TOOUIITHUK HA CO®PUNCKUA YHUBEPCUTET ,,CB. KIMMEHT OXPUICKU “

PAKYJITET 11O MATEMATUKA I UHPOPMATUKA
Tom 100

ANNUAIRE DE L’UNIVERSITE DE SOFIA |ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 100

MODEL REPRESENTATIONS OF THE LIE-GEIZENBERG
ALGEBRA OF THREE LINEAR NON-SELFADJOINT
OPERATORS

VICTORIYA A. KUZNETSOVA

This work is dedicated to the study of Lie algebra of linear non-selfadjoint operators
{A1, A2, Az} given by the relations [A1, A2] = iAs; [A1, A3] = 0; [A2, Az] = 0, besides,
we assume that none of the operators A, As, As is dissipative. For Lie algebra
{A1, A2, Az} such that {A1, A2, A3} given by the relations [A1, Az] = iAs; [A1, A3] =
0; [A2, Az] = 0, take place, and when one of the operators is dissipative, the functional
models were constructed earlier.

In Paragraph 1 it is shown that the open system corresponding to this Lie algebra
{A1, A2, Az}, [A1, A2] = iAs; [A1, A3] = 0; [A2, A3] = 0, should be considered on the
Lie — Geizenberg group H(3). Paragraph 2 is dedicated to the construction of triangu-
lar model for this Lie algebra, A1, A3 in which are bounded, and Az is an unbounded
operator. Note that even in the dissipative case such dissipative models haven’t been
constructed. Using the models from Paragraph 2, in the following Paragraph 3 func-
tional models for the Lie algebra [A1, A2] = 1As; [A1, A3] = 0; [A2, A3] = 0, of the
special form and acting in the L. de Branges Hilbert space of whole functions are
listed. In Paragraph 4 the special class of Lie algebras [A1, A2] = iAs; [A1, A3] = 0;
[A2, A3] = 0, having the reasonable model representations in L. de Branges spaces on
Riemann surfaces is displayed.
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1. LIE-GEIZENBERG GROUP

I. Following the works [4, 6] for the study of Lie algebra of linear non-selfadjoint
operators { A1, Aa, A3} given by the commutation relations [A;1, As] = iAs; [A1, As]
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= 0; [A2, A3] = 0, we ought to find such Lie group G, the Lie algebra {01, 02,03} of
which is such that [01,02] = 05, [01,05] = 0; [02,05] = 0. Let z, y, z € R. Consider
the Lie — Geizenberg group G = H(3) formed by the elements g = g(z,y, ), the
multiplication law in G is given by [8, 9]
def
g(z1,y1,21) 0 g (x2,y2,22) = g (1 + T2, 1 + Y2, 21 + 22 + T1Y2) - (1.1)
Hence it follows that every subgroup

is equivalent to the additive group of real numbers R.
It is easy to prove that the group G is isomorphic to the following group of
matrices of the third order

1
By=|0
0

o =8
— < W

This immediately follows from the equality

1 =1 = 1 z9 2o 1 zy+2a2 21+ 220+ 2192
By, By, =110 1 0 1 %5 |=1]0 1 Y1+ Y2 =
0 1 1 0 0 1 0 0 1
= Byog,

Consider a complex-valued function f(g) on the group G, which means that we
have a function f(z,y, z) on R3. Define one-parameter subgroup in G corresponding
to Gl, GQ, G3 (1.2),

g1(t) = (£,0,0) € G1;  g2(t) = (0,¢,0) € G2;  g3(t) = (0,0,1) € G5.  (1.3)
Find the vector fields corresponding to these subgroups

Fl = f(qi(t)oglz,y,2)) = flx +t,y,z +ty).
Therefore the derivative by ¢ at the identity e = (0,0, 0) of group G of this function

iFl

gali| =of

t=0

0 o .
where 0, = E + ya Since

F? = f(g2(t) o g(w,y,2)) = flz,y +1,2),

it is obvious that J
el Ft2

di =&/,

t=0
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besides,

Finally, taking into account

FE = f(g3(t)og(z,y,2)) = f (z,y, 21 + 1)

we obtain
d

_Ft3 = asfa
dt " |
0 . .
where 03 = % Thus the Lie algebra of vector fields h(3) corresponding to G =
z
H(3) is generated by the differential operators of first order

0 0 0 0
a _ R 6 e — a = —. 14
! 8x+y8z’ 2T oy T 0z (1.4)
Obviously, for this Lie algebra h(3) the commutation relations
[02,01] = 03;  [01,05] = 0; [02,03] =0 (1.5)

take place. It is well-known [8, 9] that the simply connected Lie group G = H(3)
“uniquely” corresponds to this Lie algebra of differential operators (1.4).

II. Consider in a Hilbert space H the Lie algebra of linear operators { A, Ao, A3}
satisfying the relations

[Al, AQ] = ’LAg, [Al, A3] = 07 [AQ, A3] = 0 (16)

Note that the operators Ay, Ay, A3z cannot be bounded simultaneously. Otherwise,
(1.6) yields
[AT, Ag] = inAT 1 Ag

and thus 2 ||AT|| - [|Az2]] > n || As|| ‘ A?_IH (Vn € Z4). In connection with this it is
sensible to rewrite the relations (1.6) in terms of resolvents,

Rs(w) [Ri(N)Ra(2) — Ra(2)Ri(N)] = iRT(\) R} (2) Ra(w)w + iRF (N R} (2);

[R1(A), R3(w)] = 0;  [Ra(2), Ra3(w)] =0 (1.7)

where Ri(\) = (A; — M) ™% Ro(2) = (A — 2I) 7" Ry(w) = (As —wl) ™' and A,
z, w are regularity points of the operators A;, As, A3, respectively.

IIT. For the given Lie algebra {A1, A2, A3} (1.6) of non-selfadjoint operators
construct the colligation of Lie algebra [4, 5, 6].
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Definition 1.1. A family

A= ({A17A27A3}§H§ v; E; {Uk}f;{vg,s}j;{misr) (1.8)

1
is said to be the colligation of Lie algebra if
1) [A1, As] =iAs; [Ay, A3] =0; [Ag, A3] =0

2) 2Im(Agh,h) = (oxph, ph); Vh €9 (Ag); (1.9)
3) orpAs — s A =700 i, =i '
4) Voo = Vo T (0spp 0k — ORPPTOS) ;
forallk and s (1 <k, s <3).
Relations (3.6) (§1.3) imply
is=(s)"s = (1s)" e (i) =ios. (1.10)
Consider the differential operators
0 0 0 0
O =—; 0= —; O3=—; 1.11
1 O ) 2 ay +x Oz ) 3 9z ) ( )

coinciding with operators (1.4) after the substitution © — y, y — . It is obvious
that the commutation relations (1.5) now are written in the following way:

[01,02] = 03;  [01,03] =0;  [02,05] = 0. (1.12)
Equations of the open system (3.13), (3.14) (§1.3) are given by
iakh’(xa Y, Z) + Akh(l‘, Y, Z) = SD*O—ku(xa Y, Z)a
hO)=ho (1<k<3) (2.4.2)€C; (1.13)
U(:L', Y, Z) = u(x, Y, Z) - Z(ph(l‘, Y, Z)
It is easy to show that u(x,y, z) is the solution of the equation system
{akiﬁs — 0y + y,gs} wz,y,2) =0 (1<ks<3), (1.14)
and the function v(z,y, z) also satisfies the equation system
{akias — 0510k + ’y;r’s} v(z,y,2) =0 (1<k,s<3). (1.15)

If o1 is invertible, then relations eliminating the overdetermination of equation
system (1,14) are given by

1. [01_102,01_103} =0;
~1 1, - ~1 “1— 7 -1 -1
2. [0y 02,09 71,3} —[oy o3, 0 ’71,2] =10, 030, 03; (1.16)

“1.- -1 -1 _ . -1 -1_—
3. [01 V1,20 01 71’3] =107 0301 13-
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Moreover,
- -1 — -1 —
Yo,3 = 0201 713 — 0301 7Vi2- (1.17)

3
Similar relations also take place for the family {fy,': s }

.

So, we assume that the operators vy 5, 71 3, for which (1.10) takes place, are
specified and the operator 7, 5 is specified by formula (1.17). Note that the self-
adjointness of v, 3 automatically follows from 2. (1.16) and corresponding relations

(1.10) for v, 3 and 7y 5.

2. TRIANGULAR MODEL

I. Consider the colligation A (1.8) corresponding to the Lie algebra of linear
operators {A1, As, As} given by the commutation relations 1) (1.9) assuming that
dim F =r < oo and o1 = J is an involution in E. Let the characteristic function
S1(N) =1 —ip (A — )\I)_l ©*J be given by

7
. JdF;
S1(N) :/exp Zji L
0

where F, is a non-decreasing function on [0,!] such that trF, = z. Besides, we
assume that measure dF) is absolutely continuous, dF, = a,dzx (tra, = 1). Define
the Hilbert space Lf’l (F%) [1, 3]. Specify in this space the operator system

l
<21 f> oy / fapJdt;

!
<A3 f) = fodVe,3 +i/ftat03dt;
z xr

!
(AQ f) = fibe + f2J V22 +i/ftat02dt; (2.1)

where by, Yz.3, Vz,2 are some operator-functions in E specified on [0,!] and o2, o3
are selfadjoint operators in E. The domain of definition D (As) is formed by the
linear span of smooth functions in L2, (Fy) such that A;, Az are bounded and A
is unbounded non-selfadjoint operator. Find the necessary and sufficient conditions
on ag, by, Yz.3, Vz,2, 02, 03 for this operator system (2.1) to form the Lie algebra,

|:Aol, AO3:| = 07 |:/ig, AO3:| = 07 |:fil, 1432:| =1 /ig . (22)
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[e] [e]
It is easy to see [4] that the commutativity of operators [Al, Ag] = ( signifies that

the operator-function v, 3 satisfies the relations

/73/1;73 =1 (JaxUS - USGzJ) ; ’70,3 = PY?:?,, (2 3)
Ja;c'Yx,S = 'Ym,BG:CJ- .
Hence it follows [4] that
Al —Al=ip* Jo, As—As=ip o3¢ (2.4)
and, moreover,
J WA3 —o3 pA1= ’)’ffg K
Yis =713 +i <J3 pp* J —J p* 03) (2.5)

where 77 3 = 7z,3 o and the operator & from L%,l (F,) into E is given by

l
(55) « / f.dF,. (2.6)
0

Note that (2.4), (2.5) coincide, respectively, with the conditions of colligation 1),
3) 4) (1.9).

II. Find the conditions on a,, bz, V¢,3, Vz,2 for the relation

to hold. It is easy to see that

l

l l l
(21’121)2 f) :i/ft’btatdtj+z‘/ftjyt,zatdtjf/dt/dsfsasazatJ:

T t

l l ! !
= —ifxbxaxJ—i/ft (btat)/dtJ—l—i/ftJ%,gatdtJ—/dt/dsfsasagatJ,
x x x t

in view of the fact that f; = 0. Similarly,

l

l l
(14(1)214(1)1 f) = —ifpa,Jby +i/ftatdt'yx,2 —/dt/dsfsasJatag.
x x t

x
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Consider the vector-function ®, in L?, (Fy),

l
{ |:fi)1, 22] — ’L 14)3} fa, = —’fo [blalJ — abex + J’Yg;73] — Z/ft (btat)l dtJ+

x

def
o, =

l l

l l l
+i/ftJ’yt72atdtJ—i/ftatdt’yz,gfze/ftatdta;g—/dt/dsfsas (O'QatJ - J(ItO'Q) .
T T T T t

Suppose
bragJ — azJby + Jyz3 =0 (2.8)

and let v, 2 be differentiable, then it is easy to see that the derivative of function
P, is
(I); = Zf;c (bmam)l J - ifo'Ym,Qa;cJ + Z'fxa;c'Ya;,Q + ifxaxUS_

! !
—i/ftatdt%'w + /ftatdt (02ayd — Jazo2) .
Hence it follows that ®/, = 0 if

{ (bxax)l J = JVz 205 d + 372 + iaz03 = 0; (2.9)

17;’2 = o9ay,J — Ja,os.
Thus, @/ =0, and since ®; = 0, then ¢, = 0.

Lemma 2.1. Suppose that (2.8), (2.9) take place, then the operator system
{Al, As, A3} (2.1) satisfies the commutation relation (2.7).

IIT. Prove that condition 3) (1.9) is true for Ay, A2 (2.1). To do this, calculate

l l
(J 800142 —02 9%141) fa Z/ fiby + fodVo 2+ /ftatUth azdrJ—
0 x

l l

f/i/ftatdt[]axd:cag =
0 x

l T

:/f;c nyx,gaxJ—(bxax)/J—l—iax/(agatJ—Jatag)dt dx.
0 0
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The second equality in (2.9) implies
x
Vo2 = 'yiQ — i03 +i/ (Jaioo — ogarJ) dt. (2.11)
0

Here we use the equality
Vo — (1) =ios (2.12)
taking place in virtue of (1.10) §3.1. Thus

<J S(Z’Az —02 ‘Z’A1) fa: =
l
= /f:v {J’y:n,Qaa:J - (bzaz)/ J+ az’)/;r’g - iazUS - aaz’y:v,Q} dr =
0

l

in virtue of the first condition in (2.9) and definition (2.6) of the operator 0.

Lemma 2.2. Let the family {az,bs, Vo2, V2,3, J, 02,03} be such that (2.8),
(2.9) are true and, moreover, v, 2, solution of the second equation in (2.9) satisfies
the initial condition o2 = (7{2)*, besides, 7{2 - (7{2)* = o3 (2.12). Then the
colligation relation 3) (1.9)

J $Ay —og PPAI=, ¥ (2.13)
s true.

IV. Study when the colligation relation 2) (1.9) takes place for the operator
Ay (2.1). Calculate the expression

l l
o 1
2Im <A2 f,f> == / Flby + fodYan +i / fravdto | a, fde—
0 T

l l

1 . .
L AT STy P

0 T

l
1
i / [f;fcbaaaf; — frazb;, (f;)l + fod Va20a f7 — f:ca:c’Y;QJf;] dz+
0

74 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67-92.



l

l l
+/ /ftatagdtaxf;—l—fxax/agatft*dt dx.
0

xT x

Obviously, the second integral after the transfer of the order of integration is

l

l
foaud frat= {020 f,% [
O/ a :cag/att <02<,0 ® >

0

in virtue of the definition of operator @ (2.6). So, for the colligation relation 2)

o
(1.9) to hold for Aj, one has to ascertain when the first integral vanishes.
The integrand of this integral equals

def

U, = f;bmamf; — frazb} (f;)/ + fmJ%EQazf; — fzaz (71,2 +io3) J fa

in virtue of 7} 5 — ¥z,2 = 703. This easily follows from (2.11). Thus,

Vo = fibaaa fy — faaoby (£2) + fo (asbs)' f7,

we took into account the first equality in (2.9).
Let the condition
agbl = byay (2.14)

hold, then ¥, = (fbsa,f}) and thus

l
/\I/tdt
0

I
o

since fo = fi =0 for f, € D(As2).

Lemma 2.3. Suppose that for the family {ag, bz, Ve,2,Vs,3,J, 02,03} (2.8),
(2.9) are true and vg,2 as the solution of the second equation in (2.9) is such that
Yo,2 = fyffg and (2.12) takes place. Then, if (2.14) holds Vf, € D (Asz), the colliga-
tion relation

9Tm <2f2 f, f> - <02 1,0 f> (2.15)

18 true.

V. Study the interchangeability (2.2) of operators Aa, As (2.1). It is easy to
see that

/

l l
AoAs fo= | fodrps +i / fawdtos | be+ | fodves +i / Fandtos | Tyeot
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l l
+i/ ftJ’Yt,S + i/fsasdsas aioodt = f:cJ%r,be + fl‘J’y;:73b$ - ifxaxasbx+
t

T

l l l l
+fl.J%.73J’yx,2+i/ftatdtagJ'yx,g+i/ftJ’yt73atagdt—/dt/dsasagatag.
x x t

x

Similarly,
l
Ashy fo= | flbou+ fodron +i / Jrawdtos | Jyeat
xT
l

l
+Z/ f{bt + ftt]’yt,2 +i/fsasd50—2 atUSdt = fa’:bCEJfYﬂi,S + fzJ71,2J71,3+
t

x

l l l l l
+i / fraidtoaJy, s — i / fe (biay) o3dt +1i / fed e 2arozdt — / dt / dsaso0a,03.
x x x t

T

Thus function G, from Li,l (Fy) is

G, & {A27A3} fo = folIVe,3bs — budye3] +

l
+f93 {J"Y;;@bz - iazUsz + J’y:v,QJfYa:,S + ibzam03}+i / ftatdt [03J71,2 - 0—2‘]71,3] +

x

l l l
+i/ft [Jt,3a:02 — Jy,20i03] dt — /dt/dsas (03at09 — 02a403) .
x t

T

Suppose that the equalities

J’y:n,Bbz = ba:JfYa:,S,
J’y;,ngz + ibzamUS - iazUsz + J71,3J71,2 - J’Ya:,2<]71,3

hold. Then, taking into account smoothness of v, 2 and +, 3, we obtain

G;: = 7Zf93 {am0—371,2 - azO—2J’793,3 + J’Ya:,Saazo—Q - J’y:v,Qaa:O—S} +

1
+ / frawdt {i (03] V02 — 0270 3] + 0300502 — 020403} .
x
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Requirement G/, = 0 leads to the equalities

{ 0203V 2 — JV2 20203 + JV2 30,02 — az02J7z 3 = 0; (2.17)

! ! -
03J7, 0 — 02J7, 3 = i (030202 — 02a,03) .

Since G; = 0, hence it follows that G, = 0. As a result, we obtain the statement.

Lemma 2.4. If relations (2.16), (2.17) hold for the family {az, bz, V.25 Va3, J,

[e] [e]
0903}, then the operators Ay and As commute,

[/ﬁ,ﬁ}} =0. (2.18)

Observation 2.1. Last equality in (2.17) is the obvious corollary of equations
for vz2 (2.9) and vz 3 (2.3) since

o3Ji(Jayoa — 02a,J) — 02 Ji (Jagos — 03a,J) =i (030,02 — 02a,03)

in virtue of 1. (1.6). Note that this fact is completely coordinated with (1.17).
VI. Summarizing considerations of previous clauses, we obtain the following

Theorem 2.1. Suppose operators {az, by, Vz,2, Vz,3, 02,03} in E are such that:

1
2
3
4

~z,3 Satisfies relations (2.3);
Yx,3 = Jaz Jby — JbgagJ;
( zaaz)/ = J’y:v,Qaa: - az’y:n,QJ - iaazo—3<];

Ve

)
)
| (2.19)
) 5 =i (Jayoy — o2a,J); Y0,2 = (Vfr,2)* ;

s

and y1,2 — 71*72 = 103. Moreover,

5)  JYVz,3be = by JVs 3;
6)  Jvp3be = [JVe2, JVa,3] + 1 [az03,bs]; (2.20)
7)) az03, JYz2] — [az02, Jyz3] =0
take place. Then the family
A= ({f(fl, As, z‘(l)?,} L2 (F)s ;B {op)3 {vk_}j ; {ﬁ}j) (2.21)
is the colligation of Lie algebra (1.8)—(1.9) where /il, /i)g, 1;1)3 are given by (2.1) and

<O,0, respectively, by (2.6), besides, Yk = Yekl,—; (K =2,3), the operators 71:;5 when
s # 1 are given by formula (1.17) and o1 = J is an involution.
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Now use the theorem on unitary equivalence [1, 2].
Theorem 2.2. Let A, simple colligation of Lie algebra (1.8), (1.9), be given

by (1.16), (1.17). If the spectrum of operator Ay is concentrated at zero and the
characteristic function S;(\) = I —ip (Ay — M) ™' ©*J is given by

T
/ ZJdFt
0

besides, dF, is absolutely continuous, dF, = azdxr, and a; is such that for the
family {az, bz, Ya,2, Va3, J, 02,03} (2.19), (2.20) take place, then the colligation A

is unitarily equivalent to the simple part of colligation & (2.21).

3. FUNCTIONAL MODEL OF LIE ALGEBRA

I. Consider the triangular model (2.1) of Lie algebra of linear operators

{Al, As, A3} (2.2) assuming that dim £ = 2 and J = Jy is given by
0 =1
JN_[Z' 0]. (3.0)
Under the action of the L. de Branges transform [3, 7], the operator /(1)1 (2.1) turns

into the shift operator in B(A, B) since

l

B (21 ft) = —/ /fdeJ dF,L} (2 /ftdFt{L* z L*(O)}*
0

(o) ~
and thus operator A; after the transform By, turns into Ay,

Ay =2 (3.1)

where F'(z) def By, (ft). To calculate By, (/ig ft> and B, (1‘(1)2 ft), note that

Li(z) = (1_zﬁf)l¢*(1,o). (3.2)

Br (Ajk ft) = <1‘fk e, Ly (2)> = <ft71:f;; Ly (2)>
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(k =2, 3), then using (3.2) we ought to find the expressions

-1

o o -1 o o
Aj (I—ZAT) ©*(1,0); A} (I—ZAT) ©*(1,0). (3.3)

Commutativity of [Al, Ag], the colligation relation J¢p As= o3¢ Ay +71f 39, and
the self-adjointness of vy = (fyff:g)* (1.10) yields

-1

o o -1 o -1 o o
A (1 —z A;) P = (1 —z A*{) A} G o3 + (I— z A*{) G s =

° 1
(IZA’{> —1 N
= . ¢*osd + (I —z A;) @ i 3.

[e]
Thus, expression (3.3) for the operator As is given by

-1 —1
[e] [e] 1 [e]
Aj (I —z A’{) ©*(1,0) = 2 { (I —z A’{) oF — 35*} o3J(1,0)+
o\ —1
+ <I -z A’{) @1 5J(1,0). (3.4)
Expand ¢3.J(1,0) and 'yfng(l, 0) in terms of the basis {(1,0),(0,1)} in E?,

o3J(1,0) = as(1,0) + B5(0,1);

Y5 (1,0) = fi3(1,0) + 93(0, 1); (3.5)
where , .
@3(1,0)03J< 0); 53(1,0)03J< . >;
2 — + LY 5 + 0
o= 100 (o ) da=onir () (3.6)

As a result, we obtain that expression (3.4) can be written in the following form:
o o 1 o -1
Aj (I— z AI) ©*(1,0) = az— { (I —z A*{) o = @*} (1,0)+
z

1 -1
1 0 ;
-%S{O—zﬂ) W—W}@U+W(P%AO 5 (1L0)+

+3 (I—ZA;)_1¢*(0,1). (3.7)

Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67-92. 79



Along with the integral equation
e
Lo(2) + iz / Lo(=)dF.J = (1,0) (3.8)
0
for L,(z), consider the integral equation
e
Na(2) +z‘z/Nt(z)dFtJ —(0,1) (3.9)
0

for the row vector N,(z) [3, 7].
Thus expression (3.7) can be written as

A% Ly (5) = a2t (2) = L0 | 3, ()~ N0 | fisLi (2) + 05N; (2). (3.10)

z

Construct the L. de Branges space B(C,D) [3, 7] by the row vector N.(z) =
[Cy(2), Dy (%)] and specify the L. de Branges space B, from L%,l (Fy) onto B(C, D)
using the formula

l
G(2) = By (f:) = %/ftdFtNt* (2). (3.11)

A function G(z) € B(C, D) is said to be dual to F(z) € B(A, B) if
F(z) =Br(fi), G(z)=Bn(fi). (3.12)

Using these notations and (3.10), we obtain that the operator As after the L. de
Branges transform equals

Ong(Z) + ﬁgG(Z) - Ong(O) - ﬁgG(O)

A3F(2) = =

+ p3F(2) + 93G(z) (3.13)

where the complex numbers ag, 33, 13, 3 are given by (3.6) and functions F(z)
and G(z), respectively, equal (3.12).

Observation 3.1. Generally speaking, function G(z) (3.12) does not belong to
the space B(A, B) but, nevertheless, there exist such numbers as, B3, pz, U3 (3.6)
from C that the expressions

Ong(Z) + ﬁ3G(Z) — Oé3F(0) - ﬁgG(O)

p3F(2) +93G(2);

belong to the space B(A, B). DBesides, numbers as, (3, ps, ¥s do not depend on
F(2)B(A, B).
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To obtain the formula similar to (3.13) for As, it is necessary, in virtue of (3.3),

(o)

R ~1
to calculate the expression A3 (I —z A’{) ©*(1,0).

The commutation relation [Al, A2:| =1 A3 implies

o o -1 o -1 5 o
Aj (IZA{) — <IZA{> As=iz A3,
therefore
o o -1 o -1 5 o -2 5
A <IZAT> = <IZAT> Ay —iz (IzA’{) Aj
in virtue of [A3,A1} = 0. Taking into account the colligation relation J@ As=

op Ay= 0o Ay +71f2<,5, Jp As= o3¢ Ay —l—’yig@ 3) from (1.9), we obtain
o o -1 o -1 5 o -1
Aj (I—zAT) oF = (I—zAT) AY @*UQJ—I—(I—ZAT) gb'(’yiQ)*J—

o -2 5 o -2
iz ([ — A’{) Al §osd —iz <I —z AT) 35*714:3[].

Use an obvious equality

[} -1 5 o -1
z(IzAf) A= (IZA*{) -1,
o o -1 1 o -1
A (I—ZA*;) @*:;{(I—zA*{) @*—@*}aszL

o -1 o
+<IZA’{) o (7{2)*J7iz <IZAT) AT @ ogJ—

then

-1

o -2 o o
—iz? (I —z A’{) A} ¢ v s +iz (I —z A’{) F*iad. (3.14)

Similar to (3.5), expand the vectors o2J(1,0) and (7{2)* J(1,0) in terms of the
basis {(1,0), (0,1)} in E?,

02J(1,0) = ax(1,0) + B2(0,1);

(v2)" J(1,0) = fi2(1,0) + 92(0,1); (3.15)
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where

OéQZ(l,O)O‘QJ( (1) ); B2 = (1,0)02J( (1) );

i = (1,0) (7;2)*J( ’ ) = (L0) ()T ( X ) C (316)

Then we obtain that expression (3.14) equals

—1 —1
o o 1 [e]
A; (IZAT) 95*(1,0)542;{<IZA’{> 95*95*}(1’0)+

_1 o -1 o -1
*52;{<I”‘T> 7 @*} 014 (12 47) L0
~ o\ —1 d o\ —1
+192 <IZA;> 3 (0,1) — iztis - <IZA;) @*(1,0)—
_ d o -1 d ° —1
—izfs - <I -z A;) ¢*(1,0) — iz2ﬁ3£ (I -z A’{) @1,0)—

-1

_d o -1 o
fiZQﬂga (I -z A’{) ©*(1,0) + izfs (I -z A’{) ©*(1,0)+
— o -1
Fizls (I —z A’{) 5*(1,0). (3.17)

Using the definition of F'(2) and G(2) (3.12), we obtain that the operator Ay after
the L. de Branges transform turns into the operator As,

@ F(2) + BG(2) - @ F'(0) — BG(0)

AyF(2) = + peF(2) +92G(2)—
iz {asF(2) + 550(2)} — 12 (P (2) + 95C()} + iz P (2) + 95G(2))

(3.18)
which in elementary way follows from (3.17).

Observation 3.2. The dual function G(z) to F(z) does not necessarily belong
to the space B(A, B) but, nevertheless, there always exist such constants g, as,
Ba, B3, o, ps, 92, ¥s from C (not depending on F(z)) that the expressions

OéQF(Z) + ﬁgG(Z) — OéQF(O) — ﬁgG(O)

i F(2) (u2 +izus) + G(z) (W2 + i2093) ;

z% {asF(z) + B3G(2)}; ZQdilZ {psF(z) + 93G(2)}
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already belong to B(A, B).

Define the operator ¢ from B(A, B) into E? by the formula

PF(2) (F(2),e1(2)) (1,0) + (F(2), e2(2)) (0, 1) (3.19)
where B
ei1(z) = ZZ(Z); e2(z) =1— Aj(2)=. (3.20)

Theorem 3.1. Let A be the simple colligation of Lie algebra (1.8), (1.9),
spectrum of the operator Ay be concentrated at zero and the characteristic function
S1(N) =1 —ip (A — M) "' @*J be given by

7
. JdF;
Sl()\):/exp Zji L
0

Besides, measure dF, is absolutely continuous, dF, = azdx, a; > 0, a, is matriz-
function in E?, and J is given by (3.0). And, moreover, let the selfadjoint operators
02, 03, 'nyS be given in E?, the operator 7{2 be such that fyffg — (7{2)* =103, and
(1.16), (1.7) take place. Then the colligation A (1.8) is unitarily equivalent to the
functional model

A= <{/~11,f~12,/~13} i B(A, B); g5 {J, 02,03};{’7115}? ; {’Yk,s}3> (3.21)

1

where the operators Ay, Ay, As are given by (3.1), (3.13), (3.18) respectively; oper-
ator ¢ equals (3.19); the numbers {au, Br, f, ﬁk}g are given by the formulas (3.6),
(3.15); and, finally, {ek(z)}f are given by (3.20).

4. FUNCTIONAL MODELS ON RIEMANN SURFACE
I. Let dim E = r < oo, and 01 = J be an involution, then the relation [4, 5, 6]
J (02 +z (va)*) J (03 + zvfﬁ) =J (03 + zvfﬁ) J (02 + z'yfo) (4.1)
is true Vz € C. We used the fact that 'yiQ = (714:2)* + o3 in virtue of (1.16) §3.1.
Suppose that dim E = r = 2n is even and the matrix-function in E specified on

[0,1] equals
ay = I, ® ay (4.2)
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where I, is the unit operator in E™, a, is the non-negative (2 x 2) matrix-function
such that trd, = n~'. Knowing dF, = a,dz, define the Hilbert space L%ml (Fy)
formed by the vector-functions f(z) = (fi1(x),..., fo(x)) such that

l

/fk(I)dl-f,:(x)dx < 00

0

Vk (1 < k < n), besides, fx(z) is a row vector from E? (x € [0,1]).
Let the operators o1 (= J), 02, o3 and 'yffS, V1.2 be given by

or=J=1,0Jn; 02=02RJn; 03=03® Jn;

Y3=9®JN; 1Ha=%®Jn (4.3)
where G2, 73, 73 are selfadjoint operators in E™, and 7» is such that
Yo — 3 = i03. (4.4)
Then the conditions (1.10) §1 hold. Equality (4.1) in terms of {&k,ﬁk}? is written
in the following way:
(G2 + 2%3) (63 + 273) = (63 + 273) (G2 + 272) . (4.5)

The L. de Branges transform By, [3, 7] of a vector-function f(z) from L3, , (F)
associates each of its components fi(z) € L%,l (azdx) (here dF, = aydx and a, is
given by (4.2)) with the function

l
def

File) " By (fi) = / fe(@)aa L (5) da (4.6)

0

from the L. de Branges B(A, B), besides, L.(z) is the solution of the integral equa-
tion (3.8) by the measure d,dx. As a result, we obtain the Hilbert space B"(A, B) =
E"™ @ B(A, B) formed by the vector-functions F(z) = (Fi(2),..., Fn(2)),

BY(A,B) = {F(2) = (F1(2),...,Fa(2)) : Fu(2) € BA,B)(1 <k <n)}. (4.7)

Scalar product in B"(A, B) is given by

n

(F(2),G(2)) a3 = D, (Fe(2), Gr(2))g(a.p) -

k=1

Taking into account the form of the matrix-function a, (4.2) and the operator
o1 (4.3), it is easy to show that the L. de Branges transform (4.6) translates the

triangular model A; (2.1) in the shift operator
- 1
(41F) (2) = ~(F(2) - F(0)), (438)

z
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VF(z) € B"(A, B). To obtain the model representation for /(1)3 in the space B™(A, B),

use that . .
A;<IZA;> ¢*<IZA;) A ot =

1 o\ ! o\ .
;{<IzAI) @*03J¢*03J}+<IZAI> & (1) J

in virtue of (2.5), §3.2, {Al, A3} =0 (2.2), §2 and selfadjointness of ’st
The form of the operators J, o3, 'yig (4.3) yields
o3J = 03 ® Iy; ’Yf’3J:’§/3®IQ. (49)
Taking into account that L, (z) = (I — zA})™" @*(1,0), we obtain that the operator

As (2.1) after the L. de Branges transform By, (4.6) is given by

(AsF) (2) = 2(F(z) — F(O))os + F(=)is. (4.10)

Thus ) .
AsF(2) = —{F(2) (75 + 273) = F(2) (03 + 273)l } (4.11)
where, as always, F(z) (3 + z’yg)|0 = F(0)53
To ﬁnd the representatlon for Ag (2.1) in B"(A, B) similar to (4.8), (4.11), note
that A*A* A*Agf ) A3 (in virtue of (2.2), §2), therefore

o -1 o o o -1 o -2 o
(I—zAi) A5 — A5 (I—ZA*{) =1z (I—zAi) A . (4.12)

Taking into account (2.5) and (2.13), §2, we obtain

o o\ 1 o\ ! o o\ 72 o
A;(I—ZA;) @*z(l—zA*{) AS@*—iz(I—zAI) Az p" =
1 o\ !
== {<I—ZA;) @*agJ—ga*aQJ}Jr

o\ -1
iz([zA”{) & (i) J-

o -1 o -1 o o
—iz <I —z AT) {<I —z AT) A} p¥osd + (I z A’{) c,b*fyff3j} )
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o\ ! o -1
In connection with (I —z A’{) =2z (I —z A’{) At —I, we have

1 -1
o o 1 o
Aj <IZA{> oF = Z {<IzAf> @*02J¢*02J}+

—2

o -1 o o
+<IZA*{) o (7{2)*J7iz <IZA{) A @*ogJ—
o -2 5 o -1
—iz? (I —z A’{) A7 cﬁ*fyfh] —iz (I —z A’{) cﬁ*'yhl
Since
03] = G2 @ In; Yy =52 @ I, (4.13)
d o -1 o -2 5
then using (4.9) and - (I —z A*{) = (I —z A*{) A7, we obtain that the

operator A (2.1) after the L. de Branges transform (4.6) in the space B"(A, B) is
given by

(AoF) (2) = Z{F () (32 +230) — F(2) (52 + 2o} +i2c F(2) (35 + 3).
(4.14)
besides, F(z) (G2 + 272)|, = F(0)52.
Now define the colligation of Lie algebra (1.8), (1.9)

A= ({Al,ﬁz,ﬁs};B"(A,B);sﬁ;E; {Uk}E{'Y];s}g?{VlIs}j) (4.15)

1

3
assuming that the operators {ak,’yf k} are given by (4.3), the operator 75 5 is
Ky ;

3
given by formula (1.17), and {'y,; s} are found by the formulas 4) (1.9) where ¢
#J1

on every component acts in a standard way (3.19), (3.20).

Theorem 4.1. Suppose that the simple colligation A of Lie algebra (1.8), (1.9)
3

is given, besides, dim E = 2n, and the operators {ak, fyfrk} in E are given by (4.3)
I

and condition (4.4) is true. And let the spectrum of operator Ay lie at zero, and
the characteristic function S1(\) of operator Ay be given by

T
JdF;
si00 = [exp 5
0

and be such that the measure dF, is absolutely continuous, dF, = a,dr and a,
equals (4.1). Then the colligation A is unitarily equivalent to the simple part of

86 Ann. Sofia Univ., Fac. Math and Inf., 100, 2010, 67-92.



functional model A (4.15) where the operators Ay, Ay, As are given by (4.8), (4.11),
(4.14) respectively.

IT. Consider the linear operator bundle
03 + 273

which is a selfadjoint operator when z € R. Denote by h(z,w) eigenvectors of the
given bundle,
h(P) (65 + 273) = wh(P), (4.17)

where P = (z,w) belongs to the algebraic curve Q,
Q={P=(z,w) €C*:Q(z,w) =0}, (4.18)

specified by the polynomial
Q(z,w) & det (65 + 273 — wly,) . (4.19)

Suppose that the curve Q is nonsingular [4], then z = z(P) and w = w(P) are
correspondingly 'l-valued’” and ’n-valued’ functions on Q (I = rank?s). Norm the
rational function h(P) (4.17) using the condition h,(P) = 1 where h,(P) is the
'nth’ component of vector h(P). It is easy to show [4] that the quantity of poles
(subject to multiplicity) of vector-function h(P) equals N = g+n—1 where g is type
of the Riemann surface Q (4.18). Isolate on Q (4.18) analogues of the semi-planes
C. and real axis R,

Q+ ={P=(z,w) €Q: £Imz(P) > 0}; Q°=0Qx. (4.20)

Roots w*(z) of the polynomial Q, (z,w*(z)) = 0, (4.19) are different when z € R in
virtue of non-singularity of the curve Q (4.18) (excluding the points of branching).
Therefore the eigenvectors h (P) (4.17) corresponding to P, = (z,w"(z)) € Q
(4.18) are orthogonal. Therefore we can expand every vector-function F(z) €
B™(A, B) in terms of the orthogonal basis {h (Py)}},

n

= > g (P llh (Pl g" h(Py) (4.21)

k=1

where g (Py) = (F(2),h (P))p (1 <k < n). It is easy to see that w*(z), h(Py)
and g (Py) represent branches of the 'n-valued’ algebraic functions w(P), h(P) and
g(P), respectively. In view of this, we can rewrite the last equality in the following
form:

F(P) = F(z(P)) = g(P) - ||h(P)||*h(P). (4.22)

Since the basis h(P) in E™ is fixed, the function F(P) is defined by the scalar
component g(P). Note that g(P) is meromorphic on Q (4.18) and its poles can
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lie only at the poles of h(P) (4.17), besides, their aggregate multiplicity does not
exceed N =g+n—1.

Construct the L. de Branges space Bg(A, B, h) corresponding to the Riemann
surface Q (4.18). Operator A; (4.8) in the space Bg(A, B, h) is given by

i 9(P) — ¢ (P, Po) g (Fo)
(Arg) (P) = P o) (4.23)
where
¥ (P, Py) = (h (o), h(P)) g - [|h(P)|| 7, (4.24)

besides, Py = (0,w) € Q. Similarly, operator Az (4.11) in the space Bo(A, B, h) is
given by the formula

(Agg) (P) = w(P)g(P) Z(;)(Poi?}gj Py)g (Po)7 (4.25)

besides, ¢ (P, Fy) is given by (4.24).
Now consider the operator Ay (4.14). Let {h (Py)}} be the orthogonal basis of
eigenvectors (4.17),

h(Py) (53 + 273) = w"(2)h (Py) (4.26)
where P, = (z,w"(2)) € Q (4.18) and z € R. Then (4.5) implies
w*(2)h () (52 + 272) = h (Py) (2 + 273) (53 + 273) -
Taking into account (4.4), we can rewrite this equality in the following form:

wh(2)h (Pg) (62 + 272) =
=h(P) (62 + z'yg) (3 + 273) — izh (Pg) 63 (53 + 273) =

4.27
= h(Py) (62 + 32) (55 + 25) + (420
+iz2w* (2)h (Pr) 33 (63 + 273) — iz (wk(z))2 h(Py).
To simplify the last summand in this sum, differentiate equality (4.26) by z,

where prime signifies the derivative by z. Expand vector k' (P) in terms of the
basis {h (Ps)}]:

=Y a(Pe, PR (P)llp" - h(Py) (4.29)
where

a (P, Ps) = (W' (Px) ,h (Ps)) s - (4.30)
Then (4.28) implies

n

h(Po)s = (W (2)) h(P) + Y a (P, Py) (w*(2) — w*(2)) [1h (P)lIp" - b (Py).

s=1
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Now realize the expansion of vector h (Py) (62 4+ z72) from (4.27) in terms of the
basis {h (Ps)}]:

h(Py) (52 + 272) = Zb Py, Po) B (P - b (P) (4.31)

where
a(Py, Ps) = (' (Pe) ,h (Ps)) - (4.30)

Then (4.28) yields

n

h(P)As = (wh(2)) 7 (Pe) + Y a (P, P) (wh(z) —w(2)) [ (P)]15° - 1 (P).

s=1

Now realize expansion of the vector h (Py) (62 + z72) from (4.27) in terms of the
basis {h (Ps)}]:

h (Py) (52 + 272) = Zb Py, Po) B (Po)5" - b (P) (4.31)

where
b (Px, Ps) = (W' (Py) (52 + 2792) , b (Ps)) s - (4.32)

Then equality (4.27) has the form

n

> b(Pe, Po) (wh(2) —w?(2)) W (Po)llg" - h (Ps) = —iz (w*(2))" h (Pe) +

s=1

+iz (wF (z))/ w®(2)h (Pr) +
12?3 0 (P Py) (0 (2) — w7 (2)) w (=) [0 (P |52 ()

Linear independence of {h (Ps)}] yields

(4.33)

{ b(Py, Ps) = iza (Py, Ps)w®(z) (s #k);
wh(2) =z (wk(z))/ (s =k).

Using (4.27), it is easy to show that b (Py, P;) = 0.

Thus knowing the function a (Py, Ps) (4.30) defined by the vector-functions
h (Py) (4.25), we can construct b (P, Ps) and find expansion of the vector h (FPy) x
X (5’2 + Z:)/Q)Z

h(Py) (02 + 272) —ZZZ (Pr. Py) - Il (P)|I5" - B (Py) - (4.34)

s=1
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This implies that action of the bundle &2 + 252 on F(z) (4.21) in terms of the
components g (Py) appears as follows:

9(Py) — izw® zg a (P, Py) - |l (P> - b (Ps). (4.35)

Now consider the second summand in (4.14), use (4.21), then

iz F(2) (63 + 25) = iz {Zg (Po) 11 (PO w’ﬂ(z)h(m} -
k=1

Z ) I (Pl

3

h(Py) = 2iz ) g (Pi)wh(z) - I (Pl - 17 (Po) | b (Pr) +

el
Il
=

n

+Zzzg (Pe)w" (2) - Il (Pi)ll - ) a (P, Po) - W (Pl " - b (Py).

s=1

Thus action of the expression d_F (2) (3 + 273) in terms of the scalar component
z

g (Px) can be written as

9(Pe) — iz (wh(2)g (Pr)) = 2izw*(2)g (Pe) 17 (Po)ll" - 1R (Pl +

+wzg Ja(Ps, P) - |0 (Py)l|" - (4.36)

To rewrite the formulas (4.35), (4.36) in a compact form, consider the kernel

d
a(P',P)= <—h (P, h(P)> (4.37)
dz 5
coinciding with (4.30) as P’ = P, P = P,. Define action of this kernel on the
function g(P) in the following way:

(axg)(P) = Y g(PYa(P,P)-|n(P)5" (4.38)

P’

where P’ varies over all the values (branches) of the function g (P’).
_ Now taking into account (4.35) and (4.36), we can write form of the operator
Ay, which, in view of (4.14), is given by

() () = PP a)P) =iz () Py (P o) () ),
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Fi(P) L (w(P)g(P)) — 2i2(P)u(P)b(P)g(P) + i=(P)ax g)(P)  (4.3)

where
b(P) = |h(P)l|5" - d%l\h(P)ll- (4.40)

Construct colligation of the Lie algebra (1.8), (1.9)

A= <{A1,A2,A3} 1 Bo(A, B, h); &, E; {0} , {%Z}j ; {W,Is}3> (4.41)

1

3
where the operators {ok, ’yfk} are given by (4.3), v 5 is defined by formula (1.17),
kfy :

3
and the operators {7,;5} are defined from 4) (1.9), ¢ is given by
s Sy

2
$9(P) =D (9(P),ex(2(P))) g, (a.p.n) - €k (4.42)
k=1
ey are given by
17042*_. 717az A (2) -
@) =B @ el =0 A@):
e1 = (1,0); es = (0,1).

Theorem 4.2. Suppose that for the colligation A of Lie algebra (1.8), (1.9)
requirements of Theorem 4.1 hold and let curve Q (4.18) be non-singular, besides,
zw' = w(z). Then colligation A (1.8), (1.9) is unitarily equivalent to the simple
part of colligation A (4.41) where operators Ay, Ay and As are given by (4.23),
(4.25) and (4.39), respectively.

In this work for a Lie algebra of linear non-selfadjoint operators {A;, A2, As}
([A1, A2] = iAs, [A1, A3] = 0, [A3, A3] = 0) are obtained the following results.

1) The triangular model (2.1) for this Lie algebra in the space L2, (F) is
constructed.

2) In §3 using the triangular model from §2, the functional model (Theorem
3.1) for the studied in this chapter Lie algebra {A1, As, A3} is stated.

3) For special classes of Lie algebra {A;, As, As}, the functional model on
Riemann surface in special L. de Branges spaces (Theorem 4.1 and Theorem 4.2)
is constructed.
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