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1. INTRODUCTION

In [1] Lacombe and in [2] Moschovakis have defined different kinds of com-
putability in abstract structure. The first one uses enumerations of the structure
and the second one, called search computability, uses only the functions and pred-
icates in the structure. Mosckovakis [3] has proved that both computabilities are
equivalent in the case when the equality is among the basic predicates. Soskov [4]
has proved that both computabilities coincide in the general case.

Skordev has defined an “effective” version of Lacombe’s computability as fol-
lows: It is said ϕ is effective in 〈α0, B0〉 iff ϕ has a partial recursive “associate”. It
is said ϕ is e-admissible iff ϕ is effective in all effective enumerations of the structure
A. Skordev has stated a conjecture in the case when the structure has at most a
denumerable domain, and it admits an effective enumeration. Skordev’s conjecture
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is that e-admissibility coincides with search computability. Attempts were made to
prove Skordev’s conjecture [5, 6, 7, 8]. They were successful for some special cases,
but not for the general one. As Manasse, Chisholm, Vencov [9, 10, 11] showed, the
above mentioned conjecture wasn’t true. Nevertheless, it is interesting to know for
what kind of structures Skordev’s conjecture is valid. The author puts the question:
Which are the structures A for which we could find effective enumeration 〈α0, B0〉
such that, for every function ϕ, ϕ is effective in 〈α0, A0〉 iff ϕ is e-admissible. Such
kind of enumeration we shall call an exact effective enumeration. In his master
thesis Stoyan Atanasov showed that there exist exact effective enumerations for
the structures with only unary total functions and no predicates. It is natural to
expect that this kind of enumerations have to have some minimal(maximal) prop-
erties. In this paper we investigate exact enumerations for the structures with only
total functions and no predicates. Different partial orders can be taken in the set
of enumerations. Here we choose a partial order in the set of enumerations as the
one in [12]. We prove that for total structures there exist exact enumerations. Fur-
thermore, there exist infinitely many mutually incomparable exact enumerations.
It is shown that above (in the considered partial order) every strongly effective
enumeration there exists an exact enumeration.

2. PRELIMINARIES

In this paper we use ω to denote the set of all natural numbers. We shall recall
some definitions from [4, 7].

Let A = 〈B; θ1, . . . , θn; Σ1, . . . , Σk〉 be a partial structure, where B is an arbi-
trary most denumerable set, θ1, . . . , θn are partial functions of many arguments on
B, and Σ1, . . . , Σk are partial predicates of many arguments on B. The relational
type of A is the order pair 〈〈k1, . . . , kn〉, 〈l1, . . . , lk〉〉, where each θi is ki-ary and
each Σj is lj-ary. We identify the partial predicates with partial mapping taking
values in {0, 1}, writing 0 for true and 1 for false. We use also Dom(f) and Ran(f)
to denote the domain and the range of the function f respectively.

An effective enumeration of the structure A is any ordered pair 〈α, B〉 where
B = 〈ω; ϕ1, . . . , ϕn; σ1, . . . , σk〉 is a partial structure of the same relational type as
A, and α is a surjective mapping of ω onto B such that the following conditions
hold:

a) ϕ1, . . . , ϕn are partial recursive (p.r.) and σ1, . . . , σk are recursively enu-
merable (r.e.);

b) α(ϕi(x1, . . . , xki
)) ∼= θi(α(x1), . . . , α(xki

)) for every natural numbers x1, . . . ,
xki

, 1 ≤ i ≤ n;
c) σj(x1, . . . , xlj )

∼= Σj(α(x1), . . . , α(xlj )) for all natural numbers
x1, . . . , xlj , 1 ≤ j ≤ k.

If θ is a partial function of m variables on B, then we say θ is effective in the
enumeration 〈α, B〉 iff Dom(θ) 6= ∅ and there exists such p.r. function f that for
all natural numbers i1, . . . , im,

θ(α(i1), . . . , α(im)) ∼= α(f(i1, . . . , im)).
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We exclude the trivial case of an empty function because it doesn’t depend on any
enumeration.

It is said that θ is e-admissible in the enumeration 〈α, B〉 iff θ is effective in
every effective enumeration of the structure A.

We say that 〈α, B0〉 is an exact effective enumeration if it is an effective enu-
meration, and for every partial function θ, θ is e-admissible iff θ is effective in
〈α, B0〉.

It is well known that there are structures which don’t have effective enumer-
ations [13].The above definitions don’t make good sense in all those cases. We’ll
consider those definitions only in case when the structure admits an effective enu-
meration. Actually, when the structure has only total functions and no predicates
it admits an effective enumeration.

There isn’t an established definition for partial order of the set of enumera-
tions. There are different possibilities to define partial order, depending on different
reducibilities in the set of all sets of natural numbers and aims of research. Here
we shall take one of the possibilities, connected with m-reducibility.

Definition 1. It is said that 〈α0, B0〉 ≤ 〈α, B〉 iff there exist partial recursive

function f such that for all natural numbers n,

α0(n) ∼= α(f(n)).

It is said that 〈α0, B0〉, 〈α, B〉 are incomparable iff neither 〈α0, B0〉 ≤ 〈α, B〉 nor

〈α, B〉 ≤ 〈α0, B0〉.

Let L be the first order language corresponding to the structure A, i.e. L
consists of n functional symbols f1, . . . , fn and k predicate symbols T1, . . . ,Tk,
where fi is ki-ary and Tj is lj-ary. We add a new unary predicate symbol T0 which
will represent the unary total predicate Σ0, where Σ0(s) = 0 for all s ∈ B.

Let us have a denumerable set of variables. We shall use capital letters X, Y, Z
and the same letters by indexes to denote variables.

If τ is a term in the language L, then we write τ(X1, . . . , Xl) to denote that
all the variables in the term τ are among X1, . . . , Xl. If s1, . . . , sl are elements of
B and τ(X1, . . . , Xl) is a term, then by τA(X1/s1, . . . , Xl/sl) we denote the value
of the term τ in the structure A over the elements s1, . . . , sl, if it exists.

We intend to show that all structures with total functions and no predicates
have effective exact enumerations. Let from now on A = 〈B; θ1, . . . , θn〉 be an
arbitrary structure, where θ1, . . . , θn are total functions and B is a denumerable
set. The case when B is a finite set is analogous. As in [7] we shall construct a
special kind of enumerations. Later this kind of enumerations is generalized and
called normal enumerations [4].

Let 〈p1, . . . , pn〉be some fixed coding function of all finite sequences of natural
numbers.

Define fi(p1, . . . , pki
) = 〈i − 1, p1, . . . , pki

〉, i = 1, . . . , n and
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N0 = ω \ (Ran(f1) ∪ · · · ∪ Ran(fkn
)). It is obvious that N0 is a recursive set. For

every surjective mapping α0 of N0 onto B(called basis) we define a partial mapping
of ω onto B by the following inductive clauses:

(i) If p ∈ N0, then α(p) = α0(p);
(ii) If p = fi(q1, . . . , qki

), α(q1) = s1,. . . , α(qki
) = ski

and θi(s1, . . . , ski
) = t,

then α(p) = t.
It is well known that α is well defined and let B = 〈ω; f1, . . . , fn〉. We shall

recall some obvious propositions for such kind 〈α, B〉. The proofs are the same as
in the case of normal enumerations [4].

Proposition 1. For every 1 ≤ i ≤ n and p1, . . . , pki
∈ ω,

α(fi(p1, . . . , pki
)) = θi(α(p1), . . . , α(pki

)).

Corollary 1. Let τ(Y1, . . . , Ym) be a term and p1, . . . , pm ∈ ω. Then

α(τB(Y1/p1, . . . , Ym/pm)) = τA(α(p1), . . . , α(pm)).

Corollary 2. 〈α, B〉 is an effective enumeration.

Proposition 2. There exists an effective way to define for every p of ω ele-

ments q1, . . . , qm ∈ N0 and term τ(Y1, . . . , Ym) such that

p = τB(Y1/p1, . . . , Ym/pm).

A term τ which we define by the above proposition from the natural number
p we will denote by τp.

We can define the just mentioned enumerations also in the following way. Let
B = {a0, a1, . . . }, where a0, a1, . . . are different. Let A0, A1, . . . be a sequence of
disjoint subsets of N0 such that

⋃
i∈ω Ai. We define [A0], [A1], . . . as follows:

(a) If p ∈ Ai, then p ∈ [Ai];
(b) 1 ≤ i ≤ n and p1 ∈ [Aj1 ], . . . , pki

∈ [Ajki
] and aq = θi(aj1 , . . . , ajki

), then
fi(p1, . . . , pki

) ∈ [Aq].
Taking α0(Ai) = ai we have the basis and then we have α−1(ai) = [Ai]. From

now on if we define some sequence [A0], [A1], . . . of disjoint subsets of N0 we shall
have in mind the above mentioned enumeration.

Corollary 3. Let A0, A1, . . . be a sequence of disjoint nonempty subsets of

N0. Then 〈α, B〉 is an effective enumeration of the structure A.
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3. THE MAIN RESULTS

Theorem 1. Let A = 〈B; θ1, . . . , θn〉 be a structure, where θ1, . . . , θn are total

functions. Then there exists an exact effective enumeration 〈α, B〉.

Proof. First we shall recall that in [7] it is shown that all e-admissible functions
in the structure A, which are defined at least in one point, are exactly all search
computable functions, which in this case are all superpositions of the functions
θ1, . . . , θn, projecting and constant functions of many variables.

We will build an effective enumeration 〈α, B〉 of the structure A building a
sequence A0, A1, . . . by steps. In each step s we will define a sequence A0,s, A1,s, . . .
of N0 such that:

(i) Ai,s is a finite subset of N0, i, s ∈ ω;
(ii) Ai,s ⊆ Ai,s+1, i, s ∈ ω.
At the end we will take Ai = ∪+∞

s=0Ai,s and α([Ai]) = ai, i ∈ ω. With the
even steps we shall ensure that there is no subset of some Cartesian product of B
different of that Cartesian product of B which is a domain of some e-admissible
function. With the odd steps we shall ensure that the only e-admissible functions
are all superpositions of the functions θ1, . . . , θn.

Let ϕ
(k)
0 , ϕ

(k)
1 , . . . be the standard enumeration of all partial recursive func-

tions on k variables, W
(k)
0 , W

(k)
1 , . . . be the standard enumeration of all recursively

enumerable subsets of ωk and B = {a0, a1, . . . }, where a0, a1, . . . are different.
Step s = 0. Set Ai,s = ∅, i ∈ ω.
Step s = 2〈e, k〉 + 1. We check if there exist different elements p1, . . . , pk,

p′1, . . . , p
′
k of N0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . ) such that:

(i) ϕ
(k)
e (p1, . . . , pk) and ϕ

(k)
e (p′1, . . . , p

′
k) are defined;

(ii) ϕ
(k)
e (p1, . . . , pk) = p =

τp
B

(X1/p1, . . . , Xk/pk, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

ϕ
(k)
e (p′1, . . . , p

′
k) = q =

τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

where q1, . . . , ql ∈ N0 \ (A0,s−1 ∪ A1,s−1 ∪ · · · ∪ {p1, . . . , pk, p′1, . . . , p
′
k}) and r1,∈

Aj1,s−1, . . . , rm ∈ Ajm,s−1;
(iii) There exist ai1 , . . . , aik

, an1
, . . . , anl

∈ B such that
τp
A
(X1/ai1 , . . . , Xk/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) 6=

τq
A
(X ′

1/ai1 , . . . , X
′
k/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
).

It it is so we set Ai1,s = Ai1,s−1 ∪ {p1, p
′
1}, . . . , Aik,s = Aik,s−1 ∪ {pk, p′k},

An1,s = An1,s−1 ∪ {q1}, . . . , Anl,s = Anl,s−1 ∪ {ql} and Ai,s = Ai,s−1 for all i 6∈
{i1, . . . , ik, n1, . . . , nl}. Otherwise set Ai,s = Ai,s−1 for all i ∈ ω.

Step s = 2〈e, j〉+ 2. Let p be the least element of N0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . )

and p ∈ W
(1)
e , if such elements p exist. Set Aj,s = Aj,s−1 ∪ {p} and Ai,s = Ai,s−1

for all i 6= j, if such elements exist. Otherwise set Ai,s = Ai,s−1 for all i ∈ ω.
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We fix Ai = ∪+∞
s=0Ai,s, α([Ai]) = ai, i ∈ ω and construction is completed.

Lemma 1. For every natural number s, A0,s−1 ∪ A1,s−1 ∪ . . . is finite.

Proof. For every step s we add only finitely many numbers to
A0,s−1 ∪ A1,s−1 ∪ . . . . �

Lemma 2. Let e be such that W
(1)
e is infinite. Then for every j ∈ ω there

exists p ∈ W
(1)
e , such that p ∈ Aj.

Proof. Let j be an arbitrary element of ω. Then on step s = 2〈e, j〉+2 we find

p ∈ W
(1)
e such that p ∈ N0. Then we set p ∈ Aj,s ⊆ Aj . �

Corollary 4. For every natural i, Ai is infinite and immune and [Ai] is not

recursively enumerable.

Proof. Indeed, for every infinite r.e. subset W
(1)
e of N0 and every element

ai ∈ B there exists an element p ∈ W
(1)
e such that p ∈ Ai. Therefore, Ai is infinite

and W
(1)
e ∩ (N0 \Ai) = W

(1)
e ∩ (∪j 6=iAj) 6= ∅, i.e. Ai is immune and not recursively

enumerable. �

Analogously one can prove the following

Corollary 5. For every nonempty subset L of ω, L 6= ω, ∪i∈LAi is infinite

and immune and ∪i∈L[Ai] is not recursively enumerable.

Corollary 6. For every natural m ≥ 1 and every nonempty subset L of ωm

such that L 6= ωm the set

M = ∪{(p1, . . . , pm)|∃j1 . . .∃jm[(j1, . . . , jm) ∈ L&p1 ∈ Aj1& . . .&pm ∈ Ajm
]}

is not recursively enumerable.

Proof. First we claim: there exist coordinate i, 1 ≤ i ≤ m, and j1, . . . , ji−1,
ji+1, . . . , jm such that the set L′ = {j|(j1, . . . , ji−1, j, ji+1, . . . , jm) ∈ L}, which
is an i-th projection of L for the fixed j1, . . . , ji−1, ji+1, . . . , jm, is nonempty and
L′ 6= ω. For the sake of simplicity let m = 2. Since L 6= ∅, there exists (j′1, j

′
2)

such that (j′1, j
′
2) ∈ L. Analogously, L 6= ω2 and there exists (i1, i2) such that

(i1, i2) 6∈ L. If (j′1, i2) ∈ L, then fix i = 1 and j2 = i2 and the claim is true;
otherwise (j′1, i2) 6∈ L, (j′1, j

′
2) ∈ L, fix i = 2 and j1 = j′1. Thus the claim is true

again.
Let us assume that M is r.e. Then for some fixed i and j1, . . . , ji−1, ji+1, . . . , jm

the set
L′ = {j|(j1, . . . , ji−1, j, ji+1, . . . , jm) ∈ L} 6= ∅ and L′ 6= ω. Let
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A′ = {ak|(aj1 , . . . , aji−1
, ak, aji+1

, . . . , ajm
) ∈ A}. Then

M ′ = {p|∃j[p ∈ Aj&aj ∈ A′]} = ∪j∈L′Aj . According to the previous corollary,
M ′ is not r.e. On the other hand, if we fix

p1 ∈ Aj1 , . . . , pi−1 ∈ Aji−1
, pi+1 ∈ Aji+1

, pm ∈ Ajm
, then

M ′ = {p|∃j[p ∈ Aj&(j1, . . . , ji−1, j, ji+1, . . . , jm) ∈ L]} =
{p|∃pj1 . . . ∃pji−1

∃pji+1
. . . ∃pjm

[(pj1 , . . . , pji−1
, p, pji+1

, . . . , pjm
) ∈ M ]} is r.e.

The obtained contradiction shows that the assumption is wrong. �

It is easy to check the following

Corollary 7. For every natural m ≥ 1 and every nonempty subset L of ωm,

such that L 6= ωm

∪{(p1, . . . , pm)|∃j1 . . .∃jm[(j1, . . . , jm) ∈ L&p1 ∈ [Aj1 ]& . . .&pm ∈ [Ajm
]]}

is not recursively enumerable.

Corollary 8. For every natural m ≥ 1 and every nonempty subset A of Bm

such that A 6= Bm

∪{(p1, . . . , pm)|∃j1 . . . ∃jm[(aj1 , . . . , ajm
) ∈ A&p1 ∈ Aj1 . . .&pm ∈ Ajm

]}

is not recursively enumerable.

Corollary 9. For every function θ such that Dom(θ) ⊆ Bm and θ is effective

in the enumeration 〈α, B〉, the equality Dom(θ) = Bm holds.

Proof. It is an immediate corollary of the previous one. �

Lemma 3. N0 ⊆ Dom(α).

Proof. Let us assume that N0 \ Dom(α) 6= ∅ and p0 is the least element
of N0 \ Dom(α). Then there exists a step s = 2〈e, j〉 + 2 such that p0 is the

least element of N0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . ) and W
(1)
e = ω. At that step s we

have to put p0 in some Aj ⊆ Dom(α). The contradiction obtained shows that
N0 ⊆ Dom(α). �

Now it is obvious that

Corollary 10. Dom(α) = ω.

Let θ be effective in 〈α, B〉 and Dom(θ) ⊆ Bk for some natural k ≥ 1. Then
Dom(θ) = Bk and there exists p.r. function f such that for all natural numbers
i1, . . . , ik,

θ(α(i1), . . . , α(ik)) ∼= α(f(i1, . . . , ik)).
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Therefore f is a total function and f = ϕ
(k)
e for some natural e. Let us consider

step s = 2〈e, k〉 + 1.
First assume there are different elements p1, . . . , pk, p′1, . . . , p

′
k of

N0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . ) satisfying the conditions (i)–(iii) at step s = 2〈e, k〉 +
1 and fix such elements p1, . . . , pk, p′1, . . . , p

′
k. Then according to Corollary 1,

α(f(p1, . . . , pk)) = α(ϕ
(k)
e (p1, . . . , pk)) =

α(τp
B

(X1/p1, . . . , Xk/pk, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm)) =
τp
A
(X1/α(p1), . . . , Xk/α(pk), Y1/α(q1), . . . , Yl/α(ql), Z1/α(r1), . . . , Zm/α(rm))

= τp
A
(X1/ai1 , . . . , Xk/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) 6=

τq
A
(X ′

1/ai1 , . . . , X
′
k/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) =

τq
A
(X ′

1/α(p′1), . . . , X
′
k/α(p′k), Y1/α(q1), . . . , Yl/α(ql), Z1/α(r1), . . . , Zm/α(rm))

= α(τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm)) =

α(ϕ
(k)
e (p′1, . . . , p

′
k)) = α(f(p′1, . . . , p

′
k)).

On the other hand, α(f(p1, . . . , pk)) = θ(α(p1), . . . , α(pk)) = θ(ai1 , . . . , aik
) =

θ(α(p′1), . . . , α(p′k)) = α(f(p′1, . . . , p
′
k)). That contradiction shows this case isn’t

possible. Therefore, there aren’t different elements p1, . . . , pk, p′1, . . . , p
′
k of N0 \

(A0,s−1 ∪ A1,s−1 ∪ . . . ) satisfying the conditions (i) – (iii)
Let us fix different p1, . . . , pk ∈ N0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . ). Then

f(p1, . . . , pk) = ϕ
(k)
e (p1, . . . , pk) = p =

τp
B

(X1/p1, . . . , Xk/pk, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm), where
q1, . . . , ql ∈ N0 \ (A0,s−1 ∪ A1,s−1 ∪ · · · ∪ {p1, . . . , pk}), r1,∈ Aj1,s−1, . . . , rm ∈
Ajm,s−1. Furthermore, for every different p′1, . . . , p

′
k ∈ N0 \ (A0,s−1 ∪A1,s−1 ∪ · · · ∪

{p1, . . . , pk}), f(p′1, . . . , p
′
k) = ϕ

(k)
e (p′1, . . . , p

′
k) = q =

τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y ′

1/q′1, . . . , Y
′
l′/q′l′ , Z1/r1, . . . , Zm/rm), where

q′1, . . . , q
′
l′ ∈ N0 \ (A0,s−1 ∪ A1,s−1 ∪ · · · ∪ {p1, . . . , pk, p′1, . . . , p

′
k}),

r1,∈ Aj1,s−1, . . . , rm ∈ Ajm,s−1 and for every
ai1 , . . . , aik

, an1
, . . . , anl

, an′

1
, . . . , an′

l′
∈ B

τp
A
(X1/ai1 , . . . , Xk/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) =

τq
A
(X ′

1/ai1 , . . . , X
′
k/aik

, Y ′
1/an′

1
, . . . , Y ′

l′/an′

l′
, Z1/aj1 , . . . , Zm/ajm

).

Therefore, θ(α(p′1), . . . , α(p′k)) = α(f(p′1, . . . , p
′
k)) =

α(τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y ′

1/q′1, . . . , Y
′
l′/q′l′ , Z1/r1, . . . , Zm/rm)) =

τq
A
(X ′

1/α(p′1), . . . , X
′
k/α(p′k), Y ′

1/α(q′1), . . . , Y
′
l′/α(q′l′ ), Z1/aj1 , . . . , Zm/ajm

) =
τp
A
(X1/α(p′1), . . . , Xk/α(p′k), Y1/α(q1), . . . , Yl/α(ql), Z1/aj1 , . . . , Zm/ajm

).
Let q1 ∈ An1

, . . . , ql ∈ Anl
and θ′ be the function

θ′(b1, . . . , bk) = τp
A
(X1/b1, . . . , Xk/bk, Y1/an1

, . . . , Yl/anl
, Z1/aj1 , . . . , Zm/ajm

) for
fixed an1

, . . . , anl
, aj1 , . . . , ajm

. We’ll prove that θ = θ′. Let (b1, . . . , bk) be an ar-
bitrary k-tuple of Bk. Take p′1, . . . , p

′
k ∈ N0 \ (A0,s−1 ∪A1,s−1 ∪ · · · ∪ {p1, . . . , pk})

such that α(p′1) = b1, . . . , α(p′k) = bk. It is possible because every element of B has
infinitely many numbers. Then θ(α(p′1), . . . , α(p′k)) = τp

A
(X1/α(p′1), . . . , Xk/α(p′k),

Y1/α(q1), . . . , Yl/α(ql), Z1/aj1 , . . . , Zm/ajm
) = θ(b1, . . . , bk) and θ′ is a superposi-

tion of the function θ1, . . . , θn,, projecting and constant functions of many
variables. �
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Theorem 2. Let A = 〈B; θ1, . . . , θn〉 be a structure, where θ1, . . . , θn are total

functions. If 〈α0, B0〉 is an effective enumeration in A, then there exists an exact

effective enumeration 〈α, B〉 such that 〈α0, B0〉 ≤ 〈α, B〉.

Proof. We shall give only the construction of the effective enumeration. The
proof that it has the required properties is analogous to the previous one.

Let 〈α0, B0〉 be an effective enumeration in A, N0 the same as in the proof
of the previous Theorem and N0 = N ′

0 ∪ N ′′
0 , where N ′

0, N
′′
0 are infinite recursive

sets. Take recursive f(i) = p′′i , where N ′′
0 = {p′′0 , p′′1 , . . . }, p′′0 < p′′1 , < . . . . As in the

proof of the previous theorem we will build an effective enumeration 〈α, B〉 of the
structure A building a sequence A0, A1, . . . by steps. In each step s we will define
a sequence A0,s, A1,s, . . . of N0 such that:

(i) Ai,s ∩ N ′
0 is a finite subset of N ′

0, i, s ∈ ω;
(ii) Ai,s ⊆ Ai,s+1, i, s ∈ ω.
At the end we will take Ai = ∪+∞

s=0Ai,s and α([Ai]) = ai, i ∈ ω.

Let ϕ
(k)
0 , ϕ

(k)
1 , . . . be the standard enumeration of all partial recursive func-

tions of k variables, W
(k)
0 , W

(k)
1 , . . . be the standard enumeration of all recursively

enumerable subsets of ωk and B = {a0, a1, . . . } where a0, a1, . . . are different.
Step s = 0. Set Ai,s = {p|p ∈ N ′′

0 &∃q[f(q) = p&α0(q) = ai]}, i ∈ ω.
Step s = 2〈e, k〉 + 1. We check if there exist different elements p1, . . . , pk,

p′1, . . . , p
′
k of N ′

0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . ) such that:

(i) ϕ
(k)
e (p1, . . . , pk) and ϕ

(k)
e (p′1, . . . , p

′
k) are defined;

(ii) ϕ
(k)
e (p1, . . . , pk) = p =

τp
B

(X1/p1, . . . , Xk/pk, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

ϕ
(k)
e (p′1, . . . , p

′
k) = q =

τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

where q1, . . . , ql ∈ N ′
0 \ (A0,s−1 ∪ A1,s−1 ∪ · · · ∪ {p1, . . . , pk, p′1, . . . , p

′
k}) and r1,∈

Aj1,s−1, . . . , rm ∈ Ajm,s−1;
(iii) There exist ai1 , . . . , aik

, an1
, . . . , anl

∈ B such that
τp
A
(X1/ai1 , . . . , Xk/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) 6=

τq
A
(X ′

1/ai1 , . . . , X
′
k/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
).

If it is so we set Ai1,s = Ai1,s−1 ∪ {p1, p
′
1}, . . . , Aik,s = Aik,s−1 ∪ {pk, p′k},

An1,s = An1,s−1 ∪ {q1}, . . . , Anl,s = Anl,s−1 ∪ {ql} and Ai,s = Ai,s−1 for all i 6∈
{i1, . . . , ik, n1, . . . , nl}. Otherwise set Ai,s = Ai,s−1 for all i ∈ ω.

Step s = 2〈e, j〉+ 2. Let p be the least element of N ′
0 \ (A0,s−1 ∪ A1,s−1 ∪ . . . )

and p ∈ W
(1)
e , if such elements p exist. Set Aj,s = Aj,s−1 ∪ {p} and Ai,s = Ai,s−1

for all i 6= j, if such elements exist. Otherwise set Ai,s = Ai,s−1 for all i ∈ ω.
We fix Ai = ∪+∞

s=0Ai,s, α([Ai]) = ai, i ∈ ω and construction is completed. �

Theorem 3. There exist infinitely many mutually incomparable exact effective

enumerations.

Proof. We will build effective enumerations 〈αj , Bj〉, j ∈ ω of the structure
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A building a sequence Aj
0, A

j
1, . . . , j ∈ ω, by steps. In each step s we will define a

sequence Aj
0,s, A

j
1,s, . . . , of subsets of N0, j ∈ ω, such that:

(i) Aj
i,s is a finite subset of N0, i, j, s ∈ ω;

(ii) Aj
i,s ⊆ Aj

i,s+1, i, j, s ∈ ω.
With the steps of the kind 3k + 1 we shall ensure for every j that there isn’t

a subset of some Cartesian product of B different of that Cartesian product of B
which is a domain of some e-admissible function for the enumeration 〈αj , Bj〉. With
the steps of the kind 3k +2 we shall ensure that the only e-admissible functions for
the enumeration 〈αj , Bj〉 are all superpositions of the functions θ1, . . . , θn. With
the steps of the kind 3k + 3 we shall ensure that 〈αj , Bj〉 6≤ 〈αk, Bk〉 for j 6= k,
j, k ∈ ω.

As above, ϕ
(k)
0 , ϕ

(k)
1 , . . . is the standard enumeration of all partial recursive

functions on k variables, W
(k)
0 , W

(k)
1 , . . . is the standard enumeration of all re-

cursively enumerable subsets of ωk and B = {a0, a1, . . . }, where a0, a1, . . . are
different.

Step s = 0. Set Aj
i,s = ∅, i, j ∈ ω.

Step s = 3〈e, k, j〉 + 1. We check if there exist different elements
p1, . . . , pk, p′1, . . . , p

′
k of N0 \ (Aj

0,s−1 ∪ Aj
1,s−1 ∪ . . . )

such that:
(i) ϕ

(k)
e (p1, . . . , pk) and ϕ

(k)
e (p′1, . . . , p

′
k) are defined;

(ii) ϕ
(k)
e (p1, . . . , pk) = p =

τp
B

(X1/p1, . . . , Xk/pk, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

ϕ
(k)
e (p′1, . . . , p

′
k) = q =

τq
B

(X ′
1/p′1, . . . , X

′
k/p′k, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm),

where q1, . . . , ql ∈ N0 \ (Aj
0,s−1 ∪ Aj

1,s−1 ∪ · · · ∪ {p1, . . . , pk, p′1, . . . , p
′
k}) and r1,∈

Aj
j1,s−1, . . . , rm ∈ Aj

jm,s−1;
(iii) There exist ai1 , . . . , aik

, an1
, . . . , anl

∈ B such that
τp
A
(X1/ai1 , . . . , Xk/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
) 6=

τq
A
(X ′

1/ai1 , . . . , X
′
k/aik

, Y1/an1
, . . . , Yl/anl

, Z1/aj1 , . . . , Zm/ajm
).

If it is so we set Aj
i1,s = Aj

i1,s−1 ∪ {p1, p
′
1}, . . . , A

j
ik,s = Aj

ik,s−1 ∪ {pk, p′k},

Aj
n1,s = Aj

n1,s−1 ∪ {q1}, . . . , A
j
nl,s

= Aj
nl,s−1 ∪ {ql} and Aj

i,s = Aj
i,s−1 for all i 6∈

{i1, . . . , ik, n1, . . . , nl}. Otherwise set Aj
i,s = Aj

i,s−1 for all i ∈ ω.

Step s = 3〈e, k, j〉+2. Let p be the least element of N0 \ (Aj
0,s−1∪Aj

1,s−1∪ . . . )

and p ∈ W
(1)
e , if such elements p exist. Set Aj

k,s = Aj
k,s−1 ∪ {p} and Aj

i,s = Aj
i,s−1

for all i 6= k, if such elements exist. Otherwise set Aj
i,s = Aj

i,s−1 for all i ∈ ω.
Step s = 3〈e, k, j〉 + 3.

Let first k 6= j, ϕ
(1)
e be a total function. Let p be the least element of N0 \

(Ak
0,s−1 ∪ Ak

1,s−1 ∪ . . . ),

ϕ
(1)
e (p) = q = τq

B
(X/p, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm), where

q1, . . . , ql ∈ N0 \ (Aj
0,s−1 ∪ Aj

1,s−1 ∪ · · · ∪ {p}) and r1 ∈ Aj
j1,s−1, . . . , rm ∈ Aj

jm,s−1.

Fix Aj
j,s = Aj

j,s−1 ∪ {p, q1, . . . , ql} and Aj
i,s = Aj

i,s−1, for i 6= j, i ∈ ω.
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We check if τq
A
(X/aj, Y1/aj, . . . , Yl/aj , Z1/aj1 , . . . , Zm/ajm

) = aj . If so, fix
Ak

k,s = Ak
k,s−1 ∪ {p} and Ak

i,s = Ak
i,s−1 for i 6= k, i ∈ ω; otherwise fix Ak

k−1,s =

Ak
k−1,s−1 ∪ {p} and Ak

i,s = Ak
i,s−1 for i 6= k − 1, i ∈ ω.

Fix Ai′

i,s = Ai′

i,s−1 for i, i′ ∈ ω, i′ 6∈ {j, k}.

In case either k = j or ϕ
(1)
e is not a total function, fix Ai′

i,s = Ai′

i,s−1 for i, i′ ∈ ω,
i′ 6∈ {j, k}.

At the end we fix Aj
i = ∪+∞

s=0A
j
i,s, α−1

j ([Aj
i ]) = ai, i, j ∈ ω, and construction is

completed.
The proof that 〈αj , Bj〉, j ∈ ω, is an exact effective enumeration is analogous

to the previous ones. We’ll concentrate on the proof that 〈αj , Bj〉 and 〈αk, Bk〉
are incomparable.

Let us assume that 〈αk, Bk〉 ≤ 〈αj , Bj〉. Then there exists a total recursive

function f such that for all natural p, αk(p) = α(f(p)). Let f = ϕ
(1)
e , consider the

step s = 3〈e, k, j〉+3 and let p be the element belonging to N0\(Ak
0,s−1∪Ak

1,s−1∪. . . )
chosen on that step.

Then ϕ
(1)
e (p) = q = τq

B
(X/p, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm), where

q1, . . . , ql ∈ N0 \ (Aj
0,s−1 ∪ Aj

1,s−1 ∪ · · · ∪ {p}), r1 ∈ Aj
j1,s−1, . . . , rm ∈ Aj

jm,s−1 and

Aj
j,s = Aj

j,s−1 ∪ {p, q1, . . . , ql}.
We have to consider two cases. We’ll consider only the first one:

τq
A
(X/aj, Y1/aj , . . . , Yl/aj, Z1/aj1 , . . . , Zm/ajm

) = aj .
Then Ak

k,s = Ak
k,s−1 ∪ {p}, αk(p) = ak 6= aj =

αj(τ
q
A
(X/aj, Y1/aj, . . . , Yl/aj , Z1/aj1 , . . . , Zm/ajm

)) =
τq
A
(X/αj(p), Y1/αj(q1), . . . , Yl/αj(ql), Z1/αj(r1), . . . , Zm/αj(rm)) =

αj(τ
q
B

(X/p, Y1/q1, . . . , Yl/ql, Z1/r1, . . . , Zm/rm)) = αj(q) = αj(ϕ
(1)
e (p)) =

αj(f(p)).
The contradiction obtained shows the assumption is not true. �
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