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The type of the matrices of the second fundamental form of a submanifold Mn in
a Riemannian manifold Nn+p is given, when the equalities in the estimates of the
sectional curvature KM (σ) of Mn by means of its mean curvature H and length S

of the second fundamental form hold. It is shown that the equality in the upper
estimate of the sectional curvature KM (σ) of Mn in a space form Nn+p(c) is achieved
when the normal bundle of Mn is flat and Mn is a product submanifold of the type
M2

×Mn−2 or M2
×En−2 (cylinder), where M2, Mn−2 are umbilical manifolds, En−2

— Euclidean. It is also shown that among all the submanifolds in Nn+p(c) which pass
through its point x and have at this point the same S(x), the product submanifold
Mn = M2

×En−2 has at x the biggest sectional curvature KM (σ)(x) = c + 1

2
S(x).
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1. PRELIMINARIES

Let Mn be an n-dimensional submanifold of an (n+p)-dimensional Riemannian
manifold Nn+p. We choose a local frame of orthonormal fields e1, . . . , en+p in
Nn+p such that, restricted to Mn, the vectors e1, . . . , en are tangent to Mn and
the remaining vectors en+1, . . . , en+p are normal to Mn.

We shall use the following convention on the ranges of the indices:

1 ≤ i, j, k, · · · ≤ n; 1 ≤ α, β, γ, · · · ≤ p.
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We denote the second fundamental form h: TxMn × TxMn → T⊥
x Mn on Mn

for x ∈ Mn where TxMn is the tangent space of Mn at x and T⊥
x Mn is the normal

space to Mn at x, by its components hα
ij with respect to the frame e1, . . . , en+p.

We call

H =
∑

α

1

n
hαeα, H2 =

1

n2

∑

(hα)2, where hα =
∑

i

hα
ii (1.1)

the mean curvature vector of Mn.
The square S of the length of the second fundamental form is given by:

S =
∑

α





∑

i,j

(hα
ij)

2



 (1.2)

In general, for a matrix A = (aij) we denote by N(A) the square of the norm of A,
i.e. N(A) = traceA.At =

∑

i,j

(aij)
2 and

| traceA| ≤
√

n.N(A). (1.3)

S and hα are independent of our choice of orthonormal basis.
Let X and Y be a pair of orthonormal vectors tangent to Mn at a point

x ∈ Mn, and let us suppose that the local frame e1, . . . , en+p (∗) is so chosen that
X and Y coincide with two arbitrary vectors of that frame. Let X = en−1, Y = en.
Then the sectional curvature KM (σ) of Mn at the point x for the plane σ spanned
by X and Y is written as follows:

KM (σ) = KN (σ) +
∑

α

[

hα
n−1,n−1h

α
nn − (hα

n−1,n)2
]

(1.4)

where KN(σ) is the sectional curvature of Nn+p.
This paper is a continuation of the papers [1] and [2] where we proved that the

sectional curvature KM (σ) of a submanifold Mn in a Riemannian manifold Nn+p

at a point x ∈ Mn satisfies the following inequalities:

KM (σ) ≤ KN (σ) +
4 − n

2
H2 +

n − 2

2n
S +

√

2(n − 2)

n
H2(S − nH2), (1.5)

KM (σ) ≥ KN (σ) +
n2

2(n − 1)
H2 − 1

2
S when

n2

n − 1
H2 − S < 0, (1.6)1

KM (σ) ≥ KN (σ) when
n2

n − 1
H2 − S ≥ 0. (1.6)2

The purpose of this paper is to show for which submanifolds the equalities
in (1.5), (1.6)1 and (1.6)2 are fulfilled. For this purpose we will formulate Theo-
rem 1.1 from [2] more precisely describing the types of the matrices (hα

ij) of the
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second fundamental form of Mn with respect to the suitably chosen orthonormal
basis e1, . . . , en, . . . , en+p (∗), when these equalities are achieved:

Theorem 1.1. Let Mn be an n-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold Nn+p. For the sectional curvature KM (σ) of
the 2-plane section σ spanned by the two orthonormal vectors X and Y tangent to
Mn at a non-totally geodesic point x ∈ Mn we have (1.5), (1.6)1 and (1.6)2, where
KN(σ) denotes the sectional curvature of Nn+p.

The equality in (1.5) hold only when either n = 2 or if n ≥ 3 all the ma-
trices (hα

ij) of the second fundamental form with respect to the orthonormal basis
e1, . . . , en−1 = X, en = Y, . . . , en+p (∗) are of the form













λα
1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . .

0 . . . λα
1 0 0

0 . . . 0 λα
n 0

0 . . . 0 0 λα
n













(1.7)

where

λα
1 =

hα

n
∓ 1

n

√

2[nSα − (hα)2]

n − 2
; λα

n =
hα

n
± 1

n

√

(n − 2)[nSα − (hα)2]

2
.

The equalities in (1.6)1 and (1.6)2 are fulfilled if and only if either n = 2 or when
n ≥ 3 the corresponding matrices (hα

ij) are the following

















aα
1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . aα
1 0 0

0 . . . 0
aα
1 ∓ cα

2
aα

n−1,n

0 . . . 0 aα
n−1,n

aα
1 ± cα

2

















(1.8)1

where

aα
1 =

hα

n − 1
; aα

n−1,n ≤ Sα

2
+

(3 − 2n)(hα)2

4(n − 1)2
,

cα =
1

n − 1

√

(3 − 2n)(hα)2 + 2(n − 1)2[Sα − 2(aα
n−1,n)2],

and












hα
11 hα

12 . . . hα
1,n−1 hα

1n

hα
12 hα

22 . . . hα
2,n−1 hα

2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hα
1,n−1 hα

2,n−1 . . . 0 0
hα

1n hα
2n . . . 0 0













. (1.8)2
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To find the view (1.7), (1.8)1 and (1.8)2 of the matrices (hα
ij) we apply for them

the basic Lemma 2.1 from [1] and obtain that with respect to the suitably chosen
orthonormal basis (∗) the upper and the lower bounds of the functions

hα
n−1,n−1h

α
nn − (hα

n−1,n)2, α = 1, 2, . . . p, (1.9)

appearing in the expression (1.4) for the sectional curvature KM (σ), namely,

hα
n−1,n−1h

α
n,n − (hα

n−1,n)2 ≤ 1
2n2

{

(4 − n)(hα)2 + n(n − 2)Sα

+ 2|hα|
√

2(n − 2)[nSα − (hα)2]
}

,
(1.10)1

hα
n−1,n−1h

α
n,n − (hα

n−1,n)2 ≥ 1
2(n−1) (h

α)2 − 1
2Sα, if 1

n−1 (hα)2 − Sα < 0,

hα
n−1,n−1h

α
n,n − (hα

n−1,n)2 ≥ 0, if 1
n−1 (hα)2 − Sα ≥ 0

(1.10)2

are achieved only when (hα
ij) have the forms (1.7), (1.8)1 and (1.8)2, respectively.

We shall formulate some corollaries from this theorem.

Corollary 1.1. The sectional curvature KM (σ) of Mn at a point x for all
2-planes σ ∈ TxMn is non-negative (KM (σ) ≥ 0) if

KN (σ) ≥ 1

2
S − n2

2(n − 1)
H2 when

n2

n − 1
H2 < S, (1.11)

or

KN (σ) ≥ 0 when S ≤ n2

n − 1
H2. (1.12)

Corollary 1.2. KM (σ) ≥ KN (σ) for the plane σ ∈ TxMn at a point x ∈ Mn

when

S ≤ n2

n − 1
H2. (1.13)

Corollary 1.3. KM (σ) ≤ 0 for the plane σ ∈ TxMn at a point x ∈ Mn when

KN (σ) ≤ −
(

4 − n

2
H2 +

n − 2

2n
S +

√

2(n − 2)

n
H2(S − nH2)

)

, (1.14)

(1.14) is possible only when KN(σ) is negative as the right side of (1.14) is negative.

Next we will give other estimates of the sectional curvature KM (σ), depending
only on the length S of the second fundamental form.
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We need the following

Proposition 1.2. Let Mn be a submanifold in a Riemannian manifold Nn+p,
then at a point x ∈ Mn the functions (1.9) satisfy

hα
n−1,n−1h

α
nn − (hα

n−1,n)2 ≤ 1

2
Sα, (1.15)1

hα
n−1,n−1h

α
nn − (hα

n−1,n)2 ≥ −1

2
Sα. (1.15)2

The equality in (1.15)1 holds when the matrices (hα
ij) with respect to the basis (*)

have the view

hα
ij =













0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0
0 0 . . . hα

nn 0
0 0 . . . 0 hα

nn













, hα
nn = ±

√

Sα

2
. (1.16)

The equality in (1.15)2 is valid when hα = 0 and (hα
ij) are













0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0
0 . . . 0 cα hα

n−1,n

0 . . . 0 hα
n−1,n −cα













(1.17)

where

(hα
n−1,n)2 <

1

2
Sα, cα = ±1

2

√

2[Sα − 2(hα
n−1,n)2].

The proof of this proposition follows from Lemma 2.2 from [1], applied to the
matrices (hα

ij).
From these estimates of the functions (1.9) and the expression (1.4) for the

sectional curvature KM (σ) we obtain the following

Theorem 1.3. The sectional curvature KM (σ) of Mn in a Riemannian man-
ifold Nn+p at a point x ∈ Mn satisfies the following inequalities:

KM (σ) ≤ KN(σ) +
1

2
S, (1.18)1

KM (σ) ≤ KN(σ) − 1

2
S. (1.18)2

The equalities in (1.18)1 and (1.18)2 are satisfied only when (hα
ij) with respect to

a suitable basis (*) have the forms (1.16) and (1.17), respectively.
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2. THE EQUALITY CASES IN THE ESTIMATES

Let the ambient space Nn+p(c) be a space of constant curvature c, then (1.5),
(1.6)1 and (1.6)2 take view, respectively:

KM (σ) ≤ c +
4 − n

2
H2 +

n − 2

2n
S +

√

2(n − 2)

n
H2(S − nH2), (2.1)

KM (σ) ≥ c +
n2

2(n − 1)
H2 − 1

2
S when

n2

n − 1
H2 − S < 0, (2.2)1

KM (σ) ≥ c when
n2

n − 1
H2 − S ≥ 0. (2.2)2

We’ll show when the equality in (2.1) holds. From the form (1.7) of the ma-
trices (hα

ij) corresponding to this bound we see that all they are simultaneously
diagonalized with respect to the chosen basis e1, . . . , en−1 = X, en = Y, . . . , en+p

(∗). Each one of them has exactly n − 2 eigenvalues equal to the corresponding
λα

1 and two equal to the corresponding λα
n from (1.7) and the vectors X and Y

on which the 2-plane σ is spanned are their common eigenvectors corresponding to
their 2-multiple eigenvalue λα

n. Then, taking in view the fact that every two of the
matrices (1.7) are commutative as they can be simultaneously diagonalized, from
the Ricci equation

Rα
βkl = hα

ksh
β
sl − hα

lsh
β
sk (2.3)

where Rα
βkl is the curvature tensor of the normal bundle T⊥

x Mn, it follows that

Rα
βkl = 0, (2.4)

i.e. the normal bundle of Mn is flat. The converse is also true.
Thus we prove the following

Theorem 2.1. Let Mn be a non-totally geodesic submanifold in a space form
Nn+p(c). The equality

max
σ∈TxMn

KM (σ) = c +
4 − n

2
H2 +

n − 2

2n
S +

√

2(n − 2)

n
H2(S − nH2) (2.5)

when σ runs over all 2-plane sections tangent to Mn at a point x ∈ Mn, holds for
all points x ∈ Mn, if and only if:

i. the normal bundle of Mn is flat,

ii. each one of the matrices (hα
ij) has exactly (n − 2) eigenvalues equal to the

corresponding λα
1 and two equal to λα

n from (1.7) with respect to the basis (∗),

iii. the vectors X and Y on which the 2-plane σ is spanned for which max K(σ) is
achieved are their common eigenvectors corresponding to their double eigen-
value λα

n.
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With the next theorem two examples of submanifolds satisfying the conditions
of the above theorem will be given.

Theorem 2.2. If the submanifold Mn (n ≥ 4) of Nn+p(c) satisfies the fol-
lowing conditions:

i. the normal bundle of Mn is flat,

ii. Mn is a product submanifold of the type Mn = M2 × Mn−2 or Mn = M2 ×
En−2, where M2, Mn−2 and En−2 are 2-dimensional umbilical submanifold of
Nn+p(c), (n−2)-dimensional umbilical submanifold of Nn+p(c), and (n−2)-
dimensional Euclidean submanifold of Nn+p(c), respectively,

then the equality in (2.1) (or (2.5)) is achieved at a point x ∈ Mn for a 2-plane σ,
which belongs to TxM2.

Next, from Theorems 1.3 and 2.1 we obtain the following

Theorem 2.3. From all n-dimensional submanifolds of Nn+p(c) which pass
through a point x ∈ Nn+p(c) and have at x the same S(x), only the submanifold
Mn which satisfies the following conditions:

i. the normal bundle of Mn is flat;

ii. each one of the matrices (hα
ij) has exactly n− 2 eigenvalues equal to zero and

two equal to λα
n = ±

√

Sα

2
with respect to the basis (∗),

has the biggest maxK(σ0)(x) = c +
1

2
S(x) achieved for σ0 spanned by the common

eigenvectors X and Y of all (hα
ij), corresponding to their 2-multiple eigenvalue

λα
n = ±

√

Sα

2
. The mean curvature of this submanifold is H(x) = ± 1

n

√

2S(x).

The following theorem gives an example of a submanifold satisfying the con-
ditions of Theorem 2.3.

Theorem 2.4. The product submanifold Mn = M2 × En−2 (cylinder) of
Nn+p(c) with flat normal bundle, where M2 and En−2 are 2-dimensional umbilical
submanifold of Nn+p(c) and (n−2)-dimensional Euclidean submanifold of Nn+p(c),

respectively, has at x ∈ Mn sectional curvature K(σ0)(x) = c +
1

2
S(x) for σ0 ∈

TxM2. The mean curvature of Mn is: H(x) =
1

n

√

2S(x) or H(x) = − 1

n

√

2S(x).

Let us now see what we can say for the equality case in the lower bound
in (2.2)1.
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The only thing which can be said for the equality case in (2.2)1 is formulated
in the following theorem and follows from Theorems 1.1 and 1.3.

Theorem 2.5. From all n-dimensional submanifolds of Nn+p(c) which pass
through a point x ∈ Nn+p(c) and have at x the same S(x), only the minimal
submanifold Mn which second fundamental tensors with respect to an orthonormal
basis e1, . . . , en−1 = X, en = Y, . . . , en+p, have matrices













0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0
0 . . . 0 cα hα

n−1,n

0 . . . 0 hα
n−1,n −cα













where

(hα
n−1,n)2 <

1

2
Sα, cα = ±1

2

√

2[Sα − 2(hα
n−1,n)2],

has the smallest min K(σ0)(x) = c − 1

2
S(x) for σ0 spanned on X = en−1 and

Y = en.
The mean curvature H(x) of Mn is zero, the sectional curvature of Mn is

negative if the ambient space is Euclidean or Hyperbolic.

Example of Theorem 2.1. The hyperellipsoid M3 ∈ E4

M3 : x2
1 + x2

2 + x2
3 + mx2

4 = 1, 0 < m < 1.

The principal curvatures of M3 are:

λ1 = λ2 =
1

√

1 + (m2 − m)x2
4

=
1√
Q

; λ3 =
m

(

√

1 + (m2 − m)x2
4

)3 =
m

(√
Q
)3 ,

hij =





λ1 0 0
0 λ1 0
0 0 λ3



 , 0 < λ3 ≤ λ1 = λ2.

3H = h = 2λ1 + λ3 =
2Q + m
(√

Q
)3 , S = 2λ2

1 + λ2
3 =

2Q2 + m2

Q3
(2.6)

min λiλj ≤ KM3(σ) ≤ maxλiλj = λ1λ2 = λ2
1 =

1

Q
⇒ K12 =

1

Q
= max

σ
KM3(σ).

On the other hand, according to (2.5) and taking in view (2.6) for the
maxKM3(σ) we have:

maxKM3(σ) =
1

2
H2 +

1

6
S +

√

2

3
H2(S − 3H2) =

1

18

(

h2 + 3S + 2h
√

2(3S − h2)
)

,
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which is exactly equal to
1

Q
= K12.

3. CHARACTERIZATION OF SOME SUBMANIFOLDS IN NN+P

Theorem 3.1. A complete simply connected n-dimensional submanifold Mn

in a Riemannian manifold Nn+p of negative sectional curvature is diffeomorphic
to Rn if the second fundamental tensor of Mn satisfies (1.14).

The proof follows from Corollary 1.3 and the theorem of Hadamard-Cartan.

Corollary 3.1. If the second fundamental tensor of an n-dimensional complete
simply connected submanifold Mn in an (n+ p)-dimensional Riemannian manifold
Nn+p of constant negative curvature (c < 0) satisfies

4 − n

2
H2 +

n − 2

2n
S +

√

2(n − 2)

n
H2(S − nH2) ≤ −c (3.1)

then Mn is diffeomorphic to Rn.

Theorem 3.2. A complete connected n-dimensional submanifold Mn in an
(n+p)-dimentional Riemannian manifold Nn+p of positive curvature bounded below

by a constant c > 0 is compact with diameter ≤ π√
c

if its second fundamental form

satisfies (1.13).

Remark. Another proof of this theorem in the case when Nn+p is of constant
positive curvature is given by M. Okumura [7].

Theorem 3.3. Let Mn be an n-dimensional non-compact complete connected
submanifold in an (n + p)-dimensional Riemannian manifold Nn+p. If at each

point x ∈ Mn for which
n2

n − 1
H2 < S the inequality KN(σ) ≥ 1

2
S− n2

2(n − 1)
H2 is

fulfilled or if at each point x for which S ≤ n2

n − 1
H2 the inequality KN(σ) ≥ 0 holds,

then there exists in Mn a compact totally geodesic and totally convex submanifold
QM without boundary such that Mn is diffeomorphic to the normal bundle of QM .
In the case when Nn+p is of positive curvature which is not bounded bellow by a

positive constant then Mn is diffeomorphic to Rn if S ≤ n2

n − 1
H2.

We prove this theorem using Corollary 3.1 and the theorems of Cheeger and
Gromoll [5] and Gromoll and Meyer [6].
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