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In the present work we develop a Galerkin spectral technique for solving coupled higher-
order boundary value problems arising in continuum mechanics. The set of the so-called
beam functions are used as a basis together with the harmonic functions. As featuring
examples we solve two fourth-order boundary value problems related to the convective
flow of viscous liquid in a vertical slot and a coupled convective problem. We show
that the rate of convergence of the series is fifth-order algebraic both for linear and
nonlinear problems of fourth order. The coupled problem exhibits fourth- and fifth-
order convergence for the different unknown functions. Though algebraic, the fourth
order rate of convergence is fully adequate for the generic problems under consideration,
which makes the new technique a useful tool in numerical approaches to convective
problems.
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1. INTRODUCTION

Fourth-order boundary value problems are the standard model in continuum
mechanics arising both in elasticity and in viscous liquid dynamics. The simplified
1D models are respectively the beam equations and Poiseuille flow. The method
developed here can be applied to both elasticity and fluid dynamics. For the sake
of definiteness we will focus our attention on thermal convection in a vertical slot,
which is a generalization of the Poiseuille flow.
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There is a compelling need to develop fast spectral methods that will lead
to more efficient algorithms. Such algorithms would allow a rapid interrogation
of parameter space in order to discover and understand mechanisms of flow and
instability. The performance of a spectral method depends heavily on the type
of the basis system. Naturally, a basis system of functions which does not satisfy
all of the boundary conditions, such as Fourier functions, would exhibit very poor
convergence near the boundaries, where the solution is supposed to satisfy four
boundary conditions. An elucidating discussion on the performance of different set
of functions can be found in the encyclopedic book of Boyd [2]. In the present work
we embark on developing spectral techniques involving the so-called beam functions
introduced first by Lord Rayleigh, see [10]. Along these lines we will investigate
also in a future work the performance of Galerkin techniques with a basis derived
from Chebyshev polynomials — something that goes, however, beyond the scope
of the present work.

The application of the beam-Galerkin method to Poiseuille flow is at present
well developed, see [9, 4]. We go a step further here and consider the generic bound-
ary value problem for convective flows of viscous liquids. These are rather complex
ones, hence geometrically simplified situations are considered in order to identify
the physical mechanisms, e.g. straight ducts and/or slots. These mechanisms are
often operative in more complicated situations. Even for the simplest geometries
with plane parallel flows, the mathematical models are represented by higher-order
boundary value problems in one and two dimensions and analytical solutions are
not available. In the same time the parametric space of physical interest and signif-
icance is enormous (4-5 dimensionless parameters to vary). The Rayleigh number
and modulation frequency can take on very high values, signaling the occurrence
of boundary or internal layers of steep profiles of the field variables. This makes
the development of effective numerical approaches a must.

2. THERMAL CONVECTION IN A VERTICAL SLOT

Consider the 2D flow in a vertical slot with a linear vertical temperature gradi-
ent, differentially heated walls, and subject to modulation of gravity in the vertical
direction. The problem definition is well-described in the literature (refer to (1, 6]
and Fig. 1 for a definition sketch), and the notation we use is standard:

z* * 'L2
x='f~1s y=yf7 w:w?,
o _'/J' —T#
t=t"w", ‘l,[J—V, 0 6T+$ TBY,

where v is the kinematic viscosity, & — the thermal diffusivity, 2L — the width
of the slot, and 4T — the horizontal temperature difference. The asterisk denotes
dimensional variables, while the same notation without an asterisk stands for the
respective dimensionless quantity. Note that the field 8(x,y,t) is the departure
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from the linear vertical and horizontal stratification. Hence one can seek solutions
which are penodlc in the vertical dimension.
The dimensionless boundary value problem under consideration reads
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Fig. 1. Flow geometry

with boundary conditions
¢—21£—9=0 for z==1, (3)

and periodic conditions in vertical direction
¥(z,0, t) = Y(z, H, 1),
1,/1,,(:1:,0, t) = wy(xaHa t),
Pyy(2,0,1) = Yyy(z, H, 1), (4)
yyy(2,0,1) = Vyyy (z,H,t),
(z,0,t) = 6(z,H, t),
0,(z,0,t) = 8,(x,H,1),
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where H = H*/L = 27 /a is the dimensionless height of the vertical box: equiva-
lently, a is the dimensionless vertical wave number of the periodic solutions.

The Rayleigh number Ra, the Prandtl number Pr, and stratifications param-
eter, -, are defined as:
ﬂgo(STL3 1 24

Pr=—, 4~4 = ,
VK 4 K i TBRa

Ra =

where 3 is the coefficient of thermal expansion of the liquid, go — the mean gravity,
¢ — the dimensionless amplitude of gravity modulations, w — the dimensionless
frequency, and 7p is the dimensionless vertical temperature gradient. Using a
difference approximation and an operator splitting, the 2D flow is investigated
numerically in [5]. We focus our attention on the 1D case for the purposes of
developing the new numerical technique.

Under the selected boundary conditions the problem also admits a plane--
parallel solution of the form ¥(z,t), ©(z,t) for which the governing system reduces
to the following:

w 83V 00 o'v
-1—3; 5022 = —~Ra [1 + 5;] [1 + & COS(t)] + E‘f ) (5)
66 _ _ov_ d9© 6
w Bt = TB am 63:2 ’ ( )

with the same boundary conditions (3).

The 1D flow was first treated in [6], where different régimes of flow were studied.
The parametric bifurcation of the 1D solutions was studied in detail in [5] by means
of a fully implicit difference scheme and a related 1D problem in [12].

A way out of these difficulties is to use spectral decomposition with respect
to complete orthonormal (CON) systems in z-direction. The performance of a
spectral method depends heavily on the type of the basis system of functions. The
scope of this paper is to implement these ideas for the one-dimensional in space
and time-dependent problem (5), (6), (3).

In order to assess the approximation, convergence rate and truncation error,
it is enough to consider a model ODE which contains all of the different terms of
the time dependent system. A simplified first step is to consider just one ODE of
fourth order and to compile the rest of the technique.

To this end we consider the following three boundary value problems (b.v.p.):

1. B.v.p. containing both fourth and second-order derivatives:

du d*u

oy + 2317—2- +u=1 u(-1)=ul)=0, 4 (-1)=4(1)=0, (7)
which possesses an analytical solution:
. 2cosz[cosl+sinl] - 2zsinlsinz
u(z) =1~ 2 + sin 2 ' ®)
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2. A nonlinear version of the above b.v.p.:

‘ %+ 2% +u=1-—100u%(z), ©)
u(-1)=u(l)=0, u'(-1)=4'(1)=0,

where the large coefficient 100, multiplying the nonlinear term, is selected for
the sake of making the nonlinearity more appreciable.

3. The higher-order coupled b.v.p. for an ODE system, which retains all of
the important terms in the full-fledged unsteady problem for the thermal
convection in a vertical slot:

av _ o [ do] 10°¢
dzt dz | T Proz?’ (o)
dv d*0

(")——Ez———(i;f, ‘Il—‘I!z—(-)~0, for z = =1.

We find the above system generically representative of the problem under con-
sideration, because it retains the second spatial derivatives. In a sense, it can be
considered as a simplification of an Euler time-stepping scheme with time increment
equal to one. -

3. THE SPECTRAL TECHNIQUE

The expansion in z direction is nontrivial because of the higher-order boundary
value problem for the stream function. The right CON system for a fourth-order
problem was introduced by Lord Rayleigh for the problem of vibration of elastic
beams. For the specific boundary conditions arising in viscous liquid dynamics the
system and its completeness were discussed in [3]. The product formulas as well
as the expansion formulas for the derivatives of different orders were derived in a
preceding authors work [4]. The product formula is essential for the application to
a nonlinear problem.

3.1. BEAM FUNCTIONS

Consider the Sturm-Liouville problem .
4 d
'%y—t::/\“u, u=d—Z=O, for z=4=1. (11)

The nontrivial solutions (eigen-functions) of this problem are given by

1 [sinh AmT sin)\ma:]

cotanh A\, — cotan A, =0, (12)

S V2 | sinh A T sinAm
1 [coshkmT COSKmZ
= — ; t h t =Vv. 13
e V2 [coshnm cosnm] anh K + tan fim = 0 (13)
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These functions have been introduced by Lord Rayleigh to solve problems arising '
in beam theory and they are sometimes called beam functions. A major step in the
advancement of the application of the beam functions to fluid-dynamics problems
was made by Poots [9]. The magnitudes of the different eigenvalues can be found
in most of the above cited works from the literature.

Chandrasekhar [3] derived their counterparts for problems with cylindrical
symmetry. For applications to stability problems, see also [7, 11].

The expressions for developing the nonlinear terms into series with respect to
the system appeared simultaneously in [8) and [4] though in different form. We
stick here to the notations of {4] as more explicit and easier to verify.

3.2. EXPANSIONS FOR THE DERIVATIVES

The different derivatives can be expressed in series with respect to the system
as follows: f

o0 .
: 4K A0
n= 2 CnmSm » Anm = 4’ (14) .
m=1 Kn = Am
oo
: a . 450
Sp = z GnmCm Anm = YISV (15)
m=1 —'K’m + n

Bnmsm’ (16) |

:-pt

1
N
=
5

3
M8

m= m=1

4x2 K2
—Tﬂ—m,r (km tanh K., — Kp tanhk,), m #n,

Brm = Km — Kn (17) _
Kn tanh K, — (£n tanh g,)? m=n,
422 )2
- —,—n—ﬂg— (An cotanh A, — Ay cotanh Ay,), m #n,
ﬁnm = n (18)
An cotanh An = (An cotanh An)?, m=n,
o = Z dpms$ dpm = -4&—?’)"\3"—tanhn cotanh A (19)
nmem nm _n% + A’n n m)
m 7 7 4"‘$nA?z
8y = Z dpmCm , dom = _—_r:TT/\Z‘,- tanh k,, cotanh A,,. (20)
- m

3.3. PRODUCTS OF BEAM FUNCTIONS

The most important for the present work are the product formulae

76



’

colon(@h= D H"eu(a), VIR =V / llcnmcm(z)ck (&)da
2 )

—(Km + K&)(tanh K + tanh Kk) — Kn tanh K,
(nm + nk)z - 52

—(&m — &k)(tanh km — tanh Ki) + Kn tanh £q

—(km + ki) (tanh K, + tanh ki) + Kn tanh £n
(km + Kk)2 + K3

—(km — Ki)(tanh K, — tanh ki) + Kn tanh kn
(km — Kk)% + K3

N —(Kn + Ki)(tanh £, + tanh ki) + Km tanh Km
(Kn + Ki)? + K2,

—(Kn + Km)(tanh K, + tanh nm) + ki tanh kg
(kn + km)? + K2

+ —(Kkn — km)(tanh k,, — tanh Km) + Kk tanh nk

(Kn — £m)? + K2,

—l

-+

+

+

SnCm = ka S8ky SnSm = Z cka nm = \/—/ 8nCmSikdT

(An + Ak)(coth A, + coth A\x) — £m tanh £m
(Ak + An)? — &%,

+ —(Mk = An)(coth A\ — cothAn) + Km tanh K,
(Ak — An)? — K

+ —(Ak + Km)(coth Mg + tanh Km) + An cOth An
(Ax + Km)? + /\%

—(Ak = Km)(coth A — tanh Km) + An cOth An
(Ak - ﬁm) + /\2

—(A + Km)(coth A, + tanh xm) + Ak coth Ag

+

(On + Em)? + X3
L =On = Kom)(COth A — tanh Km) + Ak coth Ak

(An — £m)? + X%
+ —(An + Ax)(coth Ap + coth A\x) + &m tanh Km

(Ak + An) + &2

(,\,c — An)(coth A, — coth Ax) + Km tanh Kk,

Dk = )2 + K2,

(21)

(22)
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The most obvious test to verify the correctness and consistency of the above
derived formulas for the products is to take the product of some two particular
functions ¢, and c,, and to compare pointwise the products c,c,, and spc,, with
their Galerkin expansions into ¢; and s, respectively. For the products of even
functions this comparison is shown in Fig. 2.
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Fig. 2. The convergence of the series for the product cec3. Solid line: h%3; dashed line: the best
fit curve h%3 = 2600:~5

Our numerical experiments with different products of beam functions invari-
ably led us to the fifth-order convergence

I ~ fm,n)k™5,  R™ ~ h(m,n)k~>.

Thus a conjecture is in order that the fifth order of convergence of the series for a
quadratic nonlinear term is a general property of the system of beam functions.

3.4. EXPANSION OF UNITY

We also expanded the unity into a ¢,, series as follows:

2\/§ tanh
Kk )

00 1
1=3 hala), b= [ lz)do= (2)
k=1 -1

The convergence of this expansion is algebraic of first order. This is due to the
fact that the unity does not satisfy the boundary conditions for the beam functions |
and as a result a strong Gibbs effect is observed near the boundaries. ;

Yet the overall rate of convergence of the method is fifth-order algebraic, be- |
cause in the left-hand side of the problems under consideration the fourth power of
the respective eigen-value appears as a multiplier. :
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3.5. BEAM-FUNCTION SERIES AND TRIGONOMETRIC SERIES
t

For the convective problem under consideration the difficulties arise from the
fact that the boundary value problem for temperature function is of second order,
which means that the system of beam functions is not suitable for expanding
the temperature field. It is clear that the best suited to the task system are
the trigonometric sines and cosines. Hence we need to develop expressions for
expanding the beam functions into trigonometric functions and vice versa:

o0
, 2v2lm (Mg )? (1)
sinlnrzr = kask(m), O = \/_l:r(4 k) (4 ) , (24)
o0
2v2k3 (—=1)*! tanh
cosire =Y xucr(a), i = k)2 (25)
k=1 T Kk
o0
) A 2v/2k3 (-=1)*! tanh k
cn(z) = Zan coslnz, Xnl = V2 nl(4 4)_ 4 - ) (26)
P 7wt — k4
. . 2V 2l (A)2(—1)
sp(z) = ZO‘M sinlnz, Ont = 14"(4 ':))‘(4 ) . (27)
n

=1

Once again we point out that the convergence when expanding cos(Iwz) into
cr series is first order k=1 (see (25)) due to the fact that it does not satisfy both
b.c. for the beam functions. It satisfies the condition on the derivatives but fails
to satisfy the conditions on the function itself. Clearly, the situation with the
sin(lwz) is better and the rate of convergence is of second order k=2 (see (24)),
because the sine functions satisfy the boundary conditions on the functions and
the disagreement is more subtle since the conditions on the first derivative are
not satisfied. The situation with the expansions of s, and ¢; in Fourier series is
reversed. The order of convergence for ¢ is [=* (see (26)), and for s, is [=3 (see
(27)). As it will be shown in what follows, this property is of crucial importance
for the overall rate of convergence.

4. THE GALERKIN METHOD

In this section we present the numerical tests and verifications of the Galerkin
technique using as featuring examples the three boundary value problems outlined
in Section 2.

4.1. SOLVING THE MODEL FOURTH-ORDER PROBLEM

We solve (7) numerically using the developed here beam-Galerkin expansion
with respect to the complete orthonormal (CON) system of functions ¢, (z), sn(z).
Because of the nature of the boundary conditions, we can constrain ourselves to

.
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the subset of even functions c, (a fact verified also by the analytic solution) ang
expand the sought function into series with respect to cn(Z):

N
u(z) =) bnea(z). (28)
1

Making use of the above compiled formulas we obtain for the coefficients b,
the following linear algebraic system of N equations with N unknowns:

N
2v/2tanh k;
(1 + &7)b; + 2ijﬂij = v2 - “,
i=1 i (29)
t=1,...,N,

with 8;; defined in (17).
The last system is solved by means of LAPACK routine dgesv. |
We found that the coefficients b; decay with the number of the term i as iS5,
which is clearly seen in Fig. 3.
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Fig. 3. Convergence of the beam-Galerkin series for the model equation (7). Solid line: b;;

dashed line: the best fit curve b; = 0.0023i—5

The obtained spectral solution is compared to the analytical one and the overall
truncation error is estimated. As it is to be expected for a series with fifth-order '
algebraic convergence, the truncation error for N = 100 is of order of 0(10719),

4.2. THE NONLINEAR MODEL PROBLEM

The nonlinear problem (9) results into the following nonlinear algebraic system:

N N N
2\/§tanh Kq
4\p. z : . = YT T E E mn
(1 " K’i )b‘ ¥ 2j=1 bjﬁu - Ki 100 m=1n=1 bmbnh‘ , (30)

i=1,...,N,
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where h"™ is defined in formula (21). We solve the latter with semi-implicit method
and iterations.

The results about the convergence of the spectral solution are shown in Fig. 4.
The convergence is once again algebraic of fifth order.
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Fig. 4. Rate of convergence for the solution of the nonlinear equation. Solid line: b;; dashed line:
b; = 0.01i~%

4.3. THE COUPLED SYSTEM

In this case we consider the coupled system of one fourth-order equation for ¥
and one second-order equation for 8 (10). Because of the obvious symmetry of the
boundary value problem under consideration, we can seek a solution in which the
stream function is even and the temperature is an odd function. Acknowledging
the symmetry of the problem, we develop the sought function into the series

K K
U(z,t) = Zpkck(x), O(z,t) = de sin(kmz). (31)
k=1

k=1

Upon introducing these expansions into (5), (6) and making use of the above
compiled formulae, an algebraic system for the coefficients dx and py is derived:

N
1
~ KiPi + B > piBij
s

N
— _Ra zdmmﬁﬁ( )" +ik} tanh ki 2v2tanh & ],
m=1

= m47r4—ﬂf Ki
i=1,...,N,
N N
8v2k2 k2 Im(—1)!
2 9 _ n-"'m
(L 8ty =75 D D Paler— it = ) (33)
= l,...,N-
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The results for the coefficients p; and d; are presented in Fig. 5. The peculiar
finding is that the rate of convergence for @ is algebraic of fifth order, while the
rate for ¥ is one order lower (fourth-order). The analytical explanation of thig
phenomena will be the object of a separate study. Here it will suffice to mention
that the off-diagonal elements in (32) can degrade the rate of convergence, while in
the equation (33) for © no off-diagonal elements are present and the convergence
is of fifth order as in the previous examples.
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Fig. 5. The rate of convergence for the coupled system for Ra = 6000, Pr = 1 and 75 = 0.001.

The upper panel shows the spectral coefficient for the function Psi; the lower panel shows ©

The fourth order for the rate of convergence means that a number of terms
N =100 is fully adequate to obtain results with a very high precision 10~8.

5. CONCLUSIONS

In the present work a new Galerkin technique is developed for coupled thermo-
convective flows in a vertical slot. The well-known beam functions are used as basis
set together with the trigonometric functions. The formulas for the cross expansion

82



of the two systems are not available from the literature and are derived here. The
construction of the numerical algorithms is also presented.

Three generic model problems are considered. The spectral solutions exhibit a
ffth-order algebraic convergence except for the case of the coupled system pertinent
to the convection in a vertical slot, where the rate is of fourth order for one of the
functions. The fourth or fifth order means that although algebraic, the convergence
is fast enough for all practical purposes. The theoretical and numerical findings are
illustrated graphically.
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