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1. INTRODUCTION

In the present paper we are using the method of regular enumerations [9] in
the context of definability on abstract structures.

For the sake of simplicity, we consider only unary sets. All the definitions and
results can be easily generalized for sets of arbitrary finite arity.

Given two sets of natural numbers A and B, we say that A is enumeration-
reducible to B (A <, B) if A = I'.(B) for some enumeration operator I'. {7, 1,
3, 5, 8]. In other words, if D, denotes the finite set with a canonical code v and
Wo,...,W.,...is the Godel enumeration of the recursively enumerable (r. e.) sets,
we have

A<, B < FVz(z e A& Jv({v,z) € W. & D, C B)).

Given a set A, denote by A1 the set A& (w\A). The set A is called total iff
A =, AT. Note that the graph Gy of each total function f is a total set.

* This work was partially supported by the Ministry of Education and Science, Contract
M-604/96.
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Given a set A, let K = {{z,2) |z € ['.(A4)}. We define the e-jump AL of A
to be the set (K%)*.

Several properties of the e-jump are proved in [6, 9, 5]. Since we are going
to consider only the e-jump here, we omit the subscript e in the notation of the
e-jump. For each set B, B'Y = B and B"*") is the e-jump of B,

Let N be an infinite countable set and w be the set of the natural numbers.
We assume that we have an equality (=x) and an inequality (#5) in N. Consider
n+ 1sets By,..., B, such that B; C N for cach ¢ € [0, n]. The algebraic structure
a=(Nw =n,%n~n,Gy, D), where:

e f:w — N is a bijection,
e D C wis a total set,

is called an enumeration. From now on we write a@ = (f, D) to denote the enumer-
ation a and if D = G, for some total g, then we write a = (f, g).

The set A C N is called edmissible relatively By,..., B, iff for each enumera-
tion o = (f, D) it is true that

[7'(Bo) e D& ... & f7H(Bn) < D™ = f71(4) <, D,

The aim of the present paper is to obtain a normal form of the admissible sets.

Consider a countable first-order language consisting of the binary predicate
symbols =, # (interpreted as =y and #xn) and unary predicate symbols T; for
each 1 € [0,n] (interpreted as B; and taking only the value true (0), whenever
defined).

An elementary existential formula is a formula in a prenex normal form with a
finite number of quantifiers which are only existential, and a matrix which is a finite
conjunction of atomic predicates of =, # and Tp. These formulae are interpreted
in the usual way and the quantifiers are over the set N. The elementary existential
formulae can be effectively coded by natural numbers. If n is the code of a certain
formula, the formula itself is denoted by [n]. We use the notation ¢(Z,,...,7Z,)
for the formula ¢ with free variables among Z1,..., Z,.

Bellow we define Ef-formulae and H?-formulae for each i < n.

A Y7 -formula is a formula of the form Voo [¥() (21, ..., Za), where v is

a recursive function and [v(n)](Z,...,Z,) is an elementary existential formula.
These formulae are interpreted in the usual way. The I -formula ¥(Z,,..., Z,)
is a formula of the form ~®(Z,, ..., Z,), where ®(Z;,...,Z,) is a T -formula. If
5 € N% then:

U(Z|5s)~0 & ®(Z|3) #0.

Proceeding by induction, suppose that 7 < n and for each j € [0,:] we have
defined Ej'— and Hj-formulae, which can be effectively coded by natural numbers.

An elementary ©},,-formula is a formula in a prenex normal form with a finite
number of existential quantifiers and a matrix which is a finite conjunction of
atomic predicates of T;4,, =, # and Ef- and H;* -formulae. These formulae are

interpreted in the usual way and they can be effectively coded by natural numbers.
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A T -formula is a formula of the form V. [vm1(Zy,..., , Za), where vy is a

recursive function and [y(n)](Z1,..., Z,) is an elementary £}, -formula. A II]; -
formuld U (Zy,...,Z,)isaformulaof the form ~®(Zy,..., Z,), where ®(Z,,..., Z,)
isa £} . ;-formula. These formulae are interpreted similarly to the £ - and I, -
formulae.

The set 4 C N is called definable iff there exist a £ -formula ®(Wy,... W, Z)
and t,...,t, € N, such that for all s € N,

scA & ®WIt Zls) ~0.

We are going to prove the following result, which gives a normal form for the
admissible sets.

Theorem 1. Let A C N. Then A is admissible iff A is definable.

The “only if” part of the theorem is obvious, so we must prove only that if 4
is admissible, then A is definable.

2. REGULAR ENUMERATIONS

The method of regular enumerations is introduced and studied in [9]. In this
paper we adapt it for abstract structures.

Let us fix n > 0 and subsets By, ..., B, of N. Since for every bijective mapping
fofwinto N f~1(B;) =. f~1(B;) ®w, we may suppose that f~!(B;) and hence B;
are not empty. We use the term finite part to denote an ordered pair 7 = (f;, g-)
such that:

e f. is a finite injective mapping of w into NV;
e g. is a finite mapping of w into w defined on a finite segment [0,q — 1]
of w.

The finite parts will be denoted by the letters 7, 4, p and A. If dom(g,) =
[0,q — 1], then let Ih(g,)} = g. We assume that an effective coding of all sequences
and all finite mappings of w into w, defined on a finite segment, is fixed. Let
7= (fr,9-) and p = (f.9,). If f+ C f, and g, C g,, we write 7 C p.

Bellow we define i-regular finite parts for each i < n.

A O-regular finite part is a finite part 7 = (f;, g-) such that dom(g,) = [0, 2¢+1]
and for all odd z € dom(g,), g-(z) € f71(Bo).

If dom(g,) = [0, 2¢+ 1], then the O-rank, |7y, of 7 is equal to ¢+ 1, the number
of all odd elements of dom(g,). For each O-regular finite part 7, let Bj™ be the set
of the odd elements of dom(g; ).

Given a O-regular finite part 7 = (f;, g-), let

g: ko Fe(z) & Fo({v,z) € W, & Vu € Dy(g-((u)o) = (u)y)),
gz ko ~Fe(x) & V(0-regular p = (f,,9,))(7 € p = g, ¥o Fe(z)).
Proceeding by induction, suppose that we have defined the i-regular finite parts

for some 7 < n and for each i-regular finite part 7 = (f,,g,) we have defined its
i-rank |7];, the set B{" and the relations g, l; Fe(z) and g, W¥; F.(z).
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Let f, be a finite mapping of w into N and g, be a finite mapping of w into w
such that dom(g.) = [0,¢' — 1] and 7" = (f-, ¢}) is i-regular. Let

G={g,|p=(fp,9,) s i-regular& 7' C p& g, C g, & g, I+; F.(z)}.

We say that g/’ is appropriate for f;, g, e and = (we denote this by app(g7, f-,
g., e, x)) iff one of the following is true:
e G # @, g IV Fez), (fr,g)) is i-regular, g, C ¢ and lh(g})
= min{lh(g) | g € G};
e« G=o. (fr.g") is i-regular, |(fr, )i = [(fr, g0)li + 1 and g} C g".
Let 7 be a finite part, g, be defined on {0,¢—1}, and r > 0. Then 7 is (i + 1)-regular
with (i + 1)-rank » + 1 iff there exist natural numbers

O<ng<byp<n <b...<n, <b. <npy1=¢

such that (f;, g- | no) is an i-regular finite part with s-rank l and forall j,0 < j <r,
it is true that:

1. app(gr [ bj, fr.9- 1 (nj +1),(4)o, (G)1);

2. g (b;) € f7H(Biy1);
3. (fr.9- | mj+1) is an i-regular extension of (f;, g, | (b; + 1)) with i-rank

[(froge 105+ )i + 1.
Let BY , = {bo,...,b;}. The next lemma shows that the (7 + 1)-rank is well
defined. Its proof follows easily from the definition of (i + 1)-regular finite parts.

Lemma 1. Let 7 be an (i + 1)-reqular finite part. Then:
(i) Let mg,aq,...,Mp,Qp,Mps1 and ng,boy ... Ny, bpy Ny be two sequences
of natural numbers satisfying 1-3. Then r = p, npy1 = Mp4) and for all
j <p,nj=m; and bj = a;;
(i) If p 1s (i + 1)-regular, 7 C p and |7{it1 = |pli+1, then g, = gr;
(iii) 7 is i-regular and |7]; > |T]it1-
To complete the definition of the regular finite parts, let for each (i + 1)-regular
finite part 7
gr tFip1 Fo(z) & Jo({v,z) € W, & Vu € Dyu = (€u,Tu,E)
&e€{0,1} & gr i (m)° Fe, (),

gr lFiy1 ~Fe(z) & Y((i+ 1)-regular p = (f,, 95))
(1 C p= gpHitr Fe(z)).
Lemma 2. (i) There exists an (i + 1)-regular finite part with (i + 1)-rank 1;

(ii) If 7 is an (i + 1)-regular finite part, then there exists an (i + 1)-regqular
finite part p such that 7 C p and |pliz1 = |7|iv1 + 1.

The proof of this lemma also follows immediately from the definitions.
The enumeration a = (f,g) is called regular iff the following two conditions
hold:
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e For each finite part § C « there exists an n-regular extension 7 of § such
that 7 C a;
e If ©+ < n and 2z € B;, then there exists an i-regular 7 C « such that
f1(z) e BY.
Given a regular enumeration a = (f, g) and 7 < k, let
B} ={b| 3(r = (f-,9,) C a)( is i-regular & b € BY")}.

Clearly, f~'(B;) = g(B}). Similarly to the analogous proposition 2.8, in [9], one
can prove the following lemma:

Lemma 3. Suppose that a = (f,g) is a regular enumeration. If i < n, then
f_l(Bi) Se g“)‘

Let g be a total mapping of w into w. For each 1 < n, e and z we define the
relation g F; F.(z) by induction on i:

gFo Fo(z) & Ju((v,z) € W, & Yu € Dy(g((u)o) ~ (u)y)),
gFi1 Fo(z) © Fu((v,z) e W & Vu € D ((u = (e, x,,0)
&gk Fo(z)) V(v = (ey, x4, 1) & g¥; Fe(x)))).

Let for each i € [0,n]
gFi~Fe(z) & g¥i F.(x).

The following lemma can be proved by induction on 1.

Lemma 4. Let g be a total mapping on w into w, A Cw and ¢ < k. Then
A <. g9 iff there exists e such that for all z, x € A & gk; F.(z).

Lemma 5 (Truth lemma). Let a = (f, g) be a reqular enumeration. Then for
all i < n,
gFi Fe(z) & 31 C a7 is i-reqular & g, IF; Fo(z)).

Proof. We use an induction on ¢. The lemma is obviously true for i = 0.
Suppose that ¢ < n and it is true for 7. First, we are going to show that

gFi~F(x) & 37 Ca(ris i-regular & g, IF; = F,(z)).

Suppose that gk; ~F.(z) and for each i-regular 7 C a, g, ¥ ~F.(z). Then for
each i-regular finite part 7 of « there exists an i-regular p such that + C p and
gp Ik Fe(z). Let 6 be an (i + 1)-regular finite part of « such that |6];41 > (e, ).
By the definition of the (i + 1)-regular finite parts, there exists an i-regular p’ C §
such that g, IF; Fe(z). By induction gF; F.(z). A contradiction.

Suppose now that 7 C « is i-regular, g, It; =F,(2) and gF; F.(z). By induc-
tion, there exists an i-regular p C a such that g, IF; F,(z). Using the monotonicity
of IF;, we can assume that 7 C p and get a contradiction. Now the lemma easily
follows from the definitions and monotonicity.
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3. NORMAL FORM OF THE ADMISSIBLE SETS

Now we are ready to prove that if a set is admissible relatively B, ..., Bn.
then it is definable. First of all, we need to prove that cach admissible set has a
normal form based on forcing relation and regular finite parts [10]. After that we
can “translate” this normal form into a X} -formula.

We say that A4 C N has a forcing normal form iff there exist a natural number
¢ and an n-regular finite part ¢ such that for each s € N the following equivalence
Is true:

s € A & dadr D 4(7 is an n-regular finite part
& fr(z) >~ s & g by Fe(x)).

Theorem 2 (Forcing normal form). Let A C N. If A is admussible, then A
has a forcing normal form.

Proof. Suppose that A has not a forcing normal form. We are going to construct
by steps a regular enumeration a = (f,g) such that for each i € [0,n] f~!(B;) <.
g'", but ~(4 <, ¢'")). At each step ¢ we shall define an n-regular finite part 4,
such that d, C d441.

Let sg, 51, ... be an arbitrary enumeration of N and dy be an arbitrary n-regular
finite part with n-rank 1. Let ¢ > 0 and let 4, be defined for all 7 < g.

I. (q)o = 3n. Let s be the first element of the sequence sg,s1,..., which does
not belong to the range(fs, _,), and z be the smallest natural number, which
does not belong to dom(fs _,). We define f5, (z) ~ s and f5,(z) ~ fs,_, () for
r#zand g5, = gs,_, -

1I. (q)o = 3n + 1. Let §, be an arbitrary n-regular finite part such that d;, 2 6,1
and |04}, = |84-1]n + 1.

1. (¢)o = 3n + 2 and (¢); = e. Since A has not a forcing normal form, for d,-;
and e there exists s € N such that the following equivalence is not true:

s€ A & dadr D 6,-1(7 is an n-regular finite part
& fo(z) ~s & g, b, Fe(z)).

1. Let s € A and VaV¥7 D 6,_1(7 is an n-regular finite part & f;(z) ~ s =
g; ¥, F.(z)). Let a = (f,g) be a regular enumeration such that o 2 §, ;.
We shall prove that f~'(A) # {z | gF, Fe(x)}. Let 2 = f~'(s). Suppose
that € {y | gF, Fe(y)}. Using the Truth lemma and the monotonicity
of the forcing, we obtain a finite part 7 such that f.(z) = s, ;-1 C 7, and
g- IF F.(x). A contradiction. In this case we define 6, = d,-;.

2. Let s ¢ A and 3237 D d,-1(7 is an n-regular finite part & f-(z) ~ s
& g; 'Fp Fe(z)). Let us fix 7 with the above properties and let @ = (f, g)
be a regular enumeration such that @ D 7. Using the monotonicity of
the forcing, we have that gF, F.(z) and f(z) = s, but s ¢ A. Hence
fYA) # {z| gk, F.(x)}. Soin this case we define d; = 7.
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Let a = (f.g) be a regular enumeration defined as follows: f = {J fs, and
JEW

g = | gs,- Using Lemma 3 and Lemma 4, we obtain that 4 is not admissible,
gEw
which proves the theorem.

Let us fix a variable Z. Denote by Var the set of all remaining variables. Let
us fix a recursive bijective mapping var of the natural numbers onto Var.

We use the sign “+” to denote the concatenation operation on sequences of
natural numbers, and “C” to denote the relation “is a subsequence of”.

Bellow we define i-patterns of the i-regular finite parts for each ¢ < n and when
an i-regular finite part 7 is coordinated with the i-pattern o.

Let ¢ = 0. Then o is a O-pattern iff it is the code of a sequence of natu-
ral numbers of the form (rg,...,72441). The O-rank of o, |y, is ¢ + 1. The
O-regular finite part 7 is coordinated with the O-pattern o iff {ry,73,... 7941} C
dom(f7), g-(j) =~ r; for j € [0,2¢ + 1] and lh(g;) = 2¢ + 2. We denote 7 =
(\»’&I‘('I‘l), V&l‘(‘l’;;), Tt sva'r(r?'q-l-l)) and f‘r (E) = (fT (Tl)o f'r (7’3)3 T :f‘r (r2q+l ))

Let 7 > 0. Then o 1s an i-pattern iff it is the code of a sequence of natural
numbers of the form

(7]01n03 (60) EO)! b0$771) vy My Tl (&Tﬁef)abﬁ nr+1>a

where 79 is an (i —1)-pattern with (7 — 1)-rank 1 and for each j € [0, 7] the following
conditions are satisfied:
1. ¢; € {0,1} and & is an (i — 1)-pattern such that §; 2D n; x(ng) and if e = 1,
then [nji-y = Imjli-1 + 1
2. nj+1 is an (7 — 1)-pattern such that 741 2 & * (bo) and |nj4q1]ic1 =
&l + 1
The i-rank of o, |o|;, is  + 1. The i-regular finite part 7 is coordinated with
the i-pattern o if the following conditions are satisfied:
o {by,...,b.} Cdom(f;);
o If mg,ap,...,mr,a,,m,+1 is a sequence of natural numbers satisfying
1-3 of the definition of i-regular finite part for 7, then (f;,g, [ mq) is
coordinated with (i — 1)-pattern 7o and for each j € [0, r] we have:

L gr(m;) = n;;
2. (fr,9- | a;) is coordinated with &;;

3. if €5 = 0, then gr ki I?(j)o((j)l)’ else gr J‘Fi—l F(j)o((j)l);
4. g-(a;) = bj;

5. (fr.gr [ mj+1) is coordinated with the (¢ — 1)-pattern n;41.

Let 7 = (F].r+1,val'(b0)’ - ;Va-r(br)) and fr(a) = (f'r (ﬁr-}»l)a fr(bO)a ceey fT(bT‘))
Let for i € [0, n]

Ri(0,z) ={s|s€ N &3t D(f(z) ~ s & 7 is i-regular)}.

Lemma 6. There exists an uniform effective way, given gs, y1,...,y, Such
that 6 = (fs,9s) 1s i-reqular and dom(fs) = {y1,....y»}, and given natural num-
bers e and z, to define a X -formula ®® with free variables among var(y;) =
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Yi,. .. var(y,) = Y., Z such that for all s € R;(5, z),
% (Y | fs(y), Z|s) ~0 & 37D O(7 is i-regular & g, I+; F.(z)).

Proof. We prove the lemma by induction on i. For i = 0 it immediately follows
from the definitions.

Let ¢ > 0 and let assume that for each j € [0,i — 1] the lemma is true. Using
the inductive assumption, one can easily prove the next lemmas.

Lemma 7. There exists an uniform effective way, given (i — 1)-pattern o,
natural numbers e and z and a finite set D = {y;,...,y,}, to define a =, -formula
$oe..D yith free variables among var(y,) = Y1,...,var(y,) = Y,, & such that for
each (i — 1)-reqular finite part T coordinated with o and such that D C dom(f,) it
s true that

o4 =P (Y f5(y),71f-(3)) = 0
< 3A D 7(A is (i — 1)-reqular & ga |Fi—y Fo(z)).

Lemma 8. There exists an uniform effective way, given an (i — 1)-pattern o,
natural numbers e and x and a finite set D = {yy,...,y.}, to define a £, -formula
®¢= D with free variables among var(y;) = Yi,...,var(y,) = Y, & such that for
each (i — 1)-reqular finite part T coordinated with o and such that D C dom(f,) it

s true that I
4" L (Y| f5(y), 51 f: (7)) ~ 0 & gr IFio1 Fol).

Lemma 9. There exists an uniform effective way, given an (i — 1)-pattern o,
natural numbers l, e and x and a finite set D = {y1,...,y,}, to define a 2?’_1-

formula ®7¢P with free variables among var(y,) = Yi,...,var(y,) = Y,, &
such that for each (i — 1)-regular finite part T coordinated with o and such that
D C dom(f,) it is true that

e%her (Y| f5(y), 71 f- (7)) ~ 0
< A D 7(A is (i — 1)-regular & lh(ga) <! & ga ki F.(z)).

Lemma 10. There exists an uniform effective way, given an (i — 1)-pattern o
and a finite set D = {y1,...,y,}, to define a S} -formula 7P with free variables

Ur,...,Ux among var(y,) = Y1,...,var(y,) = Y., @ such that for all 5 € N* it is
true that

®*P(U|5) ~ 0 <« 37(7 is an (i — 1)-regular finite part coordinated with o

& A{y,...,yr} € dom(f;)
& fr(var H(Uh)) = 51, & ... & fr(var ™ (Uk)) = ).

Let us fix g5, ¥1,...,¥r, € and . Let D be a finite set of natural numbers. We
say that D is compatible with g5 iff the following conditions are true:
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e Each u € D is of the form (e, Zy, &), where 2, € {0,1};

e There are not elements u and w of D such that u = (e,z,0) and w =
(e,x,1);

o If (e,z,¢) € D and (e,y) < |0];, and if € = 0, then g5 ki1 Fe(y), else
gs Wi Fe(y).

Let o be an i-pattern. We say that D is compatible with o = (10, 0, (€0, €0), bo,
Mevo sy {Ery €0)y by ey ) M (e, y,€) € D implies €, ) = €. We call o compat-
ible with gs iff for each 7 coordinated with o, g5 C g-. We define lh(o) as lh(g,),
where 7 is (i — 1)-regular and coordinated with o.

Consider the r. e. set

W = {{o,v)|{v,z) € W, & o is an i-pattern
& D, is compatible with ¢ and gs & ¢ is compatible with g, }.
Let (a,v) € W, 0 = (110,10, (€0,€0), 00,11+ - -+ 2 s Ry (§rs €}y bry M), 7> 0]
and D = {y1,...,Yr.T}.
I. £; = 0. We define

Fi = d&0 A e+ D A §E:0)0GID A Gy A T, (var(b;)),

where 62 and ®7+1-D are the formulae from Lemma 10 and ®¢:()0(3)1. 2

is the formula from Lemma 8, and if |§;|i—1 > |mjli-1 + 1, then ®; =
—1@”]‘(”0)s’|1(51)3(})Ds(l)lvD , “rhere @'7)*(n0>1lh(£))v(l)0v(J)lvD iS the formula

from Lemma 9, else &, = (Z = Z).

II. ¢; = 1. We define
di — &0 A Prit1:D g @&ir)oldhnD A T;(var(b;)),

where the first two formulae are the same as above and ®&()e.(@)1D jg

the formula from Lemma 7.
We denote by E the set of all variables in & and {V1,...,Y,}. Let {W1,..., W;}

be the set E\ {Y1,...,Y,}. If var(z) € E, we define
0’ = /\ U#W Avar(z) = Z,
UWEEU#W

else
= N U#W

UWEEU#W
Let ®{7?) be the formula
W, L 3W( N\ @A)
3>16]:
Note that the above is an elementary %} -formula. Now we are ready to define our
v} -formula:
Qé,e.a: — \/ (I)(or,v).
(ov)eW

This completes the proof of Lemma 6.



Using the previous lemma and Theorem 2, one can easily obtain our main
result, Theorem 1.

4. CONCLUSIONS

In the papers [2] and [4], a normal form of the ¥,-admissible sets in total
structures is obtained. In the particular case, when B, = ... = B, = N, we
find a normal form for the sets which are ¥, ,-admissible in some partial struc-
ture. It would be interesting to extend the method of regular enumerations for the
constructive ordinals and to prove a similar theorem.
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