to (1.1)) (with the constant K from (Az)). Suppose there is an interval
Ty C [0,1] such that

L) <2'(t) <L;(t) for te T;.
Then z'"(t) < O for t € Ty. If there is an interval T, C [0,1] such that Flt) <
2'(t) < FF(t) for teTy, then z"(t) > 0 for t € T,

Proof. The proof is the same as for Lemma 2.1 except for a few inessential
changes in the details. 0

Denote

maxu(t) := x{xgaﬁcu(t), min u(t) := x[}Jlilr]x u(t), and |ullp := max lu(t)].

Let M, @ € R* be some constants, and L(t), F(t) € C|0, 1] be some functions
such that L(t) > F(t) on [0, 1]. Let the functions G7 (t),GF (), H(t),H(t) €
C[0,1],2 = 1,2, be such that for

C = max {||Fllo, || L{|o} (2.2)

we have ‘
(G (t) >2C,G7(t) > 2C for t ¢ [0,1],

Hf(t) < ~2C,H{ (t) < —2C for t € [0, 1],
GT(t) and H} (t) are nonincreasing on [0, 1],

™ —

(2.3)
G1 (t) and Hy (t) are nondecreasing on [0, 1],

Gy (1) > GY (1),G3 (t) > G (¢), for t € [0,1],
| H (t) > Hyf (t), HT (£) > Hy (t) for ¢ € [0, 1].

Replace

Yi :={(t,x,p,q) 2l SMte, te(0,1], pe[F(t) —¢, L(t)+¢] and

g€ [min{min Hf(t), min H; (t)} —¢, max{maxG'{(t),maxG;(t)} +£}},

where
{e > 0 is small enough and such that HT(t) > H (t) +¢,

Hl_(t) > Hz—(t) + ¢, Gi*.(t) > G;'(t) + &, G;(t) S Gz_(t) te, (24)
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Yy := {(t,:r,p, q) :x € [-M, M], and (¢,p,q) is such that

t€[0,1], p € [F(t), L(H), q € [min {H (&), Hy (£)} , max {_G;(t>,G;<t)}1}

Y :={(t,x,p,q) :x € [-M,M], and (t,p,q) is such that
t €[0,1), p € [F(t),L(t)], ¢ € [Hy (t), H (1)) U[GT (8), G+(t)]}
Y, :={(t,x,p, q) : x € [-M, M], and (t,p,q) is such that

t€ (0,1}, p€ [F(t),L(t)], g € [HZ-(t)»Hl_(t)]U[G;(t)>G2—(t)]}

Y5 = {()\,t,x,p) tAE [071}a S [_QaQ]a t€ [01 1]: pPE [F(t),L(t)]}

We will say that (B) holds for the functions L(t), F(t) € C|[0,1] and the con-
stant M € R* if:

(B) There are functions G; (t), GF (), H (t), H (t) € C[0,1], (i = 1,2), which
satisfy (2.3) and are such that

f(t,z,p,q) and f,(t,z,p,q) are continuous on Y;
a'nd fQ(tamap’Q) <0 on lea

ft(t,z,p, Q)’ fz(t»m)pa Q) and fq(taxvp’ Q) are continuous on Y3,
fe(t,z,p,q) + fz(t,z,p,¢)p + fo(t,z,p,q)g > 0 on Y3,

(2.5)

and
fl(t’x)p’ Q) +f:t(t: Z, P, Q)p + fp(timﬁp’ Q)q S 0 on Y4'

We will say that (C) holds for the functions L(t), F(t) € C[0,1] and for the
constants Q € R, Q1, Q2 if:

(C) F(A)t’x1pan)F(A)t,xaP, QZ) S 0 for (A,t,ﬂ?,p) € YS)
where F(\,t,z,p,q) = (A-1)Kq+ Af(t,z,p,q), and K is the constant from (1.1).

3. TOPOLOGICAL PRELIMINARIES

For the sake of completeness, we give the topological transversahty theorem
which will be used later; moreover, we follow [8].
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Let X be a metric space, and Y be a convex subset of a Banach space F.
The continuous map F : X — Y is called compact if F(X) is a compact subset of
Y. The continuous map F : X — Y is completely continuous if it maps bounded
subsets in X into compact subsets of Y.

Theorem 3.1 (Shauder’s fixed point theorem). Let Y be a convexr subset of
E,and F:Y =Y be a compact map. Then there exists a point o € Y such that
F(xo) = Zg.

We say that the homotopy {H): X =Y}, 0 < X <1, is compact if the
map H(z,A) : X x [0,1] = Y given by H(z,\) = Hj(z) for (z,)) € X x [0,1] is
compact.

Let U C Y be open in Y, U be the boundary ofU in Y, and U = 8U U U.
The compact map F : U — Y is called admissible if it is fixed point free on OU.
We denote the set of all such maps by Lsy (U, Y).

Definition 3.1. The map F in Loy (U,Y) is inessential if there is a fixed point
free compact map G : U — Y such that G|8U = F|8U. The map F in Ly (U,Y),
which is not inessential, is called essential.

Theorem 3.2. Let p € U be arbitrary and F € Loy (U,Y) be the constant
map F(z) = p forx € U. Then F is essential.

Proof. Let G : U = Y be a compact map such that G|8U = F|0U. Define the
map H:Y =Y by
H(z)=p for ze€Y\U,

H(z) =G(z) for z€U.
Clearly, H : Y — Y is a compact map. By Shauder’s theorem H has a fixed point
zg €Y, i.e. H(zg) = z¢. By definition of H we have zo € U. Thus, G(zo) = 2o
since H equals G on U. So every compact map from U into Y, which agrees with
F on 98U, has a fixed point. That is, F' is essential. [

Definition 3.2. The maps F,G € Lsy(U,Y) are called homotopic (F ~ G)
if there is a compact homotopy Hy : U — Y such that H, is admissible for each
A€ [0,1) and G = Hy, F = H;.

Lemma 3.1. The map F € Lgy(U,Y) is inessential if and only if it is
homotopic to a fized point free map.

Proof Let F be inessential and G : U — Y be a compact fixed point free map
such that G[0U = F|0U. Then the homotopy Hy : U — Y, defined by

Hy(z) = AF(z) + (1 - A)G(z), A€][0,1],

is compact, admissible and such that G = Hy, F = H;. B
Now let Hy : U = Y be a compact fixed point free map, and Hy : U —» Y
be an admissible homotopy joining Ho and F. To show that Hy,A € [0,1], is an
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inessential map, consider the map H : U x [0,1] = Y such that H(z,\) = Hx(z)
for each z € U and X € [0,1] and define the set B C U by

B={z€U:H\(z)=H(z,A\) =z forsome A€ [0,1]} .

If B is empty, then H; = F has no fixed point which means that F' is inessential.
Go we may assume that B is non-empty. In addition, B is closed and such that
BNOU = @ since Hy, A € [0, 1], is an admissible map. Now consider the Urysohn
function 8 : U — [0,1] with

9(z) = 1forz € U and 6(z)=0forz € B
and define the homotopy H} : U — Y, A € [0,1], by
H; = H(z,0(z))) for (z,)) €U x[0,1].

It is easy to see that H} : U — Y is inessential. In particular, H; = F is inessential,
too. The proof is completed. O

As a consequence of Lemma 3.1 we have:

Theorem 3.3 (Topological transversality theorem). Let F,G € Loy (U,Y) be
homotopics maps. Then one of these maps is essential if and only if the other one
is.

Theorem 3.3 is used in the following equivalent form:

Theorem 3.4 (Topological transversality theorem). LetY be a convex subset
of a Banach space E, and U C'Y be open. Suppose:

(i) F,G:U —Y are compact maps;

(i) G € Loy(U,Y) is essential;

(iii) Hx(z), X € [0,1], is a compact homotopy joining F and G,

i. e. Ho(z) = G(z), Hi(z) = F(z); :

(iv) Hx(z), A € [0,1], is a fized point free on OU.

Then Hy, X € [0,1], has at least one fized point To € U, and, in particular,
there is an o € U such that zo = F(zo).

4. A BASIC EXISTENCE RESULT, ANCILLARY RESULTS

The following theorem is a modification of [8, Chapter II, Theorem 6.1].

Theorem 4.1. Let ,v : R* = R be continuous. Assume there are constants
Q,Q1, Qs (independent of A) and functions L(t), F(t) € C[0,1] (independent of )
such that: '

(i) |zt <Q, Ft) <z'(t) < L(t), 1 < z"(t) < Qa, t € (0,1], for each solution
z(t) € C?[0,1] to (1.1)x (with fized K > 0) and for A € [0,1];
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(i) f(¢,z,p,q) and f4(t,z,p,q) are continuous, and f,(t,z,p,q) <0 on
{tep.0): 2 €[-Q,Q) 1€ [Q1,Qa), t € [0,1] and p e [F(0), (1) }.
(iii) F(At,z,p, Q1)F (A t,z,p,Q2) <0 for (\t,z,p) € A=
{Vezp): xe,), 2 €(-0,Q), te0,1) andpe [F), L)}
Then the BVP (1.1) has at least one C?[0,1]-solution.

Proof. From (ii) and (iii) it follows that there is an unique function G(\, t, z, p)
continuous on A and such that

g =G(\t,z,p) for (\t,z,p) € A

is equivalent to the equation F(A,¢,z,p,q) = 0 on A x [Q1,Q2). Thus, the family
(1.1) is equivalent to the family of BVPs

" = G(Atz,a'), telo,l],
Wi(z) = AV(z), i=1,2,

A € [0,1]. Note that F = —Kgq for A = 0 and it yields
G(0,t,z,p) = Ofor(t,z,p) € Q, (4.2)

where Q = {(t,x,p) € [-Q,Q),te[0,1],and p € [F(t),L(t)]}.
Define the map

Ly : C%[0,1] = C[0,1] x R* by Lz = (x Wi (z), Wg(x))

(4.1)

and the maps .
G :C'0,1} = C[0,1] x R* by

GA(a:)z(G(/\,t,x,m'), AVi (), sz(x)) for € 0,1].

It is easy to see that L, is a continuous, linear, one-to-one map of C2[0,1] onto
C[0,1] x R%. So L; has a continuous inverse L;'. Finally, define j : C2[0,1] —
C'(0,1] by jz = z, which is a completely continuous embeding.

Now define the set

U= {a: € C?(0,1]: for t € [0,1], [z(t)| < M, F(t) < #'(t) < L(t), Q1 < 2" (t) < Qg}

. and consider the homotopy
H:U x [0,1) = C?[0,1] defined by H(z,\) = Hy(z) = LT 0 Gyo j(z).
This homotopy is compact since j (ﬁ)_is a compact subset of C'[0,1], and Gy, A €
[0,1], and L' are continuous on j(U) and G, (7(U)), respectively. In addition,
the equation _ -
LT'oGroj(z) =z yields Ly(z) = Gx(z),

which is the BVPs (4.1). Then it follows from (i) that H)(z) is a fixed point free
on 9U, i.e. Hy(z) is an admissible map for all A € [0,1]. Finally, Hy = 0 by (4.2).
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So Hy is an essential map by [8, Chapter I, Theorem 2.2]. Now we are in a position
to apply Theorem 3.4. It implies that H; = L]' o Gy0 j is essential, too, which
means that the original problem (1.1) has a solution in C*[0,1]. O

The next results prepare the application of Theorem 4.1. They guarantee the
a priori baunds from (i) of Theorem 4.1.

Lemma 4.1.A. Let (A;) hold for some constants My and M, (i. e. (A1) holds
for F(t) = My and L(t) = M>, t € [0,1]). Suppose z(t) € C*[0,1] is a solution to
(1.1)x (with the constant K from (A;)) such that M; < z'(1) < M3. Then

Fy(t) <a'(t) <LY(@®) for teo,1].

Proof. Suppose the set

So={te0,1): LT(t) <z'(t) < LT (t)}
or 4
S1={te[0,1]: F (1) < ='(t) < Fy ()}
is not empty. The continuity of z'(t) and the inequalities Fi (1) < z'(1) < LT (1)
imply that there are closed intervals

[to,t5) € So or [t1,t}] CSh
such that
z'(to) > z'(ty) or z'(t1) < z'(t})- (4.3)
On the other hand, by Lemma 2.1, we have
z"(t) > Ofort € [to,tg] or z"(t) <0 fort € [ty,1).

Consequently,

2(to) <o'(th) or ()27 (H).
The contradiction to (4.3) shows that S; and S; are empty, which yields the lemma.
O

Lemma 4.1.B. Let (A;) hold for some constants M; and Mz and (B) hold for
L(t) = LT (t), F(t) = Fy (t),t € (0,1}, and M = C + N, where C is the constant
(2.2), N is some constant, and the functions LT (t) and Fy (t) are from the condition
(A,). Suppose z(t) € C?[0,1] is a solution to (1.1)x (with K from A.)) such that

|z(0)| < N,t € [0,1), and M, <2'(1) < M>.

Then
lz(t)] < M for te€(0,1) (4.4)

and

win{ (1), Hy (0} < 2"() < max{G1 (0,67}, te D1 (49)
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Proof. In fact C = max {||L{|lo, ||Fy" |lo}. By the mean value theorem there is
d € (0,1) such that z"(d) = z'(1) — 2’(0). Lemma 4.1.A implies

Fr() <a'(t) <Lf(t) for tel0,1],
i.e. |z'(t)] < C fort €[0,1]. So
g"(d) <2C < Gf(t) for te[0,d]. (4.6)
On the other hand, for each ¢ € (0, d] there is ¢ € (0,t) such that
z(t) — z(0) = z'(e)t,

which yields
lz(t)] < M for t € [0,d)].

Now suppose the set
S={te[0,d:Gf () <z"(t) <G (1)}
is not empty. The continuity of z”(¢) and (4.6) imply that there is a closed interval
[to,to] €S such that =z"(to) > z”(t}). (4.7)
Since for ¢ € [to, tg)
M <z(t) <M, F(t)<a'(t) SLT(t), Gf(t)<az"(t) <G (),
we have
fo(t,z(t),2(8),2"(t)) <0, t € [to, 1), (4.8)
and
fe(t,z(t), ' (), 2" (£)) + fa (b, 2(2), 2" (2), 2" (£))2" + fo(t, 2(8), 2" (2),2" (£))=" > O
for t € [to,y]. From the differential equation (1.1), for ¢ € [to, 5] we obtain
(K(1 = A) = Afe(t, z(2),2'(t), qn)] [z" (t + B) — 2" (2)]
{ = hfi(Pin) + fo(Pon)[x(t + B) — 2()] + fp(Pan)l2'(t + h) —2'(8)]  (4.9)
= fo(P) + fz(P)z'(t) + fp(P)z" (),

where (t,z(t),z'(t),z"(t)) and the points Py, Pop and P3, tend to P. Because of
(4.8) it follows from (4.9) that z'(t) exists and

" = A(fe+ fox' + fo2") J [K(1 = X) = Afy], (4.10)

which yields |
| "'(t) >0 for t€ [to,tp).

Then
z"(to) < 2"(tp),

a contradiction to (4.7). Consequently,
z"(t) < GY(t) for te€[0,d]
The inequality
Hi(t) <2"(t), tefo,d),
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may be obtained in a similar way.
Similarly, the inequalities

@(t) <M and Hf(t) <o"() SGT(), teld],
may be established. O

Lemma 4.2.A. Let (Ay) hold for some constants M3 and My. Suppose z(t) €
C2(0,1] is a solution to (1.1)x (with the constant K from (As)) such that M3 <
z'(0) < My. Then

Fr(t) <'(t) < L7(t) for t€(0,1].

Proof. The lemma can be obtained by using Lemma 2.2 and following the proof
of Lemma 4.2.A. 0

Lemma 4.2.B. Let (A3) hold for some constants Ms and My, and (B) hold
for L(t) = LT (t),F(t) = (), t € [0,1], end M = C + N, where C is the
constant (2.2), N is some constant, and the functions L1 (t) and Ff(t) are from
the condition (Az). Suppose z(t) € C2[0,1] is a solution to (1.1)x (with K from
(As)) such that

|z(1)] < N, t€[0,1), and Ms< z'(0) < My.
Then (4.4) and (4.5) hold with current notations.
Proof. 1t is not too different from the proof of Lemma 4.1.B. 0
Lemma 4.3.A. Let (Ay) and (Az) hold for F = min{0, M3 — M} and L =
max{0, My — M.}, where M; € R, i = 1,4. Suppose z(t) € C?[0,1] is a solution

to (1.1)x (with K = min{ Ky, K»}, where K; is the “value” of the constant K from
(A;), i = 1,2) such that

M, <z(0) £ My and Mz <z(1) < My
Then for t € (0,1]
min { Fy(0), Fi (1)} < z'(t) < max {L{(0), LT (1)}

Proof. There is d € (0,1) such that
2(d) = £(1) - 2(0) = A (2(0), 7' (0),2(1),2'(1)) — ¢(2(0),2'(0), (1), z' (1)),
from where it follows
min{0, Mz — Ma} < A(M3 — M) < z'(d)

and
o' (d) < MMy — M) < max{0, My — M }.

For t € [0,d] we have
F7(t) <2'(t) <Ly (t), by Lemma 4.1.A,
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and for ¢ € [d, 1] we have
FF(t) <2'(t) < L7 (t), by Lemma 4.2.A,

and the assertion follows. J

Lemma 4.3.B. Let (A1) and Ay) hold for F = min{0, M3 — M} and L =

max{0, My ~ M1}, where M; € R, i = 1,4, and (B) hold for
L(t) = max {L}(0), L7 (1)},  F(t) = min {F{(0), FF (1)},

and M = C + max{|M,|, | M,|,|M3|,|M4|}, where C is the constant (2.2). Suppose
z(t) € C?[0,1] is a solution to (1.1), (with K = min{Ky, K»}, where K; is the
“value” of the constant K from (A;), i = 1,2) such that

My <z(0) < M; and Mz < 2(1) < M,.
Then (4.4) and (4.5) hold with a current notations.
Proof. 1t is not too different from the proof of Lemma 4.1.B. 0

5. EXISTENCE RESULTS

Theorem 5.1. Let ¢,y : R* - R be continuous. Suppose there are constants
M;,i=1,2, and N such that:

(i) My <4(s1,82,83,54) < My for (s1,82,83,84) € Ry;
(ii) (A1) holds for My and M,;
(iii) [ (s1,82,83,84)] < N for (sy,82,83,84) € Rx [F(0), LT (0)] x R x [My, M,);

(iv) (B) holds for L(t) = Ly (t), F(t) = Fy (t), t € [0, 1}, and M = C + N, where
C is the constant (2.2);

(v) (C) holds for L(t) = L (t) +¢, F(t) = F{(t) —¢, t € (0,1], for
Q=C+N+e, Qp = min{Hr(l),H;(O)}-e, Q= ma.x{G‘f(O),Gl”(l)}-i—e,
where C is the constant (2.2), and ¢ satisfies (2.4).

Then the mized BVP (M,) has a C?[0, 1]-solution.
Proof. Let x(t) € C*[0,1] be a solution to (M;),. Then
Frt)—e<a'(t) <L) +e for te]o, 1],by Lemma 4.1.A,
and Lemma 4.1.B yields the bounds
lz(t)] < @ for te€|0,1],
Q1 <z"(t)<Q; for te|0,1].

Then the condition (i) of Theorem 4.1 holds. From (2.5) it follows that the condition
(ii) of Theorem 4.1 holds. Finally, (v) implies that the condition (iii) of Theorem

66



4.1 holds. So we can apply Theorem 4.1 to conclude that the problem (M;) has a
solution in C?[0,1]. O

Theorem 5.2. Let ¢,9 : R* =& R be continuous. Suppose there are constant
M;, i =3,4, and N such that:
(1) Ms < @(s1,52,53,84) < My for (s1,52,83,54) € Ry;
(ii) (Az) holds for M3 and Ma;
(i) |w(s1,82,83,84)| < N for (s1,52,83,84) € R X (M3, My] x Rx [F{H(1), LT (1)];

(iv) (B) holds for L(t) = Ly (t), F(t) = F¥@),t€(0,1], and M = C + N, where
C is the constant (2.2);

(v) (C) holds for L(t) = LT (t) + €, F(t) = F(t) —¢,t€[0,1], for
Q=C+N+e, Q1 = min{Hr(l),H;(O)}-a, Q, = max{Gf‘(O),Gf(l)}+s,
where C is the constant (2.2), and € satisfies (2.4).

Then the mized BVP (Ms) has a C?(0, 1]-solution.

Proof. It is not too different from the proof of Theorem 5.1. Consider (M2) x.
Now Lemma 4.2.A guarantees the a priori bound for ', and Lemma 4.2.B guaran-
tees the a priori bounds for z and z". (0

Theorem 5.3. Let ¢,9 : R* = R be continuous. Suppose there are constants
M;, i = 1,4, such that:

(i) M, < ¢(s1,89,83,84) < My and M3 < (81, 52,83,84) < My
for (s1,82,83,84) € R;
(i) (A1) and (Az2) hold for F = min{0, M3 — M} and L = max{0, My — M1 };
(iii) (B) holds for L(t) = max{Lf(O), L;(1)}, F(t) = min{F;(O),F;“(n} and
M = C + max{| M|, |M,], |Ma|, |My|}, where C is the constant (2.2);
(iv) (C) holds for the functions

L{t) = max{L;f(O), L;(1)} +e, F(t)= min{F;(O),F;“u)} —¢,
0 = C + max{[Mil, [Mal, [Ms], [Mal} +¢, Qi =min{H (1), H; (©)} ~e,

Q2 = max{G}(0),GT (D} +e,
where C is the constant (2.2), and € satisfies (2.4).
Then the Dirichlet BVP (D) has a C?(0,1]-solution.

Proof. It is not too different from the proof of Theorem 5.1. Now consider the
family (D)x. The a priori bound for z' follows by Lemma 4.3.A, and the a priori
bounds for z and z" follow by Lemma 4.3.B. O
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6. EXAMPLES

Example 6.1. Consider the boundary value problem
~(2-t)2" —tz" +sin(z' —0.2) =0, te[o,1],
z(0) =0, 2z'(1) =0.15.
For L = F = 0.15 (A;) holds. Moreover, we can choose
Lf(t) =025, L7 (t) = 0.3, F; (t) = 0.1, Fy (t) =0.05, t € [0,1],

and K is sufficiently small; to say K = 10~1°, It is easy to see that fo=—-(2—t)g-
3tq> < 0 for t € [0,1] and each g. This fact allows us to conclude that (B) holds
for L(t) = 0.25, F(t) = 0.1, t € [0,1], and M = 0.25. Moreover, we can choose

GY(t)=09,Gf(t) =1, G{(t) =2, G5 (t) = 3,
Hy (t) = =09, Hy (t) = -1, H (t) = -2, Hf (t) = -3, t € [0,1).
Finally, from
2.01(A ~ 1)K + A [-2.01(2 — t) — (2.01)% + sin(p — 0.2)] <0
and
—2.01(A = 1)K + A [~ (-2.01)(2 — t) ~ (—2.01)3t + sin(p — 0.2)] >0
for A, ¢ € [0,1] and each p we conclude that (C) holds for Q1 = —2.01and Q, = 2.01.
Thus the problem considered has a C2(0, 1]-solution by Theorem 5.1.
Example 6.2. Consider the boundary value problem
o? —4-5002-t)" —tz"* =0, te[o1],
2(0) = [2*(0) + 2'*(0) + 2%(1) + 2> (1) + 1]}, z(1) = sin®2'(1).
For L =1and F = -1 (A;) and (A;) hold. Moreover, we can choose
Ly(t) =21, LT (t) =22, F7(t) = 1.1, F; () = ~1.2,
Ly(t) = 1.1, Ly () = 1.2, FiF (t) = -2.1, F{" (t) = -2.2, t € [0, 1],

and K is sufficiently small; to say K = 10~19, It is easy to see that fo = —50(2 -
t) — 5q*t < 0 for ¢ € [0,1] and each g. Thus (B) holds for L(t) = 2.1, F(t) = -2.1,
t € [0,1] and, M = 3.1. Moreover, we can choose

GY (t) = 6.5, GF (t) = 6.6, Gy (t) = 10, G; (¢) = 11,
Hy (t) = -6.5, Hy (t) = -6.6, H{"(t) = —10, H (t) = -11, t € [0, 1].
Finally, from
10.01(A ~ 1)K + A [p* — 4 — 50(2 - £)10.01 - (10.01)%] < 0
and
~10.01(A = 1)K + X [p* — 4 - 50(2 — t)(—10.01) — (—-10.01)%¢] >0
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for \,t € [0,1} and p € [-3.11,3.11] we conclude that (C) holds for L(t) = 2.11,
F(t) = —2.11, t € [0,1), Q = 3.11, Q; = —10.01 and Q2 = 10.01; & = 0.01. Thus
the problem considered has a C?(0, 1]-solution by Theorem 5.3.
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