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The finite deformations of two drops due to electric field are investigated in this article.
The radii of the drops and the fluid phases could be different. Reynolds’ number is
assumed small enough to solve the problem in quasisteady Stokes’ approximation.
It is also supposed that the initial form of the drops is spherical and the fluids are
homogenous, incompressible and Newtonian.

The electric and hydrodynamic problems are separated and the electric one has an
influence on the hydrodynamic one through the boundary conditions. The Maxwell’s
equations are turned to Laplace’s equations, and together with Stokes’ equations they
are solved by semianalytical-seminumerical method. We use boundary-integral type of
these equations to solve them by the method of boundary elements. The kinematic
condition gives a new form to the particles.

The results obtained indicate that interactions between two and three fluid phases,
due to electric field, lead to deformations of the drops. The influence over the defor-
mations of some dimensionless parameters of the problem has been given graphically.
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1. INTRODUCTION

Basic ideas for investigating the matter of fluid particles deformations have
been presented first by G. I. Taylor (1932). In his next paper (1934) Taylor has
found the critical velocity of shear flow, after which a drop set in the flow starts to
elongate. In [26] it has been proved that in uniform flow in Stokes approximation
an initially spherical particle remains spherical without any deformations.
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E. Chervenivanova and Z. Zapryanov obtain small deformations of drop moving
with a uniform velocity in spherical container, full with viscous fluid. Although the
flow is uniform, there are deformations of the drop, because it is in a container
which causes the deformations.

Uijttewaal et al. (1993) solve numerically the three-dimensional problem of
drop in linear shear flow moving to a plane wall, using the boundary element
method.

The problems of single drop subjected in viscous flow are in the basis for
solving problems of compound drops (drop in drop), drop near a plane wall or two
separated drops.

The technique “method of reflection”, which is used for the first time by Smolu-
chowski (1911), is in the base of the first systematic investigations of the dynamics
of two fluid drops made by Happel & Brenner (1965).

Small deformations of two fluid drops have been presented first in [3]. De-
formations of two fluid droplets, drop and bubble, and drop and rigid particle in
uniform flow are obtained. A parametric analysis of the small deformations relative
to the distance between drops and the ration of viscosities of the different phases
is made. “Dimple” formation is one of the basic results of the paper.

The influence of electric field on a water drop has been investigated experimen-
tally in 29] and [12]. The authors have found the critical value of dimensionless
parameter (E*) after which the drop breaks up. Taylor (1964) improves theoreti-
cally this value supposing that the drop preserves its spherical form until the break
up. In [1, 5, 9, 25] a drop’s break up with conical tips is examined. Ramos &
Castellanos (1994) present theoretical result for the influence of the coefficients of
permittivity and conductivity on the conical tips formation. Torza, Cox & Mason
(1971) have found experimentally another model of breaking up a drop, which is
divided into two spherical parts connected with a thin “throat”. Sherwood ( 1988),
using the method of boundary elements, solves numerically the problem of a single
fluid particle deformation under the influence of electric field.

The form which two equal fluid drops achieve in the presence of electric field is
given experimentally by O’Konski & Thacker (1953). In the papers (5, 13, 23] the
authors show that due to the same electric field but with different parameters of the
fluid phases (conductivities, permittivities) there are deformations of the interfaces
based on electrostatic charge. In [2, 11, 24] a couple of equal water drops situated
in an electric field is investigated experimentally. Sozou (1975), using bipolar co-
ordinate system, presents semianalytical decision for velocities in and out of the
drops, presuming keeping the spherical form.

2. FORMULATION OF THE PROBLEM

The problem for defining the finite deformations of two fluid drops due to the
electric field is separated into two problems — electrostatic and hydrodynamic. The
Navier-Stokes equations and the Maxwell’s equations are describing most precisely
that problem. In low Reynolds number and quasisteady approximation they turn
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respectively into Stokes equations for velocities and Laplace’s equations for electric
potentials, as written below.
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Fig. 1. Scheme of two drops in the presence of electric field

The drops on Fig. 1 are compounded of fluid 2 with viscosity 2, conductivity
09, permittivity €2, and fluid 3 with viscosity us, conductivity o3, permittivity €s.
The electric field that acts on the axis connecting the centres of the drops is with
intensity Ep. Under its influence the interfaces of the drops deform. The initial
form of fluid drops is spherical with undistorted radius Ry of the first sphere and
undistorted radius Ry of the second one. With S, is marked the interface between
phase 1 and phase 2, and with S; — the interface between phase 1 and phase 3.
The interfacial tensions over S; and S; are M and 72, respectively. The fluids 1,
2 and 3 are situated in €3, 2 and 3, respectively, while ), is the infinite area
outside the drop (Fig. 1).

At each point the electric potential and the velocity of the flow at each moment
is governed by the following equations:

_ Laplace’s equations: Ag* =0 (k=1, 2,3); (2.1)
k
— discontinuity equations: %‘é‘— =0 (i,k=1,2,3); (2.2)
. O .
— Stokes’ equations: s =0 (4,7,k=1,2,3) (2.3)
J

9 dz;  Oz;
The index k = 1 for = € {4, k=2forx € and k = 3 for x € 3, while p*

is the hydrodynamic pressure of the respective fluid. The electric potential in the
three phases satisfies the following boundary conditions:

our Oub\
where o%; is the stress tensor ok = —p*di; + pa (—'— + =

o (zo) = Eozh,  |Tol = oo, (2.1.8)
ol(wo) = P(x0),  To € 51, (2.1.b)
@' (®o) = ©*(xo), xo € Sa, (2.1.c)
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! dy?

01 6‘2 (z0) = 02 -5;(1!0) o € S, (2.1.d)
! ap®

o1 5(2 (zo) = 03 B—(mo), o € 9y, (2.1.6)

where Ej is the intensity of the electric field, z is the z-component in Decart co-
ordinate system Ozyz of the vector xg, and 0y, 02, 03 are the electric conductivities

. . d . .
of the respective fluids, and 3 is the normal derivative to the surface, pointed out

of the respective domain.
The flow field is governed by the following boundary conditions:

uj(@o) =0,  |@o| = oo, (2.3.a)
ul(2o) = ui(zo), @0 € S, (2.3.b)
0ii(@o)n;(xo) — oF; (@)1 (o)
on.
= 71n¢5% ~ (75 (wo)mj (o) — 75 (xo)nj(20)) , o €851, (2.3.¢)
j
ul(@o) = u(xo), T €S, (2.3.d)
o3 (@o)nj (o) ~ o (o) (20)
on
= ’721'&,‘-3:—]_ — (T,-lj(mo)nj(xo) - 'rfj(:co)n,-(mo)) ) Zg € Sz. (2.3.6)

j
Here n is the single outer normal to the interface S; or Ss,
ko (E*)? o
Ty = — 47r( 5 di; — EJE]

1]

is the Maxwell’s electric stress tensor for the respective phases (k = 1,2, 3), where e,
is the electric permittivity of the different phases and E* = —V*. Let us hssume
that S; and S2 are Lyapunov’s surfaces. The solution of (2.1) with boundary
conditions (2.1.a~e) gives us the electric potentials at each moment and at every
point of the three phases. The solution of (2.2), (2.3) with boundary conditions
(2.3.a—¢) gives us the velocity at each moment and at every point of S; and S,.
The deformation of the interfaces is determined at each moment by the normal
component of the velocity and the kinematic condition:

dz,

dt
Here x, is a point of the respective surface S; or Sz, while u, is the normal
component of the velocity at this point.

Following Greengard & Moura (1994), the integral equations, which determine

the potentials of the electric field on the interfaces, are solutions of the system (2.1)
with boundary conditions (2.1.a-e) in the single-layer integral form:

o(@0) = P(@o) + / G (@0, z)p(z) dSs, (2.5)

= ng(u,- . n,-) =MN; - Up. (2.4)
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where @(xo) is the total potential of the field at the point xo:

ot (zo) = pl@a)lg,, ¥ (@) =¢(@o)jq,

0¥ (o) = p(@a)lg,»  ¥(@0) = Ey.%o;
p(z) is an unknown function of distribution, G(xo, ) is a Green’s function for the
domain S = S1 U S2, which for our case is G(zo, ) = m .

By substituting (2.1.d-e) in (2.5) and using the single-layer potential theory

we derive:

Ok [Q%(?l - %P(%) + / %%(mo,m)l’(m) dSz]

S
= {Q%n@ r 2p(@0) + [ G @o,z)e@ dsz} . @9
S
pleo) ~ 20 [ 5o (20, 2)p(z) S5 = WL
S

where \e = X~ k=2,3.

Tk + 0

In order to solve the hydrodynamic problem (2.2), (2.3) with boundary condi-
tions (2.3.a-¢), following Power [14], we use Green’s integral representation formulae
for Stokes equations to get to integral equations, which determine the velocities on
the interfaces:

L‘:-(%-/ﬁ@ug(mo) - - (1 - -‘:—;) 5/ T (o, 2)ub ()i () 4. (2.7)

_ (1 — -‘;—:) S/ T;jk(a:o,a:)u?(m)nk(a:) dSz

1 ong

— T),I J,-j(mo,a:) ('nn,-—a—m; - (T}k'nk - Tfknk)) dSz
Sy

1 ong 3
— I / Ji,-(:co,a:) ('ygn,--a—m—; - (T]-lknk - Tjknk)) dSz

S2

for each zo € 51,

l-i(-‘%‘ﬁ‘i) uf(®o) = - (1 } Z‘) / Tyje (@o, ©)u} (@) (%) dS= (28
51

= (1 - %)!Tm(mg,m)uﬁ(z)nk(m) dSz
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1 on
- ;;/J,’j(mo,m) (7211_7'%*: — ('r}knk — T}knk)) dSz
S2

1 ony,
= ;1-6./ Jij(@o, ) (’)’lnjm - (leknk - Tfknk)) as,
1

for each g € S,.
The equations (2.5)-(2.8) are dimensionlized to a form that is given in the next

part and the following dimensionless parameters are included:

an - 61E3R1

2
the electric and the capillary forces;

— dimensionless parameter that indicates the relation between

Hi2 = ﬂ, H13 = L the relation of the viscosities of the different neigh-

bouring pha‘.:és; e

€91 = g% , €31 = :;—: — the relation of the electric permittivity of the different
neighbouring phases;

J12 = Z-; , 013 = % — the relation of the electric conductivity of the different
neighbouring phases;

Y2 = n__ the relation of the interface tension coefficient of the two surfaces
2
of the drops;
R . .
Ry = R*l — the relation between the radii of the two drops.
2
To accomplish the formulation of the problem, we should say that on each time
step we solve first the electrostatic problem, which has an influence on the hydro-
dynamic one, by Maxwell’s electric stress tensor. On its turn, the solving of the
hydrodynamic problem gives us the velocities of the fluids in the different phases.
Using the kinematic condition for the normal velocity components on the fluid sur-
faces, we get their deformation. With the new form (changed boundary conditions)
we solve once again the electrostatic problem and after that the hydrodynamic one,
since the number of time steps determines how many times this procedure will be
used. The criteria for ending the procedure are reaching an equilibrium form of the
drops or “break up”. ,

3. ALGORITHM FOR DETERMINING THE DEFORMATIONS
OF TWO DROPS DUE TO ELECTRIC FIELD

The main steps of the algorithm followed are:

e change of the co-ordinate system from Decart’s to cylindrical, in order to
transform the boundary integrals to one-dimensional;

e introduction of boundary elements over the boundaries of the domains —
arcs of circles;
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e introduction of local polar co-ordinate system for each boundary element;

o calculation of the integrals of the single- and double-layer over each boundary
element;

o subtraction of the integrals singularities;

e calculation of the velocity on the interfaces;

o determination of the drops form from the kinematic condition.

Due to the axisymmetric flow of the problem, we change the co-ordinate system
to a cylindrical one (z,0,9), in which none of the unknown functions depends on
the azimuthal angle ¢: @ = pg = up =7n¢ =0 (Fig. 2).

4

4

Fig. 2. Scheme of cylindrical co-ordinate system for axisymmetric flow

The normal 1, the velocity u, the electric potential ¢ and the unknown function
of distribution p are presented through the new co-ordinates:

T = [z,acos¢,asin¢], xo = [ro, 00 cOS Po, 00 singg], rz=%To—%, Tz=To—7T
[Nz, Ny, 2] = [2, N COS P, Mg SIN B, (g, Uy, u:] = [z, Us COSP, Uo sin ¢},
[0z, ys Pz) = [Pz+Pg COS §; P SIN 8, [0z, Py» Pz) = [Pz: Po €OS &, po SN ¢}

The differential dS is presented through the formula dS = o d¢dl, where dl is
the elementary length of the curve C = C1 U (2 projection of § = 51U fS'z in the
meridian plain Ozy, i.e. Cy is the projection of 51, while C; is the projection of S;.
Thus, we get to the following equations:

e(xo) = Y(@0) + 2—11; /p(l)Ks(wo,l)a(l) di(z), (3.1)
C
p(xo) — -):ﬂ_ﬁ / p(1)KP (zo, ) (}) di(z) = Abés'[‘)b(",'z;.l ) (3.2)
c
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where

2n T
KS(:'BQ,I) — d¢($) _ y d¢(m)

= = Lo(z

2 27
KP(20,1) = (zo — ) - n(x) do(z) = /m(w(z)
0 0

lzo — xf? |72}

= (rzmy + oong)I30(z0, 0, ag) — aone 31 (X0, 7, 00).

Imn(z0,0,00) are functions defined by:
2n

cos™
I mn — / ¢ - d(b

s (2 402 + 0§ — 2009 cos ¢)

2
4k'™ 7 (2cos? w — 1)"

" (dooo)m? g (1-k7 cos?w)™?

4009
r2 + (0 + 00)?

where k"2 =

5 12 + 1)U (@0) + (1= o) [ a0, 2 @) () di(2)
C

+ (1= ) [ daps(@o0,2)u(@)n(2) ()
C2

= — / Mog(zo, ) (112mV - 0 — By (1ignp — 723np€21)) di(z)
Ch

- / Myp(xo, x) (ngV -0 — E, (*r;ﬁng - rf;anam)) di(z),
Ca

%(1 + u13)ui($o) + (1 = p12) /qaga,(zo,m)uﬁ(x)n-,(a:) dl(m)
C1

+(1= p15) [ gass @0, 2@ () ()
Ca2

= - /Mo,g(:co,:c) (mangV -n — E, (145mg — T2gngen ) di(z)
C1

- /Maﬁ(mo,m) (ngV -n — E, (1a5mp — To3mpes1)) di(z).
Ca
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The indices a, 3, v are for z or o, and we denote by them the axial and radial
components, respectively.
The matrices M and g are defined as in [30]:

2m

_ | Mz Mg | _ Jzz JzyCOSP + Jr,singd
M(mo,m)—[Maz Maa]_G/[Jzy J::sin¢+J,,zcos¢] dé,

[qZZZ Qz:za ] (ZO) w)

9zoz Qzoo

27
- / [ Trze _ Trzycosp + Tpzsing do
ToayTszz + Toozsing  Tayycos® ¢ + Ty, sin® ¢ + 2Ty, sinpcos |
Qozz YGozo
[Qaaz ‘baa] (0, )
2n

Y / [ J p Tryycosd + Tpy, Sin ¢ ] dé
y ToyyTozz + Toyzsing  Tyyycos? @ + Ty, sin® ¢ + 2Ty, singcosgp |

Formulated by the integrals I, (Zo,0,00), we have

Lo +r2I3 —rz(0130 — 00l31)
—1'3(0131 — 0’0]30) I + (02 + 0’3) I3 - 0‘00([30 <4 132) ’

Qzzz _7'2150
Qzzoc = Qzox | = 6or, rz(UISO - 0'0151) ,
- (02I50 + 0'8152 - 200’0[51)

Mza[

QZUO
r2(oIsy — oolso)
Qozz 9 2
[QUQZO' - ‘bo‘z] = 6o —Tz [(U + 00) Isy — ooo(Is0 + 152)]
Qooo 0‘3I51 - 0'20'0(I50 + 2[52) + 00’3([53 -+ 2[51) - 0’8[52

The integrals I,, could be expressed by elliptic integrals of first and second
kind — F(k') and E(k'), which are calculated numerically:
/2 w/2

dw 1/2
A n o _ 2 2
F(k)_/(1~k’2c WL E(k)-—/(l k'™ cos® w) ' dw.

0

0

The integrals of single and double layer integrals in (3.1)-(3.4) have singularities,
and in the singularity point these integrals are calculated using the formulae derived
by Pozrikidis [15].

The system (3.1)—(3.4) is solved using the method of boundary elements, and
the algebraic system following the electric problem (3.1), (3.2) is solved by Gauss’
elimination, while the one following the hydrodynamic part (3.3), (3.4) is solved by
the iterative method. For the calculations a project in Code Warrior C has been
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conducted, as the main results have been obtained through Power Mac 200/6400
in the Laboratory of the Department of Mechanics of Continua at the Faculty of
Mathematics and Informatics at the Sofia University “St. K1. Ohridski”.

For the determination of the drops form on each time-step, we use the kinematic
condition of the following type:

3™ = x; + ni(u;-n;)dt, where dt is a preliminary set time-step.

We assume that the form reaches the equilibrium when the normal component
of the velocity becomes less than the preliminary set minimum at every point of the
interfaces. Another criterion for the end of the procedure is the normal component
to become bigger than the initially set number; then we consider the drop’s break-

up.

4. RESULTS

The algorithm for obtaining the finite deformations of two drops due to electric
field has been tested for a single drop in the presence of an electric field and it has
shown a good agreement with the results of Sherwood [18].

Fig. 4

The deformation of fluid interfaces
when they are with equal radii does not
depend essentially on the distance be-
tween the drops in low intensities E., =
0.4 of the electric field. The initial dis-
tance between the centres of the drops

Fig. 5 on Fig. 3 is 2.1 R1, on Fig. 4 is 2.5 R1,

on Fig. 5 is 3.5 R1 with u;2 = 0.50,

K13 = 1.50, E7 = 0.4, €21 = 2.0, R12 = 1.0, €31 — 3.0, o12 = 10.0, g13 = 15.0,
dt = 0.01, 112 = 1.0.

Fig. 6 Fig. 7
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When we increase the intensity of the
electric field, the form reached by the first
drop is elongating, till the second one re-
tains almost spherical. On Fig. 6 E, =
1.0, on Fig. 7 E, = 2.0, on Fig. 8 E, = 5.0
with g2 = 0.50, €97 = 2.0, p13 = 1.5,
R12 = 10, €31 = 3.0, J12 — 100, g13 — Fig. 8
15.0, dt = 0.01, 712 = 1.0.

Fig. 9

The ratio between the radii of the
two drops causes different pictures of de-
formation as shown on Fig. 9-11. On
Fig. 9 Ry2 = 0.5, on Fig. 10 Ry2 = 1.25,
on Fig. 11 Ry = 149 with p12 = 0.5,
Eq = 0.5, H13 = 2.0, €21 = 2.0, €31 =
3.0, Jg12 = 10.0, g13 = 150, dt = 0.01, Fig. 11
~v12 = 1.0. The change of the ratio causes
increase of the influence of the initially bigger drop to the smaller one.

Fig. 12

On Fig. 12-14 the ratio between
the viscosities is changed from g3 =
1.0 on Fig. 12, p13 = 2.0 on Fig. 13 and
H13 = 4.0 on Fig. 14 with Ry = 1.0,
E,Y = 1.8, H12 = 2.0, €21 = 2.0, €31 =
1.5, 012 = 20.0, o33 = 15.0, dt = 0.01,
v12 = 1.0. That shows that a change
of viscosity between two phases causes
a change of deformations on the both
drops. Fig. 14
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On Fig. 15 and 16 the permittivity ratio €3; changes from 2.0 to 10.0 on Fig. 16
with ng = 1.0, E‘Y = 1.8, Hi13 = 1.5, Hiz2 = 05, €1 = 5.0, J12 = 20.0, 013 = 150,
dt = 0.01, 712 = 1.0. That indicates that the increase of permittivity ratio between
the phases 1 and 2 tends the drop to elongate in the direction opposite to the
neighbour drop, but the configuration of Fig. 16 (¢3; = 10.0) is not stable and after
some time steps a “break-up” appears.

g} a4 0% \m s

e T g T

s

Fig. 17 Fig. 18

On Fig. 17 the ratio of conductivities is o13 = 5.0, and on Fig. 18 it is 13 = 10.0
with Ry, = 1.0, E—, = 0.4, p13 = 1.5, gy2 = 0.5, €91 = 2.0, €33 = 3.0, 013 = 15.0,
dt = 0.01, v;2 = 1.0, so when the drops are with equal radii and the intensity of
the electric field is not strong, the change of conductivity ratio has no significant
influence on the deformations.

The problem for the finite deformations of two drops due to electric field has
ten dimensionless parameters, each of them having an influence on the process of
deformations somehow, so further results will be presented in next papers.
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