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1. INTRODUCTION

The system of termal equations is a commonly used notion in the unification
theory. This theory has many applications in the modern in recent years constraint
logic programming. As it is known, the Robinson unification used in the traditional
logic programming languages such as Prolog gives a complete set of solutions. In
opposite to that, in the constraint solving it is usually sufficient just to decide
satisfiability.

Many used in practice mathematical structures are finite. For example, it is
possible to think of a database simply as a finite structure. An important part of
mathematics is the study of finite structures as finite graphs or finite groups. This
makes it interesting to analyse the connections between constraint solving and the
finite-model theory.

In this work we will show that the solvability of the finite systems of termal
equations is finite controllable problem. If such a system is unsolvable in some
structure, then it is unsolvable in some finite structure, too. Then this result is
applied to show the finite controllability of some simple classes of formulae.
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In this paper the set of all variables will be denoted by Var. The universe of
the structure 9 will be denoted by |9M|. ¢™[I] is the value of the term t in the
structure 90 with the interpretation I: Var — |9|. A sentence is finite satisfiable
iff it is satisfiable in a finite structure. A sentence is finite controllable if it is either
unsatisfiable or finite satisfiable.

2. TERMAL SYSTEMS

Definition 2.1. (i) Termal equation is an expression having the form ¢t ~ s,
where ¢t and s are terms.
(ii) Termal system is a finite set of termal equations.

Definition 2.2. Given a structure 9, we say the interpretation I: Var — |91
is a solution of the equation t ~ s iff t™[I] = s™[I]. We say the interpretation I is
a solution of a termal system iff it is a solution of all equations in the system.

Lemma 2.1. Any termal equation in the form x ~t ort ~ z, where t # z
and x is a variable occurring in the term t, is unsolvable in some finite structure.

Proof. The term ¢ is not variable, so t has the form f(¢y,...,t,). For some N,
1 < N < n, the variable z occurs in the term ty. Let T be the set of all subterms

of t that contain the variable z. Define {901 def 9T and let for any functional symbol
g. ¢”YTy,...,Tmm) be the set

{g(s1,...,sm) €T Vie{l,...om}(s; € T = s, €T;)} UM, (2.1)

where M = {z} iff f=gand ty € Tn,and M =0 iff f #gortn & Tn.
Let I: Var — |90| be an arbitrary interpretation.
By induction on complexity of the term s we will show that s € T implies

sesTI) e xel(x). (2.2)

If s is a variable and s € T, then s =  and hence (2.2) is obvious. Otherwise, if s
is g(s1,...,8m) and s € T, then from (2.1) it follows that

sesTIeViec{l,...,m}(s; €T = s; € s7"[I}). (2.3)

For all sy € T, N € {1,...,m}, from the induction hypothesis it follows that
sy € sy|I] & z € I(x). Moreover, there exists N such that sy € 7. Hence

zel(x)eVie{l,...,m}(s; €T = s; € sTHI)). (2.4)

From (2.3) and (2.4) follows (2.2).

From (2.1) it follows = € t™[I] & tn ¢ t%[I], and from (2.2) it follows
tn €t & = ¢ I(z) & x ¢ z™[I]. Hence t™[I] # x™{I]. The given termal
equation (t ~ z or z ~ t) is unsolvable in the structure 9. O

Theorem 2.2. Any termal system, unsolvable in some structure, is unsolvable
in some finite structure.
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Proof. Denote by 6 the number of the equations in the system, by & the number
of variables in the system, by 3 the depth of the most complex term in the system
if  #0, and 3 =0 if § = 0. Denote by v the number of the equations containing
some term with depth 8. We are going to prove the theorem by induction on the
ordinal aw? + Bw? + yw + 4.

Case 0. The system contains no equations (i.e. it is the empty set). In this
case the theorem is obviously true, because in any structure any interpretation is
solution of the empty system.

Case 1. Among the equations containing a term with complexity 8 some
equation has the form z ~ z, where z is a variable. Make new system containing
the other equations and use the induction hypothesis for the new system.

Case 2. Among the equations containing a term with complexity 4 some
equation has the formm  ~ ¢ or t ~ =z, where x is a variable occurring in the
term # and ¢ # x. According to Lemma 2.1 there exists a finite structure, where
the equation x ~ t is unsolvable, and hence in that structure the whole system is
unsolvable too.

Case 3. Among the cquations containing a term with complexity 3 some
equation has the form 2 ~ t or ¢t ~ x and the variable z does not occur in the term
t. Make new system containing the other equations replacing everywhere in them
x by t. It is obvious that the former system is unsolvable in the structures where
the new system is unsolvable. Moreover, if I is a solution of the new system in
some structure M, then I’ is a solution of the former system in 9 defining

oy det [I(y) ify # 2,
”y)‘{t‘m[z] if y = z.

Hence the new system is unsolvable in the structures where the former one is
unsolvable and the theorem follows from the induction hypothesis for the new
svstem.
Case 4. Among the equations containing a term with complexity 3 some
equation has the form
f(tlv"'atn) Ng(sly---’sm) (25)

and f # g. Define |91 def (0,1}, F ™ ury- s pin) 470 and 97 1y ) €.

Thus the equation (2.5) is unsolvable in 9, so the system is unsolvable in 9 too.
Case 5. Among the equations containing a term with complexity 3 some
equation has the form

f(tl,...,tn)Nf(Sl,...,S.n) . (2-6)

Make new system replacing (2.6) by the equations t; ~ s;,..., t, ~ s,. In any
structure the solutions of the new system are solutions of the former one and hence
if the former system is unsolvable in some structure, the new one is unsolvable

. : def
there, too. Moreover, given a finite structure 9, define |N| = |M| x [9N|" and

. am if :f
N P ’3 oo o, em déf { (f (ala~°-aanu)’<al,...,Oim)) 1 g \
! (( 1 l> ( " >) (gm(a])"’valn)!7> lfg 75 f_,
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where 7y is an arbitrary element of [9N|™. Let 7 be the projection of |9%] on 9.
For any interpretation /: Var — || and any term ¢

t" w0 I} = mw o t™[I).

Hence if I is a solution of the former system in M, then 7o I is a solution of the new 4
system in M and therefore if the new system is unsolvable in some finite structure,
then the former one is unsolvable in some finite structure, too, and the theorem
follows from the induction hypothesis for the new system. (]

Corollary 2.3. Let n termal systems be given and they have no solution in
some n structures. Then there exists a finite structure where none of these systems
has any solution.

Proof. According to Theorem 2.2 there exist finite structures 9, ..., M,
where the n systems have no solution correspondingly. Let 91 be the cartesian
product of the structures M. My, ..., My, Le. M| = |M|y x ... x |M|,, and for

any functional symbol f the following equation is valid (where m is the arity of f):

f‘.’ﬂ((”“’ ‘e 3“1‘n>, vy (/l-mla see aﬂnlrl))
= (fgﬂ] (/l'll: e ?#1711)7 .. ’fgnn (uln, CECE ,/.tynn)). (2.7)

Suppose that one of the n systems has a solution in 9, say the system
{ti ~simi € {1,2,...,k}} (2.8)
has a solution I: Var — [9N|. Therefore for i = 1,2,..., k we have
t7 1] = s7"[1). (2.9)

Let [;:Var — [9M};, 7 = 1,2,...,n, be the unique functions such that for any
variable x we have I(z) = (I;(z),...,I,(z)). By induction on term complexity
using (2.7) it may be shown that for any term ¢

71} = ("0 1), .. (1), (2.10)
From (2.9) and (2.10) it follows that foralli=1,...,kand j=1,...,n
m; Mm;
t; 1] = s 1),
but this is a contradiction, because the system (2.8) has no solution in at least one

of the structures 9%, Mo, ..., M,,. O

3. FINITE CONTROLLABILITY OF SOME CLASSES OF FORMULAE
Theorem 3.1. Every satisfiable finite set A whose elements are closed formu-
lae in the form Yz, ... Vz,@ or Va, ... Vz,~p, where ¢ is an atomic formula, is

satisfiable in some finite structure.
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Proof. Without a loss of generality we may assume that no variable occurs
in two different formulae in 4. Denote by D™ the set of all atomic formulae
piti ..., t) such that there is a formula Yz, ...Va,p(t),....t,) belonging to A.
Similarly, denote by D~ the set of all atomic formulae P(ty,...,1,,) such that there
is a formula Vay ... Vz,~P(t,...,t,,) belonging to 4. Obviously, D" and D~ are
finite sets. From Corollary 2.3 it follows that there is a finite structure 9% where
for any two atomic formulae p(ti,...,t,) € DT and p(sy,...,s,) € D~ the ter-
mal system {t; ~ sj,t2 ~ s2,....ty ~ s,} has no solution. Define new structure
M such that (M| = |M| and for all functional symbols f™ = f™. For predicate
symbols p let p™ be the set of all tuples (a1, ..., a,) such that for some atomic for-
mula p(t;.....t,) € D* and interpretation I and for all i = 1,2,...,n a; = t]'[1].
Clearly, all formulae YV ... Va,p(ti, ... t,) from the set 4 are true in M. Suppose
a formula Vo, ... Vo, —p(t, ... . tm) € A is false in M. Then (¢[1), ..., t0[1]) € p™
for some interpretation I. By the definition of p™ this means that there ex-

ist a formula p(sy.....s,) € D* and interpretation J such that t7*[I] = s?[J],
i = 1.2,....n. According to the assumption in the beginning of the proof the terms

t, and $; have no common variables and so we may assume that I = J. Thisis a con-
tradiction. because we obtain a solution of the termal system {#; ~ s1,...,t, ~ s, }
in M. 0

Theorem 3.2. Every satisfiable finite set A of closed formulae is satisfiable in
a finite structure provided each of the formulae in A is built from atomic formulae
and their negations by conjunction and quantifiers.

Proof. Let ¢ be the conjunction of the formulae in 4. Then ¢ is satisfi-
able just in the structures where A4 is satisfiable. Let ¢’ is equivalent to ¢ and
in the form Qiz7...Qnz.(L1 A ... A Ly), where all Q; are either V or 3 and
Li.....L, are atomic formulae and negations of atomic formulae. The formula
©' is true just in the structures where ¢ is true. By skolemization we obtain a
formula " in the form Va; ... Vz, (L} A ...V L) such that ¢" is satisfiable iff ¢’
is satisfiable and ¢’ is true in the structures where " is true. Denote by B the
set {Vxy...Va,L},... Vo, ... Vo, L) }. The formulae in B are simultaneously true
just in the structures where ¢ is true. By Theorem 3.1 if B is satisfiable, then B

is satisfiable in some finite structure. 0

4. CONCLUSION

It may be expected that the result in §2 will have many other applications.
The execution of a Prolog program can be thought as a constructing of a solvable
termal system. More generally, it is possible to think of the searching of proof in
a formal deductive system as searching of solvable termal system that has some
additional property. This topic can be theme of a future publication.
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