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The Hashin-Shtrikman and Walpole bounds on the effective shear modulus of a binary
elastic mixture are revisited. A simple method of derivation is given as a generalization
of the approach, recently proposed by one of the authors in the absorption and scalar
conductivity problems for a two-phase medium.
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The aim of this note is to present and discuss a simple derivation of the well-
known two-point estimates on the effective shear modulus of a binary elastic mix-
ture, due to Hashin and Shtrikman [1] and Walpole [2]. As a matter of fact, this
is a continuation of the recent paper [3], where a similar analysis is performed for
bounding the effective bulk modulus of the mixture. In the case of a shear modulus,
however, a number of technical difficulties arise, which makes the analysis much
more involving. The basic idea, as in [3], is a generalization of the approach, used
by one of the authors in the absorption and scalar conductivity cases [4].

Let us recall first how the problem is posed, see, e.g. [5, 6]. Assume that the
mixture is statistically homogeneous and isotropic. Let

1, if x € Q;,
0, otherwise,

xi(z) = {

be the characteristic function of the region 2;, occupied by one of the constituents,
labelled 4, 7 = 1,2, so that x1(z) + x2(x) = 1. Hereafter, all quantities, pertaining
to the region Q; or {1y, are supplied with the subscript ‘1’ or ‘2’ respectively.
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The statistical properties of the medium follow from the set of multipoint
moments of one of the functions x;(x), sav y2{x) for definiteness, or, which is the
same. by the volume fraction 7o = (x2(z)) of the phase ‘2’ and the multipoint
moments

Moz = (x50)x5(2)), Ma(z,y) = (A0 (@)XG (Y)Y .- (1)

with x4 (z) = x2(r) — 12 being the fluctuating part of the ficld x»(z). sec, e.g., [3,
6]. The angled brackets (-) hereafter denote ensemble averaging. One point could
be taken at the origin because of the assumed statistical homogeneity. as already
done in (1).

Recall that for a statistically isotropic binary medium under study onc has

My(0) = (x3(0)) = mm,  M3(0) = (x5'(0)) = muplm — n2). (2)

Assuming also the constituents isotropic, the fourth-rank tensor of elastic mod-
uli of the medium, L(z), is a random field of the familiar form

L(z) = 3k(2)J + 2u(z)J",
k(z) = kixa(2) + kaxa(z) = (k) + [k]xa(2), (3)
w(z) = pxa(z) + paxa(z) = (u) + [1)xa(z),

where k and p stand, as usual, for the bulk and shear modulus, respectively. The
square brackets denote the jumps of the appropriate quantities, say, [k] = k2 — ki,
(1] = po — g1, ete. In Eq. (3), J" and J” are the basic isotropic fourth-rank tensors
with the Cartesian components

, 1 w1 2 |
Syl = “3‘(5,']'(511-[, Jijhl — 5((5,1\(1,[ +5,’l(5j[,-_ - 50”5“) (4)

The displacement field u(2) in the medium, at the absence of body forces, is
governed by the well-known equations

V.o(z) =0,
o(z) =L(x) : e(z) = k(2)0(x)I + 2u(z)d(z), (5)
€= —;—(Vu +uV), d(z)=e(z) - %9(:7:)1,

where o denotes the stress tensor, € is the small strain tensor, generated by the
displacement field u(z), d is the strain deviator, and # = tre is the volumetric
strain. The colon designates contraction with respect to two pairs of indices and I
is the unit second-rank tensor.

The system (5) is supplied with the condition

(e(z)) = E, (6)

prescribing the macroscopic strain tensor E, imposed upon the medium.
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Recall [5] that the random problem (5), (6) is equivalent to the variational
principle of classical type

Wie(z)] = (e(z) : L{z) : e(x)) — min,
minW =E:L*: E.

~1

(7)

The energy functional W is considered over the class of random fields u(z) that
generate strain fields e(x), complying with the condition (6). In Eq. (7). L* is the
tensor of effective elastic moduli for the medium which, in the isotropic case under
study, has the form
L* =3k + 273", (8)

where £* and p* are the effective bulk and shear modulus of the mixture, respec-
tively.

Consider. guided by [3] and [4]. the class of trial fields for the variational
principle {(7):

K = {E(.rz) li(z) =E-z
(9)
+ aE :/(VG(_;)' —~y) @1+ xkVVVF(2z - y)) Yo (y) dgy},

having assumed now that E is deviatoric, tr E = 0. Since the solution, u(z), of the
problem (5), (6) linearly depends on E, we can assume that trE-E=E :E = 1.
In the class of trial fields (9) « and x are adjustable scalar parameters and the

kernels there read
1 _ |

- imiz|’ Flz) = i

G(x) (10)
Hereafter the integrals are over the whole R® if the integration domain is not ex-
plicitly indicated.

It is noted that the class of trial fields (9) has been first employed by McCoy [7],
when deriving the Beran’s type bound {8] for the shear modulus. The only difference
is that we have allowed the multiplier x in (9) to be adjustable as well (an idea
already used by Milton and Phan-Thien [9]). In the final stage of our procedure, the
appropriate optimization will bring forth the “best” value Kope = ~1/(4(1 — 12)),
see Eq. (23) below. This means that the integrand in the right-hand side of (9)
would exactly coincide with the Green tensor of one of the constituents. Hence
the original McCoy’s class of trial fields [7] will show up eventually. (See also the
discussion in [10].)

It is to be also noted that in [3], when studying in a similar way the effective
bulk modulus, we have chosen E spherical. This assumption considerably simplified
the analysis (in particular, there was no need to introduce the second term in the
integrand of the right-hand side of (9), containing the triple gradient). In this case
the result is the three-point bound on the bulk modulus, proposed by Beran and
Molyneux [11].
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The energy functional W, when restricted over K}, becomes a quadratic func-
tion of a and k:

Wii(z)] = A +2Ba + Ca?, A=2(u), B=2J(Z, +rUy),

C = {u) (22 + %(1 ~ 8k — 8k¥) Ty + 4KV, + 2K2U-g) (11)

+ [y (23 + %(1 — 8k — 8k%) T3 +4kV; + 25‘3U3) + (1 +2x)? ((k) Ty + [k]T3),

with the dimensionless statistical parameters for the medium, defined as follows:
2= (B-E): [ VVG() Maly) 'y,
2= (®B): [ [T960) - VVG ) Maly: - 12) iy,
Z3 = (E-E) ://VVG(yl) - VVG(y2) M3(y1,y2) d*y1d’ys,
U, =E :/VVVVF(y) My(y)d®y : E,
U =B [ [ TY9VFG) s VOTTF (@) Mol — o) Pnd’s B
Uy =B [ [ TYTYP() : TITTE @) My v 'y B (12
Vo =E: / / VVG(y1) - VVVVE(y2) Ma(ys — y2) d>y1d°ys : E,
Vy; =E // VVG(y) - VVVVF(y2) M3(y1,y2) dy d’ys : E,
T =B [ [ VVG) © VVGR) Moo - o) d'yad'vs .

T3 =E // VVG(yl) ® VVG(?})) A43(y1,y2) d3y1d3yg i O

Moreover, the parameters Z; and Z can be easily evaluated in the statistically
isotropic case under study. Indeed, Ms(y) = Ma(Jyl) then and the appropriate
integrals in the definitions of Z; and Z, are isotropic second-rank tensors, thus
proportional to I:

/VVG(y) My(y) &y = e,

/ VVG(1) - VVG(y2) Ma(yr — o) Pyrd®ys = o],
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with certain constants ¢; and ¢,. To find the latter it suffices to make a contraction
in the last two formulae, integrate by parts and recall that G(z) is just the Green
function for the Laplacian. This procedure yields

1 1 1
G =-3 M»(0) = g, = §M2(0) = %711’7‘%
and therefore

1 1
Z) = BERCICE Zy = 3 M2 (13)

(recall that we have assumed E : E = 1).
Note that in the statistically isotropic case under study ¢, = Py, where

P, = / VVG() : VVG(y2) Ma(ys — ya) dPyndys

is the two-point statistical parameter that appeared in the appropriate bounds on
the conductivity coefficient [4] and the bulk modulus [3] of the mixture. The above
simple reasoning is just the evaluation of this parameter done, e.g. in [3] (see Eq.
(12} there). Hence

1 1
Zy = —— 9 = — P 2 - 2.
1 3P2, Z, 3 12 Py =mn,

As we shall demonstrate below, the rest of the two-point statistical parameters in
(12) are also proportional to P,
Due to the statistical isotropy of the medium the integrals

/ VYV F(y) Ma(y) Py = caH,

/ VVG(y1) ® VVG(y2) Ma(yr — y2) d*yrd®ys = c4H,
(14)
/ VVG(1) - VIVVE(y2) Ma(ys — y2) Pyrdys = csH,

[ [ FOVTEG) VYT G) Mas - 1) Py = o1

are fourth-rank fully symmetric isotropic tensors, thus proportional to the tensor
H, whose Cartesian components read

Hijir = 8ij0u + 0irbji + 6adju,

with certain constants ¢z to cg. (The fact that the integrals in (14) represent fully
symmetric tensors is easily seen if appropriate integration by parts is performed.)
Making a full contraction in (14) and integrating by parts, we find the needed
constants to be

2 1 2 4
c3 = -1—51\12(0), cq = 1—5Mz(0), Cs = l—gMz(O), Ce = IEMQ(O)’
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so that the parameters Uy, T, V, and U, thus become simply:

4 2
U = ——=mm, Ta=-Zmmnp,
15 15 -
(15)
V, = ! 7 Uy = S
AT 2, 2= 15 mnz,
taking into account Eq. (2) as well.
The variational principle (7), together with (11), implies
2u* < Wli(z)] = A+ 2Ba + Ca?, Va, Y. (16)
In particular, at o = 0, one has
1< ) (17)

which, obviously, is the elementary (Voigt) bound on p*.
Next, optimizing the right-hand side of (16) with respect to a, one gets another

estimate on p™:
B'l
2" < A—- —,
(IS o

1.€.
N 2|1 2 Z -+ h’.U 2

having taken into account the expressions for A and B, see (11).

In (18) we have fixed the constant k. The next stage is to optimize it with
respect to k. The resulting bound will be then just the Milton- Phan-Thien’s one [9]
on the effective shear modulus p*. If & has the special value k = —1/(4(1—15)), see
(23) below (so that the integrand in (9) is just the appropriate Green tensor), then
(18) is the McCoy’s bound on p*. This is obviously a three-point estimate since
for its evaluation three-point statistical information — the correlations M;(y1, y2)
—- is needed in the three-point parameters Zs, T3, V3 and Uz, see (12).

The main problem in specifying the bound (18) are the three-point parameters
Zs. T3, V3 and Uz, whose evaluation for special and realistic random constitution
is clearly a nontrivial problem. Note that the first of these parameters, Z3, is

; (18)

7y = %Pg, P; = / / VVG(y) : VVG(y2) Ms(yy,y2) d*yrdys,

where P is the three-point parameter that showed up in conductivity and bulk
modulus bounding procedures [3], [4]. This parameter is simply connected to the
so-called ¢(-parameter of Torquato and Milton [12-14], see also [3, Eqs. (18), (19)].

In the variational reasoning of [3], [4] we have excluded the parameter Ps, using
the fact that the appropriate three-point bounds should be more restrictive than
the elementary ones, whatever the properties of the constituents. This fact led us to
an inequality between P3 and P». Here we shall employ the same procedure; though
a certain additional three-point parameter (a linear combination of Z3, T3, V3 and
Us) will show up, we shall obtain two inequalities for the two such parameters as
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a consequence of the fact that now we can vary more material properties, namely,
the bulk and shear moduli of the constituents.

[ndeed. the bound (18) should be at least as good as the elementary bound
(17) (since the energy functional is minimized over a broader class of trial fields).
This implies that

C >0, AC-B’>0, (19)

because p* > 0. Since 4 = 2 (i) > 0, one has
C>B%/4>0,

which means that the second inequality in (19) is the stronger one. Using the
expressions for 4, B and C from (11), we can write the latter in the form

1 o .
() (z2 + =(1 = 8% — 8k%)To + 4kVs + 2h~?ug)

o

1 2 >
+ (1] <23 + 3 (1= 8k — 86%)T5 + 4V + 2~.~U3) (20)

2[u)*(Zy + kU;)?
()
The inequality (20) should hold for every “realistic” choice of the elastic moduli of

the constituents (i.e. for which the appropriate elastic energy is positive-definite).
This implies

+(1+ 2h~.)2(<k> T, + [k.]Tg) - > 0.
~naTa < Tz <mToy, (21a)

9 Uy )2 1 2 2
(Zy 4+ &Uy) -1 (Z2 + 5(] — 8K — 8/4':')-[-“_) + 4KV, + QK-U:’)

72

< Zs+ %(1 — 8k — 8k%) Ty + 4kV; + 2k%U, (21b)

Z1 + kU, )2
n .

Hence we have indeed two sets of inequalities for the three-point parameters
that enter the bound (18). (And this is a consequence, let us underline once again,
of the fact that two material properties have been varied independently — the bulk
and shear moduli of the constituents.) Following the idea of [4], we can exclude the
“bad” three-point quantities

]. 9 2
<m (Z_z == 5(1 — 8k — Sh')Tg + 4kV, + 2H2U2) - (

1 - ,
Ty and Zg+ (1 -8k — 8x%)Ts + 4kVs + 267U

from this bound, by means of (21}, thus replacing them by the two-point quantities
already evaluated. Depending on the signs of [u] = py — py and [k] = ko — &y, we
should use to this end the upper or lower bounds (21).
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For example, in the case [u] > 0 (i.e. po > ) and [k] > 0 (i.e. ks > ky), the
upper bounds (21) are to be used, which results in the estimate

1652 + 40k + 25

< ) = 2[ulPmm
p < (p) = 2[p) mms P B (22)
p = 160ps + 120ky — 32[u)no,
g = 1602 + 120ks — 80172,
r = 852 + 30ky — 50[u]n.
Optimizing this bound with respect to &, we find*
9 + 3ko 1 3ky — 29
I‘l‘ — — ~ I‘L- (23)

K = = — T 71 .\ - a_ . o1
T TS + 3ky) A1 —12) 2T 3y + 6k
so that v, is the Poisson ratio of the phase ‘2°. The best bound on p* thus becomes

. e u)
< () —
< () N N o (8pia + 9k2)
T2 T+ N2ph 6(2py + ko)

The calculations in the rest of the cases are fully similar, so that only the final
results will be given:

if p1o > py and Ay > ky. (24a)

) e [1)?
< o bl
we< () N n 1 (8p1 + 9ky)
l) A
b IR T e k)

if po < py and ko < ky,

) mnz(p)? -
< — < . o
l‘l’ -_ (I‘l’) ,.l;] (8“1 _+_ ng) b) lf l"2 — /J'l d‘nd k— 2 k], (24b)
nip2 + N2 + 6(2”»[ + k2)
MERME e ) if 1y > g and ks < k
= (1o (8 + 9k1) 2= 2=

2+
Mmpe +n2pr + 6(2/2 + k1)

In the so-called “well-ordered” case, when (ko — ky)(u2 — p1) > 0, (24a) and
the first of the estimates (24b) coincide with the Hashin-Shtrikman bound on p*,
see [1]. The general “non-ordered” case was considered by Walpole [2]. It is easily
seen that our bounds (24) are just the Walpole bounds [2, 15].

The derivation of the lower bound, corresponding to (24), is fully similar. In
this case we write the elastic energy (7) as a functional of the stress tensor field:

Wio(z)] = (o(z) : L7 (z) : o(z)) — min,

_ " (25)
mnW =X :L"": X.

IThe right-hand side of (22) has one more extremum point, K = —5/4, but it corresponds to
its maximum value and hence is of no interest for us.
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The functional W is considered over the class of trial fields, such that
Voo(w)=0, (o()=5, (26)

with a prescribed macrostress tensor X, imposed upon the mixture.
The natural counterpart of the class (9) of trial stress fields for the functional
W in (25) now reads

A = {5(17) |o(z) =2+ G[X'Q('y) %

—(1+2k)1 (2 : /VVG(:I: —y)x5(y) d3y)
(27)
+ kY /VVVVF(:E — x5 (y) &Py

+ 2k def (2 - /V\'/'G(z —y)xs(y) dBy) J },

with deviatoric 3, tr ¥ = 0, and adjustable scalar parameters a and k; G(z) and
F(z) are the functions, defined in (10). In (27) ‘def’ denotes symmetrization of a
second-rank tensor, i.e. def T = (T + T*), see [10] for discussion.

The energy functional W, when restricted over A*1), becomes a quadratic
function of a:

Wio(z)]= A+2Ba+Ca*, A=-()2:3%,

B =

1
B = ’2-["{](7717]22 X+ 27, +I€U1),

: 4 8 _
C=3 [(mnz(ﬂm +1272) + (-3— + 1—5-n) (¥)(n2 — m)nf)z > (28)

. 1
+2(my2 + 2 )24y + £Uy) + () (222 + 5(2 — 8k — 4k:) Ty + 4KV, + K,2U2)

(1+ 4k)*

——((8) T2 + (3]s,

1, 2 :
+[7] (223 +3(2 -85 —4k7)T5 + &V + KZUs)J +

where 1 !
v(z) = m: Blz) = k—(?)

are the respective compliances of the mixture, and [y] = v2 = w1, (8] = B2 — 81 are
their jurnps. Note that the same two- and three-point statistical parameters (12),
that already showed up in (11), enter (28) as well; the only difference is that the
tensor E in their definitions (12) is to be replaced by the tensor X.
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The elementary (Reuss) lower bound on p* now follows from (28) at a = 0:

1 < 1 > mo 1
— < =—+ —.
e p{x) p e

Almost literally, the arguments that have led us to the inequality (20) are to
be repeated now — that is the estimate that results from (28) upon minimizing
with respect to « should be always more restrictive than the elementary Reuss’
one. The final result is another set of incqualities, similar to (21). namely,

—1p Ty €Ty <y To, (29a)

(I)N]-_)E X+ 221 + KU1)2

l) 4 8
— 15 -+ — - X8
SRS 75 [771 + <3 + 15"’») (1 772]
1 , i
=211 (221 + kUy) — (222 + 3(2 — 8k —4Kk7) Ty + 4rVs + n'Ug)
<974+ %(2 — 8k — 4r2) T3 + 4kVs + £2Us (29h)
(mmX: ¥+ 24 + kU;1)? Y 4 8
< — o in? = =4+ =k —mp)p 22
< SR> i - |3+ 5 (7 — m2)m2

1 . .
+ 27, (22l + nul) +m (222 + 32— 8r = 4R Ty + 4aVa + Muf_,) .

Next we employ (29) in the estimates that follow from (28) in order to exclude
the three-point parameters. The details are tedious and fully similar to those,
already performed when deriving the bounds (24). The final result reads

2 i)
o (8pua + 9ka)
6(2u2 + ko)

pt > () if gy < py and ko < ki,

e + nap +

2
mna[p)”
H (8,&1 + gkl) ,
6(2py + kl)

P> () - if po > py and ko > Ky,

M2 + 241 T
. (30)
mie [M]Z
po (842 + 9ky)
6(2p0 + ki)
2 (1

1 (8py + 9ko)
' 92+ M2y +
N2 + T2 M1 62 .

if Ho S H1 and k‘.-_g 2 kfl,

e () -

M2 + N2py =

pt > ) - if po > gy and ka < Ky

The inequalities (24), combined with (30), are just the Walpole bounds on the
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effective shear modulus of a binary mixture, see [2] and also [15], which are a direct
generalization of the Hashin-Shtrikman result, with condition of “well-orderness”
removed. Here we have shown how these classical estimates show up simply and
naturally within the frame of the general method recently developed by one of the
authors [4] in the absorption and scalar conductivity contexts.
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