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tions, where P are parabolic subgroups of GC. The work studies whether the images
Fp(M) = I'p \ Gp/K} are local equivariantly embedded Hermitian symmetric sub-
spaces of I'\ G/G N P. For each of the cases examples of harmonic maps f which do
not admit holomorphic liftings are supplied.

Keywords: harmonic and holomorphic maps, exceptional Riemannian symmetric
spaces of Hodge type, complex homogeneous fibrations, abelian subspaces, Levi-Civita
connections, equivariant Hermitian symmetric subspaces

Mathematics Subject Classification 2000: 58E20, 53C35, 22E30, 32H02.

1. STATEMENT OF THE RESULTS

Let M be a compact Kahler manifold and '\ G/K be a local Riemannian
symmetric space of noncompact type. The results of Eells and Sampson from [7)
imply that whenever I' \ G/K is compact, any continuous map ¢ : M- T\G/K
is homotopic to a harmonic map f : M — I'\ G/K. Corlette has proved in [6]
that a continuous map ¢ : M — '\ G/K has a unique harmonic representative
f: M — I'\G/K in its homotopy class if and only if the image c.m (M) of the
induced representation ¢, : 7 (M) = I' has reductive real Zariski closure in G.
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The present article studies the harmonic maps f : M = I'\ G/K for which
there exist parabolic subgroups P ¢ GC, complex homogeneous fibrations IIp :
G/GNP — G/K and holomorphic liftings Fp : M — T \ G/G N P, such that
f =1lpFp. For the compact discrete quotients I'\ G/ K of the irreducible classical
Hermitian symmetric spaces G/K of noncompact type and dim¢ G/K > 3, Siu has
established in {14] that the harmonic maps f : M — I \ G/K of maximum con-
stant rank{df := dime dfS(T2OM) = dime G/K, Yz € M , are either holomorphic
or anti-holomorphic. Following Helgason’s classification (8] of the irreducible Rie-
mannian symmetric spaces G/K of noncompact type, we recall the other known
results for the harmonic maps f : M — I'\ G/K of compact Kihler manifolds
M. Carlson and Toledo show in [4] that the nonconstant non-holomorphic (non-
anti-holomorphic) harmonic f : M — I' \ SU(n, 1)/S(U, x Uy) either map to a
closed geodesic f(M) or factor through a holomorphic map to a Riemann surface.
For a harmonic map f : M — I'\ SL(2n,R)/ SO(2n) with n > 3 they establish
n(n+ 1)

2

in [5] that rankSdf < for z € M, and the equality is realized only by

the holomorphic maps of maximum constant rank onto an equivariantly embed-
ded discrete quotient of Sp(n,R)/U,. In [9] is proved that the harmonic maps

f:M—>T\SL(2n+1,R)/SO(2n + 1), n > 4, are of rankCdf < E(n—;—ll +1 at

z € M. The equality is attained by the holomorphic f with f(M) =Tp\Gp/K}, for
a Hermitian symmetric (not necessarily equivariant) subspace G, /Kn C SL(2n +
1,R)/50(2n+1) or by a non-holomorphic f with f(M) = Ty (Sp(n,R) /U, x T?),
where Sp(n,R)/U, C SL(2n + 1,R)/SO(2n + 1) is an equivariant subspace and
T' C SL(2n + 1,R) is a noncompact 1-dimensional torus, centralizing Sp(n, R).
Carlson and Toledo show in [5] that the harmonic maps f : M — L\SU*(2n)/Sp(n)

1)

with n > 3 have rankSdf < Egﬁz—— at ¢ € M, and the equality is attained by the

holomorphic f onto a discrete quotient of an equivariantly embedded SO*(2n)/U,,.
For the harmonic maps f : M — T'\ SOy(n,1) /SO(n), Carlson and Toledo ob-
tain in [4] that either f(M) is a closed geodesic or f factors through a holomor-
phic map to a Riemann surface. In [5] they establish that the harmonic maps
f:M = T\ §00(2m,2n)/SO(2m) x SO(2n) with min(m,n) > 3, m+n > 6,
have rank$df < mn, z € M, and the equality is attained by the holomorphic
f onto discrete quotients of equivariantly embedded SU (m,n)/S(Um x U,). For
the harmonic maps fi : M — T'\ SOp(2m + 1,2n)/SO(2m + 1) x SO(2n) or
fa: M = T\SOo(2m+1,2n+1)/SO(2m+1) x SO(2n+1) with min(m,n) > 5, the
work [9] shows that rankSdf; < mn+1, rankSdfy < mn+2 and the equalities are at-
tained by the holomorphic f; onto discrete quotients of (not necessarily equivariant)
Hermitian symmetric subspaces. In the case of f : M — I'\ Sp(n, 1)/Sp(n) x Sp(1)
with n > 3, Carlson and Toledo prove in [4] that either f(M) is a closed geodesic
or f factors through a holomorphic map to a Riemann surface or f has a holomor-
phic lifting F': M = T'\ Sp(n,1)/Sp(n) x U;. In [5] Carlson and Toledo establish
that the harmonic f : M — T'\ Sp(m, n)/Sp(m) x Sp(n) with min(m,n) > 2 have
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rankSdf < mn and the equality is attained by the holomorphic f onto discrete
quotients of equivariantly embedded SU(m,n)/S(Um X U,). Carlson and Hernan-
dez show in [3] that a harmonic f : M — '\ Fy(_20)/SO(9) = I \ FII either maps
to a closed geodesic or factors through a holomorphic map to a Riemann surface,
or factors through a holomorphic map F : M — I \ SU(2,1)/S(U2 x Uy) = S to
a discrete quotient S of a 2-ball, followed by a geodesic immersion S — '\ FIL

Let G be a noncompact simple real Lie group and P be a parabolic subgroup
of its complexification G€. A necessary condition for the existence of a fibration
G/GN P — G/K is the inclusion of G N P in K. First of all, that requires the
presence of a Cartan subalgebra h C g := LieG, contained in k := LieK. The
noncompact semisimple Lie groups G, whose Lie algebras admit common Cartan
subalgebras with the Lie algebras of the maximal compact subgroups K of G, are
said to be of Hodge type. According to Simpson [13] or Burstall and Rawnsley [2],
a noncompact semisimple Lie group G is of Hodge type exactly when the Cartan
involution of G is an inner automorphism. The isometry groups G of the irreducible
Hermitian symmetric spaces G/K of noncompact type are groups of Hodge type.
According to Simpson {13}, the remaining noncompact simple Lie groups of Hodge
type are

SO(m,2n), Sp(m,n), Es(z), E7(7), E7(—5)a

Eg(s), Es(-21), Faqa), Fa(-20), G2(2)-

Let G, be the compact real form of G. For a simple Lie group G of Hodge type and a
parabolic subgroup P C G€ the inclusion GNP C K is equivalent to GNP = G.NP
and happens exactly when G. N P is a subgroup of K.

Let us recall that GE/P = G./G. N P is a projective algebraic manifold when
P c G€ is a parabolic subgroup. For G of Hodge type we claim that the orbit
G /GNP is an open subset of G¢/G:NP. If g = k@ p is the Cartan decomposition
of g, then the tangent space TRG /K at the origin 6 € G/K can be identified with p.

The exponential map Ea:p?/ K.p— G/K at 6 € G/K is a global diffeomorphism,
due to the nonpositiveness of the sectional curvatures of G/K. Let Ezp; /K
TRG./K = ip = G/K be the locally defined exponential map of the compact
dual G./K at 6 € G¢/K and p; : p — ip be the multiplication by the imaginary

-1
unit 7. Then Ea;péG‘/ K s (Exp?/ K ) : G/K = G./K is alocal diffeomorphism.

Since G/G N P and G./G.N P have coinciding fibers K/GNP = K/G.N P, the
homogeneous space G/G N P is immersed in G /G:N P. In particular, G/GN P is
a complex (even Kéahler) manifold.

Recall also that for a group G of Hodge type and a parabolic subgroup PcCG*
with G N P C K the reductive Lie group G N P is a centralizer of a torus TCK
in G. Conversely, any centralizer Z C G of a torus T C K determines uniquely
the parabolic subgroup P, whose semisimple part is the complexification of the
semisimple part of Z.

Let h be a common Cartan subalgebra of k, g and

g®rC=harC+ > CX,+ ) CX_,
cedt geAT
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k@rC=h@rC+ ) CX,+ Y CX_,, A}cat,
ceA} ceAl

be the corresponding root decompositions of the complexified Lie algebras. A
parabolic subalgebra of g€ = LieGC = g ®g C is of the form

LieP=h@C+ ) CX_,+ Y cCxX,

cEAYt c€EAT(P)

for an appropriate subset A*(P) C A}. The minimal parabolic subgroup B C G¢

with LieB=h®rC+ 5. CX_, is called a Borel subgroup. The corresponding
ocCA+t

G/GNB - G/K is referred to as a maximal complex homogeneous fibration.
The Borel subgroup B C G€ intersects the real form G in the common maximal
torus T = G N B of K,G with LieT = h and centralizes itself. The maximal
complex homogeneous fibration G/T contains an equivariant Hermitian symmetric
subspace Gp/K}, if and only if G /K4 is a polydisc. Any parabolic subgroup
T C P C G© contains the Borel subgroup B O T. That determines a fibration
G/GNB — G /GNP with a holomorphic pro jection. The existence of a holomorphic
lifting Fig : M — I'\G/T of a harmonic map f : M — I'\G/K implies the existence
of holomorphic liftings Fp : M - '\ G/G N P for all parabolic subgroups P O T.
The complex homogeneous fibrations G/G N P, associated with centralizers G N P
of 1-dimensional tori 7' C K, are called minimal.

Let J(G:/K) = G./K be the bundle of the Hermitian almost complex struc-
tures on G./K. Burstall and Rawnsley show in [2] that for any parabolic subgroup
P C G€ the quotient G¢/P = G./G.NPis a holomorphically embedded subspace
of J(G./K). Therefore the open subset G /GNP of G./G.NP is also a holomorphi-
cally embedded subspace of the twistor fibration J (G¢/K) = G./K. Consequently,
any holomorphic lifting F': M — I'\G/GN P of a harmonic map f: M - '\G/K
can be regarded as a local holomorphic map to the twistor fibration.

The results of the present article are summarized in the following

Theorem 1. (i) There are two minimal complex homogeneous fibrations
Ga2)/Ga2y NP — G2(2)/SO(4), i = 1,2, with fibers CP! and a mazimal complez
homogeneous fibration Ga(3)/T? — Gaz)/SO(4) with fiber CP! x CP!. A har-
monic map f : M — T'\ Ga(2)/SO(4) with df€(T}°M), ¥z € M, consisting of
nilpotents and of mazimum constant rankCdf = 3, admits a holomorphic lifting to
either of the complez homogeneous fibrations. Neither of the corresponding holo-
morphic images is an equivariantly embedded local Hermitian symmetric subspace.

(i) Any harmonic map f : M — T\ Fy4y/Sp(3) x SU(2) with dfS(T1OM),
Vz € M, consisting of nilpotents and mazimum constant rankSdf = 7 admits
holomorphic liftings Fp : M — T\ Fi(ay/Faay O P to all complex homogeneous
fibrations. The images of these Fp are not equivariant local Hermitian symmetric
subspaces.

(iii) A harmonic map f : M — TI'\ Eg2)/SU(6) x SU(2) of mazimum con-
stant rankSdf = 10 with adh-invariant dfS(T1OM) = 9zSpanc(X,|o € C(J))g;?,
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labeled by an Eg(o)-admissible indez set J, has a holomorphic lifting Fg : M —
I'\ Eg(2) /T® to a mazimal complez homogeneous fibration. There are sufficient con-
ditions for nonezistence of equivariant Hermition symmetric subspaces Gr/Kp C
G/GN P with Fp(M) =T} \ Gr/Kp.

(iv) If the harmonic map f : M — T\ Eq(7)/SU(8) has dfS(T}°M) =
gzSpanc(X,|o € C(J,K))gz* for an Er(7)-admissible set of indices J, K, then
there is a holomorphic lifting Fp : M — T\ Ey() /T7 to a mazimal complex homoge-
neous fibration. There are sufficient conditions for nonezistence of equivariant Her-
mitian symmetric subspaces Gn/Kn C Eq(7)/Er(r) NP with Fp(M) =Th \ Gr/Kh.

(v) For any harmonic f : M — T\ E7(—5/S0(12) x SU(2) with mazimal
dfS(TLOM) = g.8panc(Xs|o € C(I,K))g;" there is a holomorphic lifting Fp :
M = T'\ Eq-5)/50(12) x T to a minimal complex homogeneous fibration. For
an Eq(_s)-admissible set of indices I, K, there exists a holomorphic lifting Fg :
M — T\ Ey-5)/T" to a mazimal complex homogeneous fibration. There is a
list of sufficient conditions for nonexistence of equivariantly embedded Hermitian
symmetric subspaces Gp/Kn C Er(_s)/Er(-5) N P with Fp(M) =Tx\ Gn/Kh.

(vi) If a harmonic map f : M — T\ Eg(3)/SO(16) has dfe(T}°M) =
gzSpanc(Xs|o € C2(J,K))gz ' for an Egs, -semi-admissible indez set J, K of sec-
ond kind, then there is a holomorphic lifting Fp : M — '\ Egs)/Us x T* to a min-
imal complex homogeneous fibration. Whenever dfS(T}OM) = g.Spanc(Xq|o €
Cgzt, i = 1,2, for a commutative root system Cy(I,J, K) or Cy(J,K) with
Egs)-admissible inder sets of first or second kind, there is a holomorphic lifting
Fg: M —>T)\ Es(g)/Ts to a mazimal complez homogeneous fibration. There is
a set of sufficient conditions for nonexistence of equivariant Hermitian symmetric
Gn/Kw C Egs)/Ess) N P with Fp(M)=Th\ Gn/Kh.

(vii) Any harmonic map f : M — '\ Eg(—24)/Ex x SU(2) with mazimal
dfS(THOM) = g.Spanc(Xolo € Ci(I1,I2,J))9z ", i = 1,2, admits a holomorphic
lifting Fp : M — T\ Eg(—24)/ E7 x T* to a minimal complez homogeneous fibration.
If, moreover, I, I, J is an Eg(—24)-admissible set of indices of i-th kind, then
there ezists a holomorphic lifting Fg : M — T\ ES(_24)/T8 to a mazimal complex
homogeneous fibration. Under certain conditions on Iy, I, J there is no equivariant
Hermitian symmetric image Fp(M) = Tr \ Gn/Kh.

The notions of admissible index sets and the sufficient conditions for nonexis-
tence of equivariant locally Hermitian symmetric images will be clearified separately
for each exceptional Riemannian symmetric space under consideration.

Here is an interpretation of a part of the already mentioned results on harmonic
maps as existence of holomorphic liftings, whenever they exist. Since the Hermitian
symmetric G/K of noncompact type are complex homogeneous spaces, Siu’s result
[14] can be viewed as an existence of a holomorphic lifting to the fibration with a
trivial fiber. Similarly, Carlson and Toledo’s article [4] specifies that a harmonic
map f: M = T\ SU(n,1)/S(Un x Ur), whose image is not a closed geodesic and
which does not factor through a holomorphic map to a Riemann surface, admits a
holomorphic lifting to the complex homogeneous fibration with a trivial fiber. For
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a harmonic map f : M — T'\ SOg(2m, 2n)/SO(2m) x SO(2n) with min(m,n) > 3,
m+n > 6, rankSdf = mn for all z € M , Carlson and Toledo’s results from
[5] can be interpreted as an existence of a holomorphic lifting Fp : M — T\
500(2m, 2n) /U x Upn x T? to a complex homogeneous fibration. The results of (9]
imply that a harmonic map f: M — T'\ SOy(2m + 1,2n)/SO(2m + 1) x SO(2n)
with min(m,n) > 5 and a constant rankSdf = mn + 1 admits a holomorphic
lifting Fp : M — I'\ SOo(2m +1,2n) /U, X Up—1 x T3. Concerning the harmonic
maps f : M — T\ Sp(n,1)/Sp(n) x Sp(1) with n > 3, which do not map to a
closed geodesic and do not factor through holomorphic maps to Riemann surfaces,
Carlson and Toledo prove in [4] the existence of a holomorphic lifting Fp : M —
I'\ Sp(n,1)/Sp(n) x Uy to a complex homogeneous fibration. Carlson and Toledo’s
results from [5] reveal that a harmonic map f: M — I’ \ Sp(m,n)/Sp(m) x Sp(n)
with min(m,n) > 2 and constant rankSdf = mn admits a holomorphic lifting Fp :
M — P\Sp(m,n)/Upm xUp xT? to a complex homogeneous fibration. In [3] Carlson
and Hernandez establish that the harmonic maps f : M — I\ Fy(—20)/50(9), whose
image is not a closed geodesic and which do not factor through holomorphic maps
to Riemann surfaces, admit holomorphic liftings Fp : M — '\ Fy_20)/S (U x U3)
to complex homogeneous fibrations.

2. BASIC TECHNIQUES OF THE ARGUMENT

The proof of Theorem 1 is based on Sampson’s result | 11] for the harmonic maps
f: M = I'\G/K of compact Kihler manifolds M into local Riemannian symmetric
spaces I' \ G/ K of noncompact type. It asserts that such f are pluriharmonic and
dfS(T}O°M) are abelian subspaces of THT\G/K forall z € M.

In order to formulate precisely, let us recall few basics of the structure theory
of semisimple Lie algebras. Assume that g := LieG for a noncompact simple Lie
group G of Hodge type and fix a common Cartan subalgebra h of k(G) := Liek
and g, where K is a maximal compact subgroup of G. There is a Killing orthogonal
Cartan decomposition g := k(G) ® p(G). Its complexification g€ = kC(G) @ pt(G)
Is invariant under the adjoint action of h® := h ®g C. More precisely, kC(G) :=

k(G)@rC =h®+ Y CX, and p¢(G) := p(G) @& C = 3. CX, for
s€AL(G) 7€Ae(G)

an appropriate decomposition A(G) = A.(G) U Ap(G) into a disjoint union of
compact and noncompact roots. An arbitrary ordering on A(G), compatible with
the Lie bracket of the corresponding root vectors, introduces splittings into disjoint
unions Ac(G) = AF(G)U A7 (G), Ane(G) = AH(G) U A7.(G), whereas A(G) =
AT (G) U A~(G) with A*(G) = AF(G)n AY.(G), A~(G) = A7 (G)UAL(G).
The pairs of positive and negative root vectors are complex conjugate to each
other, X, = X_,. Observe also that the root system A(G) and its decomposition
A(G) = A*(G) U A~ (G) depend only on the complexification G€ but not on the
real form G. We take A(Gy(2)) = A(GY) from Sato and Kimura’s paper [12] and
borrow the other A(G) = A(G®) from the Table of Bourbaki’s book [1]. The
notation G(y,) stands for the real form of G€ with dimg P(G(n)) — dimg k(Gmy)) =n
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(cf. [8]). In order to avoid the explicit matrix realization of the root vectors Xo,
o € A(G), and the calculation of their Lie brackets, let us introduce structure
constants N, ,, such that [X,, X;] = Ns,r Xo+r whenever o +7 € A(G).

At the origin 6 € G/K, the complexified tangent space T3G/K :=
TRG/K ®r C = p€(G) and the holomorphic tangent space of a Hermitian sym-
metric Gn/Kn is Ty °Gr/Kn = pj . At an arbitrary point gK € G/K the tangent
spaces TG /K = gp(G)g™" and TSG/K = gp®(G)g™.

Carlson and Toledo have established in [5] that for any abelian subspace
a C pC, which consists entirely of nilpotent elements, there exists a Cartan sub-
algebra h C g with respect to which a C p*. The construction of h reveals
that whenever G is of Hodge type, this Cartan subalgebra is contained in k(G).
Whenever df®(T;,°M) is an abelian subspace of p*, f(zo) = 0, the complexified
differential of f is represented by 6 + g for an appropriate 8 € Qi},o(p*’). Let 7 be
the flat Levi-Civita connection of the locally trivial bundle f*T®(I'\ G/K). It de-
composes into a sum ¢ = D +0+8, where D is a k(G)-valued connection. Further
decomposition into (1,0)- and (0, 1)-types provides D = D' + D" with D' = D".
The pluriharmonic equation for f reads as

D"8=0. (1)

On the other hand, the (2, 0)-component with values in p® of the flatness equation
72 = 0 provides

D'o=0. (2)

For some specific df ©(T;° M) or, equivalently, 6, the equations (1) and (2) reduce D
to a Lie(G N P)-valued connection for an appropriate parabolic subgroup P C G€.
That implies the existence of a lifting Fp : M = I'\G/GN P of f:M—->T\G/K.
If f(z) =Tg.K and

AFS(TMOM) = dfS(TH°M) C g.p™9; ' C 92(P™ ® > CX,)9;!
ceAT(G)-A+(P)

=Ty erp D \G/GNP

for all z € M, then the lifting Fp is holomorphic. That is why, it is natural to
assume that dfS(T}°M) consist entirely of nilpotent elements for all z € M, in
order to look for holomorphic liftings of f : M = '\ G/K.

For the proof of the main Theorem 1, we have to characterize the abelian
subspaces a C pT(Gaz) of maximum dimca = 3 and the abelian subspaces a C
pt(Fy(s)) of maximum dimc a = 7. To this end, we apply Malcev’s method of the
leading root vectors for studying abelian subspaces of nilpotents in semisimple Lie
algebras (cf. [10]). More precisely, Gauss-Jordan elimination on a basis Y3, ..., Y%
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of an abelian subspace a C p* allows to represent

},1 = X0'1 + Z y{XT)
TH#OL, Ok

Yo = Xo, + Z Y3 Xr,
f#”l,"':ak

Yk = Xdk + Z yZXr
THO1, Ok

by positive noncompact root vectors with oy < 09 < ... <oy, 0; <7, forall X, ¢
SuppY; and y] € C. According to the compatibility of the Lie bracket with the -

ordering, the equality 0 = [Y;,Y;] = [Xo,, Xo,) + [Xo:, 4] X7 ) + [ 47 X7, X0 ] +

[>° i X+, - y7 X;] implies the vanishing of the minimal term [X,,, X,;] = 0. Thus, :

the root system C = {o1,02,...,0} is commutative, i.e.,
VO';T,UJ‘ eC = o;+ 0 4 A(G)

The commutative root systems C C A} (G) are studied up to the Weyl group
action. Accordingly, the abelian subspaces a C p* are described modulo the adjoint
action of KC.

Let us assume that there exists an equivariant Hermitian symmetric subspace
Gr/Kn C G/G N P with T(-,I’OG,,/}’{;l = a for some parabolic subgroup P C G€.
Then the Lie bracket of g, := LieG}, is the restriction of the Lie bracket of g :=
LieG. The same holds for the corresponding complexifications. If a = p;, then
[a,3] C k¥ and [a,[a,8]] C a. When a = Spanc(X,|c € C), the presence of
0y1,02,03 € C with g9 — a3 € A(G) and gy + (02 — 73) € An(G) — C rejects
the existence of an equivariant Hermitian symmetric G»/K, C G/G N P with
T;'oGh/Kh = a.

For each of the noncompact exceptional simple Lie groups G # Eg(_14),
Eq(_25), Fy(—20) of Hodge type are constructed examples of harmonic maps f :
M - T'\ G/K, which do not admit holomorphic liftings. Let dfS(T}°M) =
gzSpanc(Xy, X o, X;|o € S1,7 € S3)g;1 for z € M, f(z) =g, K, where S; # @
and the disjoint union S = S; US; C A (G) is strongly commutative, i.e.,

Vo,r€S = o+7¢€A(G) and 0 — 7 € A(G).

Then a lifting Fp : M = I'\ G/G N P to a complex homogeneous fibration is not
holomorphic, according to dF§(Ty°M) = dfS(T}°M) ¢ Ty apT \ G/G N P.
For specific examples of strongly commutative S C A} (G), we refer to the next
sections.

3. G = Gy)/SO(4)

The complexified Lie algebra g§ admits a representation by (7 x 7)-matrices
and can be identified with the derivations of the Cayley numbers (cf. [12]). We use
the system of the positive roots AT(GS) = {e1, ez, €1 +€3,e; —ea, 61 +2e3,2¢1+€2},
borrowed from (12]. The Lie algebra gy(2) of Hodge type admits a 2-dimensional
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Cartan subalgebra h C so(4). The complexified isotropy subalgebra-so(4,C) =

2 2
hC+ 3 CX,, + 3, CX—o;, Where the compact roots g1,0d3 have one and the same
i=1 i=1
length and o1 + 02 & A(GS). Bearing in mind that 0,7 € At (Gygy)o + T €
AT (Ga)) >0 +TE A}(Gy(2)), one specifies that AF(Gaa) = {e1—ez2, 1+ ez},
whereas A}.(Gaz)) = {enez,e1 + 2€2,2e; + e2}. This choice is also subject t0
0 € A (Gyn)),T € Ahe(Gay), 0 +7 € AT (Gyz)) = o +TE€ At.(Gaa))-

The only restriction to which a commutative root system C C A} (Ga2)
obeys is not to contain simultaneously e; and ez. Up to the action of the Weyl
group of SO(4,C), which is generated by the permutation of e; with e; and their
simultaneous sign changes, one can assume that the maximal commutative root
system C= {61,61 + 2e9,2e; + 62}.

Lemma 2. The 3-dimensional abelian subspaces a C pt(Ga(a)) are S04,C)-
conjugate to
ag = SpanC(Xeu X81+282’ X2e1+ez)-

Proof. An abelian a C pt(Gy(z)) with a leading root system C = {ei,
e; + 2es,2e; + ez} has generators :

Yl’ = Xel + alXCQ, YZ’ = XC1+2€2 + a2Xez, Y3’ - X2el+32 + a3Xez.
After the action of

o]
—Q _ 1 —ay
Adbzp (N . '“*‘*) =2 (N_e,m,ﬂ X“"*‘”)’

—e1+e2,€1

followed by an elimination of Xe,+2¢, from the image of Yy, one gets Y} = Xe,,
Yy = Xeytep + 02 Xes, Y3 = X2erter + a3 Xe,. The commutations ¥y, ¥y =0
and [Y}",Y4'] = 0 reveal the vanishing of az and a3, Q.E.D.

Let us describe the parabolic subgroups P C G§. According to cardA} =2,

there are a Borel subgroup B C G§ with LieB =h+ 3> CX and two
cEAH(GY)

maximal parabolic subgroups Py, P2 C GS with LieP, = LieB + CXe, e, and
LieP, = LieB + CXeyte,- Cleatly, Go) N B = T2 = Ea:pf"” (RH; + RH»)
centralizes itself, Gazy N Py =~ SU(2) x T} centralizes the 1-dimensional torus
Ty = E:cpfm’ (R(H, + Ha)) and Gagz) N P, ~ SU(2) x T} centralizes the 1-
dimensional torus T = Ea:pf"” (R(H, — H.)). Bearing in mind that SO(4) =
SU(2)xSU(2), one observes that the complex homogeneous fibrations G2(2)/G22)N
P, - G /SO(), i = 1,2, have fibers SU(2)/S" = SUQ)/SW1 x V) = CP!
and Go(a)/T? — Go(2)/SO(4) has a fiber CP! x CP!. There are also fibrations
Ga(a)/T? = Ga2)/Ga2) N Fi with fibers CP! and holomorphic projections.

Lemma 3. Let f : M = T'\ Ga(2)/SO(4) be a harmonic map of a compact
Kéhler manifold M with mazimum constant rankSdf = 3 and dfS(T;°M), Vz €
M, consisting entirely of nilpotent clements. Then there exists a holomorphic lifting
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Fp : M = I'\ Gy2)/T? to a mazimal complez homogeneous fibration. Neither of
f(M), Fg(M), Fp,(M) or Fp,(M) is a local equivariantly embedded Hermitian
symmetric subspace.

Proof. The (0, 1)-part of the so(4)-valued connection D is of the form

2
D" = 5 + Z &' ® Hi + ?5@ Xel—eg +7® X—e1+e2 + C ® X61+62 +ZQ® X—e1—62
=1
for some &;,mi;,(, 2 € Q}‘,’,O. The holomorphic differential of f is represented by the
1-form
0 =dz' @ X, +da® @ Xe,42e; +d2® @ Xop, pe,-

Wedging the forms and computing the Lie bracket of the root vectors and Car-
tan generators, one obtains D"0 = (£ A dz! + N_¢ ¢, 26, 46,2 A dz3) @ X., +
(11/___—el+_e_2.61F A dz' + N—Cl-e2yel+2€22 A d$2) ® Xez ’*_’_N-in—cz,mz A dz! & X—ez +
[(51 +2§2)/\dm2 'f_‘_N-—ex +e2,2e; +e2FAd373]®Xex +2ext [(251 "'62)/\51-"33 +Ne, —e,e142e2 P\
dz? + Ney4es,e;( A d2?] ® Xge, +e;, = 0. Bearing in mind the C-linear independence
of the root vectors and the functional independence of dz!, dz?, dz3, one derives
that D" = 3. Therefore D = 8 + 8 = d takes values in h = Lie(Gy2) N B) and
there is a holomorphic lifting Fp : M — '\ Gy(9)/T?.

The only 3-dimensional Hermitian symmetric spaces of noncompact type are
SU(3,1)/S(Us x U} ~ SO*(6)/Us with 9-dimensional complexified isotropy sub-
algebra and 50(3,2)/SO(3) x SO(2) ~ Sp(2)/U, with 3-dimensional complex
isotropy subalgebra. They both satisfy k§ = [p§,p§]. For the abelian subspace
a = Spanc(Xe,, Xe;+2e;, X2e, +e,) it is straightforward that [a+3,a+3a] = so(4,C)
is of dimension 6. That would contradict an assumption a = pj = p*(G}) for an
equivariant Hermitian symmetric subspace G /K, Q.E.D.

The strongly commutative subsets S C A}, (Gy)) are commutative. There-
fore, one can assume that S C {e1, e; + 2e3,2e; +e3}. Bearing in mind that (2e; +
e2) —ey = e1+ez, (2e1+e2) — (e1+2e2) = e; —e2, one determines S = {e;, e; +2e3}
of maximal cardinality, up to Weyl(SO(4, C))-action. The harmonic maps f : M —
I'\ Ga(2)/S0(4) with dfS(T2OM) = g.Spanc(Xe,, X-e;, Xey+2e2> X —ey—2¢5)95"

dfc(Ti'oM) = gz Spanc(Xe,, X_eys Xey+2e, )9;1

or
dfC(Ta%’OM) = ngpanc(Xe, ’ Xc1+2e23 X—e1—2eg)9;1

have no holomorphic liftings to complex homogeneous fibrations.

Let us recall from Bourbaki’s Table [1]
A*+(FS) = {e,-(1 <i<4), eite;(1<i<j<4),

1
5(61 + €eq + vez + pey)(e,v,p € {:tl})},
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One needs to decompose into a disjoint union AT (FF) = AF(Fyq)) U A} (Faqy),
where A} (Fyq)) = AT(Sp(3,C)) U A*(SL(2,C)). Observe that the positive roots
of Sp(3,C) can be expressed by two short simple roots a;,az and a long simple

1
root a3. Among the short roots e;, -2-(61 + €ey + ves + pey) and the long roots
. 1
e; + e; of F, the only possible choices are a; = e;, az = §(e1 —e; —€; F ex),
a3 = ej + ex. Up to the action of the Weyl group of FY, let us specify a; = e,
1
Qp = §(e1 — ey —e3 —eq), a3 = e3 +e4. As far as Sp(3) and SU(2) are in a direct

product in the isotropy subgroup, for any ¢ € A*(Sp(3,C)) and the only positive
root 7 of SL(2,C) the sum o + 7 is not a root of Fi-. That determines 7 = e3 — ey,
so that

AF (Fya))

1
= {e,—(l <i<2), e tey e3ztey, -2-(61 +geq + ves +vey)(e, v € {il})},
AY (Fya)) = {&'(3 <i<4), eitej(1<i<2,3<j5<4),
1
—(e, + €ez + vez — veq)(e, v € {:i:l})}

2

A maximal commutative root system C C A}, (Fy4)) decomposes into a dis-
joint union of the commutative root systems C; := C'N {eil3 <1 < 4}, Cy :=

cn {%(el + ges + ves — ves)le,v € {£1}}, C3 := CN{ei te3]l <4< 2} and
Cy := C N {e; £ e4)l <i <2} Therefore Cy C {e;} for some fixed i = 3 or 4,
Cy C {%(el +eep +ves — ves)|e = £1} for some fixed v € {1}, and C; C {e; e;}

for some fixed 1 < i < 2 or C; C {e;+ee;|1 < i < 2} for some fixed € € {+1} when-
ever 3 < j < 4. Preventing the presence of p; € C;, p; € C; with p;+p; € C,i# 73,
one obtains the following commutative root systems C C A} (Fy4)) of maximal
cardC = 7, up to the action of the Weyl group of Sp(3,C) x SL(2,C) :

1
C"={e3, e1 +e3, ey +e3, e ey, §(elieg+e3-e4)}

and

1
C".—_{e3, ey +e3, ex+e€3, € —e€y, €2 — €4, 5(61:*:624-63—&1) .

Lemma 4. The abelian subalgebras a C p*(Fy4)) of mazimal dimca =7 are
Sp(3,C) x SL(2,C)-conjugate to a' = Spanc(X.|o € C") or a" = Spanc(X,|o €
C"), where C',C" C A}, (Fy4)) are the aforementioned commutative oot systems
of mazimal cardinality 7.
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Proof. OnY, = X, + D yrX,, foroc € C, C = C' or C", one
T€EAT(Fy4))-C
Yes
N—es+e4.e3
the coefficient of X, from Y,,. After eliminating X,, from the expressions of
Yy, for 0i,0; € C, 0; # 0, one calculates the commutators [Y;,,Y,,] = 0 for all

different 0;,0; € C and concludes the vanishing of y] except y¢:*¢* for C = C". If

applies the adjoint action of Ezp (— X _e3+e4), in order to annihilate

Yer—es = Xeg—es + Ui et Xe, ey With yS17e% # 0, one can reduce the considerations

to the leading root system C’, Q.E.D.

Lemma 5. If f : M — T\ Fy4)/Sp(3) x SU(2) is a harmonic map with
7-dimensional abelian spaces of nilpotents dfS(T2°M), Yz € M, then there is a
holomorphic lifting Fg : M — T\ Fyy /T* to a mazimal complex homogeneous
fibration. There are no parabolic subgroup P C Ff and equivariant Hermitian
symmetric subspace G /Ky C Fy4)/Fyay N P such that Fp(M) =Ty \ Gn/Kh.

Proof. The (0, 1)-part of the sp(3) & su(2)-valued connection D is of the form

4
D"=5+ZE®H,-+ z e ® Xo + Z G®X_,.
i=1 c€AY (Fyay) o€A¥ (Fyqy)

The differential of a harmonic map f with df(T}%M) = g,a’g; ! or df(T}°M) =
gza"g;! for z € M, f(z) = Tg.(Sp(3) x SU(2)) is represented, respectively, by

6= ) dz" ®X;orfy = ) da” ® X,. The pluriharmonic equations D"8; =0
rec’ TEC

imply D" = 8 + T, 7e, ® Xe, ¢, in both cases. Then the consequences D'6; = 0 of
the flatness equation force D = d.

Let us assume that there is an equivariant Hermitian symmetric subspace
Gh/Kn C Fyu)/Fyq N P with pf = a' or a”. Then [X¢ 4oy, X-ey] =
Neytes—es Xe; € kS, whereas [X_¢;, Xey—eo] = Neeye;—esX—eq € PS, which is
not true in either case, Q.E.D.

After detecting the pairs o, 7 from C' or C" with 0 — 7 € A (Fy(4)), one drops
out at least one member of these pairs and obtains the strongly commutative root
systems

Sl = {83, e 64} and Sz = {%(61 + ey +e3 — 64), €2 — €3, €1 +64}
in A} (Fya)), up to Weyl(Sp(3,C) x SL(2,C))-action.

Let us recall that there is a chain of subgroups E§ C EY C Ef. In terms of
the root decompositions of the corresponding Lie algebras, if H;,... Hg generate a
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Cartan subalgebra h§ of LieE§, then
h$ = { imgHilzi eC,zr+z3 = O} C hg
i=1
s a Cartan subalgebra of LieEf and
hé = { 28::1:,-Hi|:c,- €C,zg —z7=0,27 +Tg = 0} C h$
i=1

s a Cartan subalgebra of LieE§. The positive root system

AH(ES) = { —ei+e;(1 i< <B), etei(L<i<i<),

%(27:61‘617 +€8) (Ei = il’ﬁei = 1)}
i=1

=1
contains
A+(E-‘,:)={—e,-+e,-(1§_i<j Sﬁ), e,-+e,'(1 _<_i<j§_6), —eér7 + eg,

6 6

1

5(26,‘6,‘ —er +es) (E.'.i = :i:l,HEi = —1)},
1=1 i=1

which, in turn, contains
AHES) = {-ei+e(1<i<j<H), eite(1Si<i<h),

5 5

(Zeie; — eg — €7 +es) (:—:i = :i:l,He,- — 1)}

i=1 =1

D | =

(cf. 1]).

For the study of the Riemannian symmetric spaces EIl, EV, EV], EVIII and

EIX, let us introduce the notations

Aij 1= —€; + € (1<i<j<8), pij =eit+e; (1<i<j<8),

o= 3(5)

i=

(-ei—ej+ek+e¢+em+en+ep+eg) (1<i<j<T),

8o =

Bij =
1 .
Yijk = i(ei-*-ej+ek—€¢—em—en——ep+es) (1<i<j<k<T),

1 )
§; = i(ei—ej—ek-—e;-em——en—ep+es) (1<i<7),
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where ¢, j, k,I, m,n, p stand for a permutation of 1,2,...,7. It is convenient to put
also Aji = —=Xij, pji = pij, Bji v= Bi; for i < j and vie; = Yjie = Yk = Yrij =
Ykji ‘= Yijk fori < ] < k.

In order to recognize the subset A} (Eg2)) C A+(EY), let us observe thag

j
sl(6,C) = su(6) ®r C has 5 simple roots oy, such that > o is a root for any

k=1 ;
1 <14 <7 < 5. Looking at the Dynkin diagram of Ef, one notes that the only -
unramified path with 5 vertices corresponds to the simple roots 01, A12, 23, Asq,
Ags- Therefore A*(SL(6,C)) = {A\ij(1 <i<j<5),8(1<i< 5)}. Since SU(6)
and SU(2) are in a direct product in the isotropy group of EII, the only positive
root o of si(2,C) is such that o + 7 ¢ A+(Ef) for all 7 € A*+(SL(6,C)). That
specifies AT(SL(2,C)) = {Be7}. Thus,

A (Egz)) = {Xij(1<i<j<5), 8(1<i<5), Be7}

and
AT (o)) = {mis(1 <i<j<5), vl <i<j<k<5)}

The maximal commutative C' C A} (Eg(2)) are of the form C(J) = {pii ((3,7) €
J) Yiam ((4,3) € J)} for some subsets J of unordered pairs 1 < i, 7 <5 .In particu-
lar, cardC(J) = 10.

A generic abelian subspace a C P (Bg(z)) of maximal dimca = 10 is not
invariant under the adjoint action of the Cartan subalgebra. Therefore, the pluri-
harmonic equation D" = 0 and the consequence D' = 0 of the flatness 72 = 0
do not force a reduction of D to a Lie(G N P)-valued connection.

Definition 6. The set J of unordered pairs is Eg(2)-admissible if there hold
simultaneously the following conditions:

(i) for an arbitrary ¢ # j with (j, k) € J for all k & {4, 5} there exists (i,k) € J;

(i) for an arbitrary i there exists (j, k) € J with different 4, j, k;

(iii) for an arbitrary i there exists (j, k) ¢ J with different i, j, k.

Lemma 7. Let f : M — T'\ Eg(2y/SU(6) x SU(2) be a harmonic map of mazi-
mum dimension with df©(T}°M) = g, Spanc(X,|o € C(J))g;! for a commutative
root system C(J), labeled by an Eg()-admissible set of indices J. Then f lifts to
a holomorphic map Fg : M — I'\ Eg(2)/T® to a mazimal compler homogeneous
fibration. :

Proof. In general,

5
D"'=3+) GOH+&® (Hs+Hr—H)+ Y 750Xy,

i=1 1<i#j<5

5 5
+D GOXs + Y O Xog, +P® Xgy, 7@ X_p,,

=1 i=1

and
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o= 3 d@X,;+ Y, d""®Xy,,.
(1,75)€J (i,5)¢J
Making use of the table of 0 € A.(Eg(2)), 7 € At (Eg(2)) with o +7 € Anc(Eg(z)),
one derives from the pluriharmonic equation D"8 = 0 that n;; = 0 if 3(i, k) € J
or 3(j,k) € J, ¢; = 0if 3(j,k) € J, z = 0if 3(j,k) € J and r = 0. For an
Eg(2)-admissible index set J there follows

5
D"=3+) &®H;+& ® (Hs+ Hy — Hy) +p® Xpgy.
i=1
" Then the consequence D'8 = 0 of the flatness equation 7? = 0 reveals the vanishing
of p, Q.E.D.

Lemma 8. FEach of the following conditions is sufficient for the nonexis-
tence of a Hermitian symmetric G1,/Kp, where Gy, is a subgroup of Egz) and
p; = Spanc(Xslo € C(J)) is associated with a mazimal commutative root system
C(J) C Ak (Exy):

(a) the existence of different i, j, k,l with (i,7), (i,k), (k,l) € J and (j,1) & J;

(b) the existence of different i,j,k,l with (i,k) € J and (i,3), (4, 1), (k,1) € J;

(c) the existence of different i, j, k,l with (¢,7), (4,k), (4,1) € J and (k,1) &€ J.

Proof. In either case, it suffices to exhibit 01,02,03 € C(J) with o5 — 03 €
A.(Eg(9)) and 01 + (02 — 03) € Anc(Ee(2)) — C(J). Namely,

(a) Yikm + (ij — fik) = Yikm + Akj = Vijm;

(b) pix + (Vijm — Yikm) = Hik + Akj = Hijs

(¢) pix + (Yijm — Hij) = pik + 6m = Yikm, Q.E.D.

Towards the construction of strongly commutative root systems S C
A} (Eg(2)), let us associate them to graphs with 5 vertices. For pu;; € S draw
a “blue” edge, connecting the i-th and the j-th vertices. When yum € S, the
complementing vertices i and j are connected by a “red” edge. According to
Hij — Hik = /\kj € Ac(Ee(g)) and Yeim — Yjlm = /\jk € Ac(Ee(z)), no edges of one
and the same color have a common vertex. Further, Yem — pki = 0m € Ac(Eg(2))
requires the nonexistence of disjoint “blue” and “red” edges. Putting all together,
one obtains S = {7345, H23, M2, Has} up to Weyl(SL(6,C))-action.

6. EV = Eq(7)/SU(8)

The elements of A} (Ey (7)) are expressed by simple roots a;, ..., ar, such that

J

$™ o € AF(By7)) for all 1 <i < j < 7. From the Dynkin diagram of ET (cf. [1])
k=1
one recognizes a; := & and a; 1= A\j i for2<1 <6 with

J
AL(ET) = {Zakll <igj 56}

k=1
= {6:;(1 <i <6),\;(1<i<j<6)} CAY(ET).
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The existence of ag € AT(EF) — AL(ES) with ag + 6; € AT(ES) forall1<i <6
is contradicted by Uij + d; 4 A(E'-(,:), Arg + 0; 4 A(E-(,:), Biz +(5j & A(E;:) for ¢ ;ﬁj
and 7k + 0; &€ A(EY) for different 4,7, k. Therefore, there is a7 € A*(ES) -
AL(ES) with ar + Aig € A*(ES) for 1 < i < 5 and a7 + 8 € A*(ES). For any
1 <4< j <5 there exists k € {1,...,5} — {4,7} such that p;; + A ¢ AT(ES).
Clearly, Azs + Aig & AT(EF), Bir + Mis & AT(ES) for 1 < i < 5 and vijx + 06 &
A*(ET), regardless whether 6 € {i,j,k} or 6 ¢ {i,j,k}. Finally, Be7 + Ais = Bir
for 1 <4 <5 and fB¢7 + 86 = Arg reveal that ay = g7, whereas

Af(Err) = {Mij(1<i<j<6), Ms, Bir(1<i<6), 6;(1<i<6)}

and
AY(Brn) = {pij(1<i<j<6), yn(1<i<j<k< 6)}.
After listing the pairs 0,7 € A} (E7(7)) with o + 7 € A} (Eq(7)), one charac-
terizes the commutative root systems

C(J, K) == {pi;((4,5) € J), 15k ((3,5,k) € K)} C A} (Erny)

by the conditions (i,7,k) € K = (I,m) € J and (i,j,k) € K = (I,m,n) € K for
different 4, 5, k,l, m,n.

A generic abelian subspace a C p*(E7(7)) with a leading root system C(J, K) is
not invariant under the adjoint action of the Cartan subalgebra h§. The associated
su(8)-valued connection D is not reduced to a Lie(Eq(7y N P)-valued one. Even
when T;°M, z € M, map to adh§-invariant abelian subspaces of 9Pt (Ermy))97?,
f(z) = g, SU(8), the existence of a holomorphic lifting to a complex homogeneous
fibration is not clear.

Definition 9. The set of indices J C {(¢,7)|1 <i # j < 6}, K C {(3,4,k) |
1 < 4,5,k < 6}, labeling a commutative root system C(J,K) C Al (Erny), is
Eq(7y-admissible if there hold simultaneously the conditions:

(i) for an arbitrary i # j with (i,k) ¢ J for all k ¢ {i,j} there exists (i,k,1) €
K;

(ii) for an arbitrary 7 with (j,k) € J for all j,k different from i there exists
(4,k,1) € K with l € {i,5,k, };

(iii) for an arbitrary i there exists (i, 7,k) € K.

Lemma 10. Let us suppose that for the harmonic map f : M — I'\ Eq(7)/SU(8)
there holds df (T3 °M) = g, Spanc(Xs|o € C(J,K))gz" for some Ex(7)-admissible
indez set J,K. Then there is a holomorphic lifting Fg : M — T\ Ez(1y/T" to a
mazimal complex homogeneous fibration.

Proof. In general, the (0, 1)-component of the su(8)-valued connection D is

6
DH.—.5+ZE®H1'+§_7®(H7-H8)+ Z i @ Xxi; + 1778 ® X
o 1<i£i<6 |

6 6 6 6
O Xng + ) G ®Xg, + Y HGRX g, + Y Bi®Xs, + Y T ® X_g,.

i=1 i=1 i=1 =1
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The (1,0)-component of df€ is represented by
o= Y di@X,;+ Y, 6 de’eX,,.
(i,5)€J (i,j, k)€K
The pluriharmonic equation D"8 = 0 implies that 7;; = 0 if there exist (i,k) € J

or (i,k,1) € K, ngr = 0, z; = 0 if there exist (j,k) € J or (j,k,l) € K,and r; =0
if there exists (i, 7, k) € K. For E(7y-admissible J, K there follows

6 6 6
D' = 6—Z€i®Hi_§7®(H7_H8)+7778®X)\a7+ZC:’®X—B.-7+ZP37®X-6.--

i=1 1=1 =1

The consequence D'0 = 0 of the flatness equation 72 = 0 forces

6
D=d+2(g—fi)®Hi+(€_7—€7)®(H7—Hs),

=1

which suffices for the existence of a holomorphic Fg, Q.E.D.

Lemma 11. Each of the following conditions is sufficient for the nonez-
istence of an equivariant Hermitian symmetric Gn/Kn C Er) [E7(1y 0 P with
pt = Spanc(X, o € C(J, K)):

(a) the existence of (i,k), (4, k), (i,1) € J with (3,1) & J;

(b) the existence of (i,k,1),(j, k,1),(i,p,q) € K with (j,p,q) ¢ K, regardless
of {k,1} 0 {p,q};

(c) the ezistence of (i,j,k),(i,p,q) € K and (j, k) € J with (p,q) ¢ J, regard-
less of {j,k} N {p,q}.

Proof. In either case, we choose 01,02,03 € C(J, K) with 03 — 03 € Ac(E7(7))
and 0} + (02 — 03) € Anc(Er(ry) — C(J, K). More precisely,

(a) pir + (pjk — pix) = pa + Aij = B3

(b) Yipq + (Vikt — Vikt) = Vig + Aij = Ving;

() Yipg + (Kjk — Vijk) = Yipg — 0i = ppg, Q-E.D.

The root system

S(J, K) = {pi;((,5) € ), i ((3,5,k) € K)} C AR (Er())

is strongly commutative if its index set J, K satisfies the following conditions:

(i) any two pairs from J are disjoint;

(i) any two triples from K intersect in exactly one index;

(iii) any triple from K intersects any pair from J in exactly one index.

The complexified isotropy subalgebra
s0(12,0) =h§ + > CXay+ Y, (CXuy +CXopy)-

1<i#j<6 1<i<j<6

113



Since SU(2) is in a direct product with SO(12), the only positive root o of sl (2,C) -
satisfies o + 7 ¢ A(EF) for all 7 € A(s0(12,C)). That specifies ¢ = A7g. Conse.
quently,

AT (Br-s)) = {Mij(1<i<j<6), py(1<i<j<6), Ms)
and
Ane(Br—s)) = {Bir(1<i<6), %jx(1<i<j<k<6), &(1<i<6)}.

The maximal commutative subsets C C A} (E7(_s)) are of the form C(I, K) =
{Bir(t € I),vijx((i,5,k) € K),6;(i & I)} for I C {1,...,6} and a subset K of
unordered triples, subject to (i,7,k) € K = (I,m,n) ¢ K. In particular, the
maximum cardinality of a commutative root system C C A}, (E7(—5)) is 16.

In order to study the holomorphic liftings to a maximal complex homogeneous
fibration, let us introduce

Definition 12. An index set I, K of a commutative root system C(I, K) is
Er(_s)-admissible if it satisfies the following conditions:

(i) for any ¢ € I, j & I there exists (i,k,l) € K with different i, j, k, {;

(i) if {1,...,6} — {,7} C I, then there exists (k,/,m) € K with different
i1, J, k,1,m;

(iii) if I C {1, 7}, then there exists k & {i,j} with (i,4,k) € K.

For example, I = {1}, K = {(1,4,5)]2 < i < j < 6} and I = {1,2},
K D {(1,2,7)|3 < i < 6} are E7(_sy-admissible.

Lemma 13. Let f : M — I\ Ey_5/SO(12) x SU(2) be a harmonic
map with mazimum dimensional df©(T}°M) = g,Spanc(X,|c € C(I,K))g;?
forz € M, f(z) = Ig,(SO(12) x SU(2)). Then there is a holomorphic lifting
Fp: M — '\ Ey_5/SO(12) x T? to the minimal complez homogeneous fibration,
whose associated parabolic subgroup P has semisimple part SO(12,C). If, more-
over, the index set I, K is E7(_s)-admissible, then f admits a holomorphic lifting
Fp:M —T'\ Ey_s5)/T" to a mazimal complex homogeneous fibration.

Proof. The (0, 1)-part of the so(12) x su(2)-valued connection D is of the form

6
D"=0+) GOH:+&®Hi~Hy)+ Y 750Xy,
i=1 1<i#j<6

+TE® Xag + T O Xogs + D GG ®Xpuy + Y TGO Xy,
1<i<j<6 1<i<j<6

Under the assumptions of the lemma, the (1,0)-component of df€ is represented by
0=) d'®@Xg, + Y, de*@X,, +) dr'® X,
i€l (i,j.k)EK igl

The pluriharmonic equation D" = 0 reveals that 7g7 = 0,7;; =0fori € Torj € I
or if there is (i,k,l) € K, (;; =0if 3(k,I,m) € Kor3k ¢ I and z;; =0if Ik € I
or 3(i, j, k) € K for different 4,3, k,I,m. Further, D'6 = 0 implies that n;5 = 0.

114



Consequently, D = D" + D" takes values in so(12) and there is a holomorphic
lifting Fp : M — I'\ E7(—5)/SO(12) x T".
For Er(_s)-admissible I, K, the pluriharmonic equation forces

6
D" =9+ ZE@Hi+E_7®(H7—H8)+W®XAn

i=1
and D'@ = 0 specifies that D takes values in h7. In other words, there is a holo-
morphic lifting Fg : M — I'\ E7(_s)/T7, Q.E.D.

Lemma 14. Each of the following conditions is sufficient for the nonexis-
tence of a Hermitian symmetric space G/ Ky, with pf = Spanc(X,|o € C(I, K)),
equivariantly embedded in some complex homogeneous fibration E7(_s)/E7(_s) N P:

(akel, l¢gl, (i,j,1) € K and (I,m,n) € K for different 1,j,k,l,m,n;

(b) (3,7,k),(l,m,n) € K for different i, j,k,l,m,n;

(c) k,1¢ 1, (i,3,1) € K and (i,7,k) € K for different i,j,k,1.

Proof. The aforementioned conditions provide the following 0y, 02,03 € C(I, K)
with o3 — 03 € Ac(E7(_5)) and 01 + (02 — 03) € Anc(Ey(—s)) — C(I,K) :

(@) Brr + (6t = Yijt) = Brr — Hij = Yimn;

(b) Yijk + Vimn — Brr) = Yijk — pij = O for k € I or Yimn + (Yije — 0k) =
Vimn + pij = Brr for k & I;

(c) Ok + (vijt — &) = Ok + pij = Vijk, QE.D.

The strongly commutative root systems S C A} (E7(—s)) of maximum car-
dinality are equivalent to S = {B17, 134, 156,02} modulo the action of the Weyl
group of SO(12,C) x SL(2,C).

8. EVIII = Eg(5)/SO(16)

As far as

A*(s0(16,C)) = AF (Bys)) = {Xij(1 i< j<8), pii(1<i<j<8)},
there follows

At (Byg) ={a, Bii(1<i<ji<T), 1n(1<i<j<k<7), &6(1<i<T}
The commutative root systems C C A} (Egs)) are of the form
Ci(I,J,K) = {8:(i € I),8:5((3,5) € J), vk ((3,5,k) € K)}
or
Cao(J, K) = {a, B:;((3,5) € J),vij((5,5,k) € K)}

with (i,7) € J = p ¢ I for p € {i,5}; (i,5,k) € K = (p,q) € J for p,q € {i,],k};
(i,5,k) € K = (I,m,n) € K for different 1, j, k,l,m,n.

Definition 15. For a commutative root system C}(I,J, K) one says that
I1,J,K is an Eg(g)-admissible index set of first kind whenever there hold the follow-
ing conditions:
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(i) ifi ¢ I, i & SuppK, then there exists (4,k) € J for different 4, 7, k:

(ii) if (¢,7) € J, I C {i,j}, then there exists (k,I,m) € K with differen
1,7,k 1, m;

(iii) if (7, j, k) & K for fixed 1 # j and all k  {i,7}, then there exists (k,{) € J.

Definition 16. If C3(J,K) is a commutative root system, then J, K is ap
Ejgs)-semi-admissible set of indices of second kind whenever for any unordered pair
(¢,7) & J there exists an unordered triple (k,I,m) € K with different 1,7, k,l,m.

Definition 17. For a commutative root system C2(J, K) the pair J, K is an
Eg(s)-admissible index set of second kind if it is Eg(g)-semi-admissible and for any
i # J with (5,k) & J for all k & {4,} there exists | ¢ {i,7,k} with (i,k,1) € K.

Lemma 18. Let f : M — I'\ Eg(3,/SO(16) be a harmonic map of a compact
Kdhler manifold M with df©(T}°M) = g, Spanc(X,|o € Ca(J, K))g:! forz € M,
f(z) = I'g.SO(16) and an Eg(s)-semi-admissible index set J,K of second kind.
Then f admits a holomorphic lifting Fp : M — T\ Egs)/Us x T! to a minimal
complez homogeneous fibration I\ Eg5)/Us x TT - T\ FEg(8)/SO(16) with fiber
DIII.(8)/T. For a harmonic map f : M — ['\ Egs)/SO(16) with dfS(T}°M) =
geSpanc(Xylo € C1(1,J,K))g;?, where I,J,K is an Eg(g)-admissible index set
of first kind, or df€(T}°M) = g,Spanc(X,|o € Ca(J, K))g:', where J,K is an
Eg(s)-admissible indez set of second kind, there is a holomorphic lifting Fg : M —
'\ Egs)/T® to the mazimal complex homogeneous fibration.

Proof. The (0, 1)-component of the so(16)-valued connection D is of the form

8
D"=8+) &E@Hi+ ) TH®Xa,+ > GGOX,,+ Y meX_,,.

i=1 1<i#;j<8 1<i<j<8 1<i<;<6
The (1, 0)-component of the differential df€, associated with a commutative root
system Cy(J, K), is

bp=de’® Xo+ ) di"®Xp, + Y dPT X,

(ke (Par)EK

The pluriharmonic equation D"8; = 0 implies that z;; = 0 for all 1 < i < j <1,
zig=0forall1<i< 7, Nij =0 if EI(],k) € Jor H(z,lc,l) €K, G; =0 if (i,7) € J
or 3(k,l,m) € K for different i, 5, k,l,m. For Eg(s)-semi-admissible J, K of second
kind that provides

per’

8
D"=08+) GOHi+ Y TG®Xy,
i=1 1<i#£5<8

and an existence of a holomorphic lifting Fp : M — T'\ Eg(g)/Us x T*. Here Us x T
8
is the centralizer of Empf“” (IR (E H,-) ) Whenever J, K is an Egg)-admissible
i=1

8 __
index set of second kind, there follows D" = 8 + 3 & ® H;, which suffices for the
=1

te=
existence of a holomorphic lifting F : M — T'\ Eg(g)/T®.
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If the harmonic map f is associated with a commutative root system Cy(1,J,K)
of first kind, then

61 = dei ® X5, + Z dz¥ ® Xp,; + Z dz'* @ Xy
iel (i,5)€J (i,5,k)EK

The pluriharmonic equation D"8; = 0 implies that ni; = 0 if 7 € I or there exist
(j,k) € J or (i,k,1) € K, {;; = 0 for (i,7) € J or 3(k,l,m) € K or 3k € I,
zi;j =0for 1 < i< j<T7if3(k,1) € J or 3(i,5,k) € K, zig=0ifi €I or
3(j, k) € J or 3(,j,k) € K. The Eg(s)-admissibility of the index set I, J, K of first

— 8 __
kind suffices for D" = 8 + 5 & ® H; and the existence of a holomorphic lifting

=1

Fg: M- F\Eg(g)/Ts, QED

Lemma 19. Each of the following conditions implies the noneristence of an
equivariant Hermitian symmetric Gn/Kn C Eg(g) /Eg(syN P with p; = Spanc(X,|
o€ Ci(I,J,K)) or pz = Spanc(X,|o € Ca2(J, K)):

(a) the existence of (i,k), (j, k) € J, (i,k,1) € K with (4,k,1) € K;

(b) the ezistence of i,j € I, (j,k) € J with (i,k) & J in the case of C1 (1, J, K);

(c) the existence of (i,5) € J, (i,4,k) € K in the case of Cy(J,K).

Proof. Below are exhibited 01,02,03 € C; with g2 —o03 € A (Eg(s)) and
o1 + (0’2 - 03) ¢ C;:

(@) Yirs + (Bix — Bjk) = Yirr + Aij = Viki3

(b) Bjk + (6; — 8:;) = Bjx +Aij = Bixs

(c) Yijk + (Bij — @) = Yijr — pij = Ok, Q.E.D.

In order to describe the strongly commutative root systems S C At (Egs)),
one lists 0,7 € A, (Eg(s)) with o — 7 € Ac(Eg(s)) and observes that

S = S8,(I,J,K) = {6:(i € I),Bi;((5,5) € J), ik ((, 5, k) € K)}

are subject to the conditions:

(i) cardl < 1; (ii) the pairs from J are disjoint; (iii) any two triples from
K intersect in a single element; (iv) (i,5) € J = 4,j € I; (v) (3,5,k) € K =
(1,9), (G, k), (, k) € J; (vi) (i,4,k) € K = (I,m) ¢ J for different %,j,k,I,m;
(vii) (i,7,k) € K = 1,5,k ¢ I.

The strongly commutative root systems So(J = &,K) = {o, ik (3,4, k) €
K)} are characterized by the fact that any pair of triples from K intersect in a
single index.

9. EIX = Eg(_24)/E7 X SU(Q)

The positive roots of E; are listed at the beginning of Section 5. The only
positive root 7 of sl(2, C) is subject to the property o+7 ¢ A(ES) forallo € A(ES).
Thus, 7 = p7g and
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Af(Bg—2q)) = {ANij(1<i<j < 6), i (1 < i < j <6), Arsg, puzs,
Bir(1<i<6),%k(1<i<j<k<6),6(1<i<6)},
AL (Bs(-24)) = {Nij, pij (1 <i < 6,7 < § <8),
| & B (1 <i<j<6),77(1<i<j<6),d).

For a commutative root system C C A;‘;C(Eg(_gtt)) of maximal cardinality, let
I, be the set of the indices i with \;; € C, I be the set of the indices i with Aig € C,
and J be the set of the unordered pairs (7, J) with B;; € C. Then either

C=Ci(h,I,J)={a,\i7(i € I), pig(i & ), \is (s € ),
i (i € 12), Bi5((i,7) € J), 152 ((5,5) € J)}
or
C=Co(ly, I3, J) = {87, Miz(i € 1), pig (s € [), Mis (s € L),
iz (i € I2), Bij ((3,5) € J), w2 ((i,5) & J)}.

Definition 20. A maximal commutative root system Cy(I1, 1>, J) is labeled
by Eg(_24)-admissible indices of first kind if there hold the following conditions:

(i) forany i € 1, NI and j € I; U I, there exist (4, k) € Jor (i,k) & J;

(ii) if I = @, then I, # {1,...,6};

(iii) if I; = @, then I, # {1,. N .,6};

(iv) if (4,7) € J and i € I, U I, then there exists (k,1) & J;

(v)if i € I and I; C {i}, then there exists (i, j) ¢ J:

(vi)if {i,5,k}NnL =2,!,m,n € I, and (I,m),(l,n),(m,n) € J, then at least
one of the pairs (4, 5), (j, k) and (i, k) belongs to J; '

(Vll) if {z$.72k} nII =9, {laman} nI? = @ and (’I.,]), (l, k)s(]’ k)e Ja then at
least one of the pairs (I,m), (I,n), (m,n) belongs to J;

(viii) if 4 € I, and I, C {i}, then there exists (i,7) & J.

Definition 21. A maximal commutative root system Ca(,I3,J) has an
Eg(_24)-admissible index set I, I, J of second kind when there hold the following
conditions:

(i) if j g L UL, and 1 € I N I, then there exists (4,k) € J;

(i) if I, = @, then I # {1,...,6);

(iii) if I = @, then I # {1,...,6};

(iv) if i € Iy N I, then there exists (i,;) ¢ J;

(v) if ¢ € I, then there exists (i,7) € J ;

(vi) for any permutation i,3j,k,I,m,n of 1,...,6 with {lym,n} C I, and
(l,m),(l,n),(m,n) € J there exists (i, §), (j, k) or (i, k) from J:

(vii) for {7, 7,k} C I with (4,5), (4, k), (i, k) € J there exists (I,m) € J;

(viii) if ¢ ¢ I;, then there exists (4, j) € J.

Lemma 22. If f : M - T\ Eg(—24)/E7 x SU(2) is a harmonic map with
df (T} °M) = g, Spanc(X,lo € Ci(Iy, Iz, J))g;! for a mazimal commutative root
system Ci(I1,13,J) C A}.(Eg(—24)), then there is a holomorphic lifting Fp : M —
[\ Eg(—24)/ E7 x T to a minimal complez homogeneous fibration. IfCi(Ih,I,J) is
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labeled by an Eg(_24)-admissible indez set of i-th kind, i = 1 or 2, then f admits a
holomorphic lifting Fg : M = T\ Eg(_24)/T8 to a mazimal complez homogeneous
fibration.

Proof. The (0,1)-component of the e7 & su(2)-valued connection D has the
form

8

D'=3+Y GOH:+ Y. T ®Xa,; +7s ® Xng + 77 @ Xaer
i=1 1<i#j<6

+ S GOXust+ Y, EG® Xy (18 ® Xumy + 78 © Xy

1<i<j<6 1<i<j<6

6 6
+Za_i®Xg'..,+Es—i®X—ﬁn+ Z Tigk ® X

i=1 i=1 1<i<j<k<6

6 6
+ Y TE® X+ Pi®Xs +Y e X
1=1 =1

1<i<j<k<6

The (1,0)-component of the differential of f, associated with Ci (11, Iz, J), is

By =dz° ® Xo + 3 d2' @ Xp + )y’ ® X + Y dut @ X,

i€ly igl i€l
+ 3 dv @ Xy, + Y dz @ Xy + > dy ® Xy

The pluriharmonic equation D", = 0 implies that 7;; = 0 for i ¢ 1 NI or
jeLulor3(j,k) € Jor3(i,k) ¢ J,ms =0if #@orl #{1,...,6},m87 =0
for I # @ or I; # {1,...,6}, Gij = 0if (i,7) € J or I(k,l) ¢ Jori € [ Uy,
z,-j=0foralll§i<j§6,273=0, O'i=0ifi¢.[2 OrB(i,j)gJOIBjEIl,
s; = 0 for all 1 < i < 6, 7 = 0if (L, m) ¢ Jor3(i,j)€ Jor3i €l or 3¢ I,
tijx = 0 if 3(4,J) g Jor3(l,m)eJordiel or3lel, pp=0forall1<i<6
and r; = 0if i € I or 3j € I or 3(i,j) ¢ J. Then the consequence D'§, =0 of
the flatness equation 2 = 0 yields (7s A da* = 0 for i € I; and (73 A dy* = 0 for
i I Tf cardl; > 2, then (7 € (dz*)N({dz™) for 11,4, € I forces the vanishing of
(7s. Otherwise, card({1,..., 6} — I,) > 5 and the containment of (73 in at least two
different differential ideals (dy™), (dy**), where iy,i2 € Iy, leads to (73 = 0. That
suffices for the existence of a holomorphic lifting Fp : M — T'\ Eg(—24)/ E7 X T,

Observe that Er x T is the centralizer of the torus 7" = Ea:pfs"“’ (H; + Hs). If,

8 __
moreover, the index set Iy, Iz, J is Es(_24)-admissible, then D =d+ > (& —&)®H;

=1
justifies the existence of a holomorphic lifting Fp M = T\ Eg(—24)/T%.
For a harmonic map f with an associated commutative root system Co(I1, 12, J)
one has
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b2 =dz’ @ Xs, + ) dz' @ Xn,, + 3 dy' ® X,y + > dut ® Xy,
i€l iglh i€l

) A RX, + Y di @ X, + Y d@iex,.,.
igl; (i,j)ed (1,9)¢J

The pluriharmonic equation provides Mmj =0forj e [ ULorig LN or
3(,k) € J, ms =0for I, # @ or I, #{l,...,6}, nsr = 0 for I, # & or
I #{1,...,6}, ¢ =0forall 1 < i< j <6, zij=0forig 1N or (i,5) & J,
z7g=0,a.-=0forall1_<_i56,s,-=0ifi€12 orE(i,j)eJ,Tijk=Oif31¢12
or 3(i,j) € Jor A(l,m) € J, tijr =0if Ji ¢ I; or 3(3,7) € Jor I(,m) € J, p; =0
ifi€lyor3(i,j) € Jandr; =0foralll<i < 6. The consequence D6, = 0
of the flatness equation specifies (35 = 0. Therefore, f admits a holomorphic
lifting Fp : M — '\ Eg_s4y/Er x T'. If I1, I, J is an Eg(_24)-admissible index
set of second kind, then D takes values in h and there is a holomorphic lifting
FB M ->7T \ Eg(._24)/T8, QED

Lemma 23. Each of the following conditions on the index set Iy, 15, J im-
plies the nonexistence of an equivariant Hermitian symmetric subspace G /Ky C
Eg(—24)/Eg(—24) N P with p{ = Spanc(X,|o € Ci(I1, I, J)) fori=1 or 2:

(a) the ezistence of i € Iy, j € I, (k,l) € J with (m,n) & J,

(b) the existence of i € I, j ¢ Ir with (1,5) € J in the case of Cy (I}, I, J);

(c) the existence of i € I, j € I; with (4,7) € J in the case of Co(ly, Iz, J).

Proof. Here are the appropriate o,07,03 € Ci(I1,15,J) with 0y — 03 €
Ac(Eg(-24)) and 01 + (02 — 03) € Ci(I1, I, J):

(a) Air + (Brt = Ymn7) = Mir + pij = pyr;

(b) a+ (Air — pj7) = @ — pij = Bij;

(c) wir + (Bij — Ajz) = pir + Bir = a, Q.E.D.

Applying the very definition, one observes that the strongly commutative root
systems S C Af (Eg(-24)) of the form

S={Ar(i € I),\is(i € L), pis(i € I3), pir (i € Iy),
Bij((i,7) € 1), 7ij2((3,5) € Jo)}
are S = {A7, Ass, P13, Baa, 1127}, S = {118, p27, B2, m3r, v2ar }, S = {17, Ass, Bia,
N2r}s S = {A17, pos, oz, ms7}, S = {M7, 18, Br2, M3}, S = {A17, s, Bz, mar},

S = {8, 17, 812,27}, S = {Mis, ta7, Br2, 1137} and S = {118, po7, B12, 7127} up
to Weyl(ES x SL(2,C))-action.
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