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1. INTRODUCTION

In this paper we represent and study a semantics of logic programs on abstract
structures. A key feature for this semantics is that it does not admit searching in the
domain of the structure. We consider partial abstract structures with enumerable
domain. The main result is that the class of sets definable by logic programs (LP-
definable sets) coincides with the class of domains of Fridman functions in the
structure in some fixed point.

In order to prove this, we introduce several auxiliary terms. The names of
these terms and the relations between them are given on Fig. 1. An arrow between
two terms means that the first one implies the second one. Each arrow is labelled
by the number of the proposition where the corresponding implication is proved.

* This work is partially supported under Grant 1-604 by the Ministry of Science, Education
and Technologies.
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Fig. 1. Relations between the introduced terms

In Section 2 we introduce some basic notions needed in our considerations. In
Section 3 we define standard enumerations, which are the main tool in proving all
results in the paper. In Section 4 we prove the upper circle in Fig. 1 and in sections
5 and 6 the lower circle is proved.

For the sake of simplicity we consider only structures with unary functions,
predicates and parameters. All definitions and results can be easily generalized for
functions, predicates and parameters of arbitrary finite arity. -

2. PRELIMINARIES

Let A = (B;0y,...,0,;%0,...,Zk) be a partial structure, where the domain
of the structure B is a denumerable set, 0y,...,0, are partial functions of one
argument on B, Xo,...,X; are partial predicates of one argument on B, T =
Asitrue and n,k > 0. Let B = (N;¢1,...,0n;00,...,0%) be a partial structure
over the set N of the natural numbers. A subset W of N is said to be recursively
enumerable (r.e.) in B iff W = I'(p1,...,¢n;00,...,0%) for some enumeration
operator I' (see [1]). |

An enumeration of the structure 2 is any ordered pair («,B), where B =
(N;@1,...,9n;00,...,0%) is a partial structure, oy = As.true, and « is a partial
surjective mapping of N onto B such that the following conditions hold:
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(i) The domain of & (Dom(«)) is closed with respect to the partial operations
P1y.++3Pn;
(i1) a(pi(z)) ~ 0i(a(z)) for all z of Dom(a), 1 <i < n;
(ii) oj(z) & Zj(a(z)) for all z of Dom(a), 1 < j < k.

We shall assume that an effective monotonic coding of finite sequences and
sets of natural numbers is fixed. If ap,...,a, 1s a sequence of natural numbers,
by (ao, ..., an) we shall denote the code of the sequence ay,...,an and by E, —
the finite set with code v. We shall use the following notations. The letters s,¢,p-
will denote elements of B; z,y, z,u, v will be elements of N. We shall identify the
predicates with partial mappings taking values 0 (for “true”) and 1 (for “fa.lse”)

Let (o, B) be an enumeration of 2. We shall call the set

D(B) = {(i2,9) 1< i < n & pile) = )
U{{j,z,e) :n+1<j<n+k &oj_a(z)~ec&kee{0,1}}

a code of the structure B. It is clear that foreach W C N, Wisr.e.in B iff W 1s
r. e. in D('B).

Let A C B. The set A is called weak-admissible in enumeration (a, B) 1ff for
some r. e. in ‘B subset W of N the following conditions hold:

(*) W C Domn(a);
(%) (W) =

A subset A of B is called V-weak-admissible in 2 iff it is weak-admissible in
every enumeration {a,B) of .

The equivalence between Y-weak-admissible sets and the sets definable by logic
programs will be considered. The V-weak-admissible sets have an exphcnt charac-
terization which simplifies the considerations.

Let £ = (f1,---,fa;T0,...,Tk) be the first-order language corresponding to
the structure 2, where fy,..., fn are functional symbols, Ty, ..., T are symbols
for predicates, T, represents the total predicate X = As.0.

Let {Z,,Z,,...} be a denumerable set of variables. We shall use the capital
letters X,Y, Z to denote the variables.

If 7 is a te-m of the language £, then we shall write 7(Z) to denote that all of

the variables in 7 are among Z = (Z1,...,2,). H7(Z) isatermand { = ty,...,1,
are arbitrary elements of B, then by ro(Z/t) we shall denote the value, if it exists,
of the term 7 in the structure 2 over the elements ¢y, ...,1,.

Termal predicates in the language £ are defined by the following inductive
clauses:

(i) Tj(r), 0 < j < k, where 7 is a term, are termal predicates;
(ii) If I is a termal predicate, then =II is a termal predicate;
(iii) If I1* and 12 are termal predicates, then II'&II? is a termal predicate.

Let TI(Z) be a termal predicate and ¢;,...,%, be arbitrary elements of B. The
value I (Z /%) is defined as follows:
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(i) fII = Tj(7), 0 < j < k, then Na(Z/f) ~ T;(ra(Z/7));

(i) If IT = M*&1?, where I and 112 are termal predicates, then

n2(Z/, if ny(Z/i) ~o0,
Oa(Z/t) ~ 1 1, if Y (Z /) ~ 1,
undefined otherwise.

Let II be a termal predicate and 7 be a term. Then the term (Il O 1) is
called conditional term. Let @ = (I D 7) be a conditional term with variables
among X1,...,X, and let s1,...,8, be arbitrary elements of B. A value Qu(X/3)
1s defined as follows:

QQ(Y/E) ~f & (HQ{(Y/?) ~0& TQ((Y/?) o~ t).
Let fix an effective coding of expressions of £. The subset A of B is called

weak-computable iff for somer. e. set V of codes of conditional terms {@Q"}vev with
variables among Z,, ..., Z, and for fixed elements t;,...,1, of B it is true that

s€EA & (veV &Qy(Z/)~s).

3. STANDARD ENUMERATIONS

In order to characterize the LP-definable sets in abstract structures, we shall
examine their prototypes in the enumerations of the structures. For this purpose
it is enough to restrict our considerations only to a special class of enumerations
called standard ones (see [4]). In this section we briefly introduce some definitions
and properties of standard enumerations.

Let ¢, 1 < i < n, be the unary recursive function Az.(i,z), let N° = N\
(Range(p]) U...U Range(yp},)) and let @ be a partial mapping of N° onto B.

The partial mapping a of N onto B is defined by the following inductive
clauses: '

If z € N° then a(z) ~ o°(z);
If z = (i,y), a(y) >~ s and 6;(s) ~ ¢, then a(zx) ~t.
To the mapping o corresponds the set N, of natural numbers defined by:

If z € Dom(a®), then z € N,;
If x = (i,y) and y € N,, then z € N,.

Let Dy,..., D, be unary partial predicates in N such that:

A 0, if z ¢ N,,
Di(z) = ¢ o, if £ € Ny and 0;(a(z)) is defined,
undefined otherwise.
The predicates Dy, ..., D, are used to describe the domains of the standard
enumeration functions ¢, ..., ¢, defined as follows:

0i(z) = {<p,- (z), if D,'(.’t) ~ 0,
undefined otherwise.
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It is clear that each ¢; isr.e. in {D;} and each D; isr.e. in {¢;}, 1 <i < n.

Let o1,...,0% be partial predicates in N satisfying the condition
€Ny = 05(x) = Bj(a(z)), 1<j< k.
Denote by B the partial structure (N;®1,...,%n;00,...,0k). Each enumera-

tion (a,B) obtained by the method described above is called a standard enumera-

tion. The mapping o is called a basis of the enumeration (a,B). It is clear that

o and the predicates o1, ..., 0 completely determine the enumeration («, B).
For each natural z we define |z| as follows:

If z € N° then |z| = 0;
Ifz = (i,y), 1 <i<n,then|z| = [y|+ 1.

The next properties are proved in detail in [4].

Proposition 1. Let (a,B) be a standard enumeration and 1 < i < n. Then
for each natural z, a((i,z)) ~ 0;(a(z)).

Proposition 2. For each standard enumeration (a,B), Dom(a) C Nq.

Proposition 3. Let (a,"B) be a standard enumeration and 1 < i < n. Then
for each natural z, a(pi(z)) =~ 0:i(a(z)).

- Proposition 4. Each standard enumeration is an enumeration of the siruc-
ture 2.

Define the unary recursive function g in the following way.:
If z € N°, then g(z) = z;

If z = (i,y), then g(z) = g(v).

Let B* denotes the structure (N;¢7,...,¢}).

Proposition 5. There ezits an effective way to define for each natural ¢ and
each variable Y a term 7(Y) such that 7+ (Y/g(z)) = =.

Proposition 6. Let 7(Y) be a term and y € N. Then for each standard
enumeration (o, B), a(re+(Y/y)) ~ ra((Y/a(y)).

Proposition 7. There ezits an effective way to define for each natural
and each variable Y a term 7(Y) such that for each standard enumeration {(a,B),

o(z) = ra((Y/a(g(2)))-

Let (o, B) be a standard enumeration. Denote by Ry the subset of N with
the following definition:

(j,z,e) € Ry < ((1<j<k)&oj(z)~e¢)

or
(k+1§j§_k+n&Dj_k(x)::e)).
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It is clear that the set W isr.e. in B iffit is . e. in Reyg.

Proposition 8. There exists an effective way to define for each triple u =
(7,z,€) and each variable Y an atomic predicate I(Y) such that for each standard
enumeration (o, B)

9(z) € Dom(a®) = (u€ Ry < Ma(Y/a(y(z))) ~ 0).

4. WEAK-COMPUTABILITY AND WEAK-ADMISSIBILITY

LP-definable sets are not convenient for direct examination. That is why we
introduce and characterize V-weak-admissible sets which are later proved to coincide
with the LP-definable sets. In this section we study the relation between V-weak-
admissibility, weak-computability and Fridman computability.

Theorem 1. If A is V-weak-admissible in 2, then A is weak-computable.

Proof. Assume A is not weak-computable. We shall construct a standard
enumeration (a, B) of A such that A is not admissible in it.

To define the enumeration, we construct a partial surjective mapping a® of N©
onto B. The mapping a® will be constructed by steps. On each step ¢ we define
~a partial mapping «, of N? onto B, a subset H, of N° and partial predicates

01,...,0} such that:

(1) Dom(a,) and H, are finite and disjoint;
(ii) ag < g4y and Hy C Hyya;
(i) of,..., 0} are partial recursive and defined exactly for those natural y for
which g(y) € Hy;
(iv) of Cof™ 1< <k

oC
We take o® = Uo ay,.
qg=

With the even steps we ensure that Range(a®) = B. With the odd steps
= 2n -+ 1 we ensure that if I'; is the n-th enumeration operator and

(a,’B:(N;pl,...,wn;al,...,ok))

is a standard enumeration such that oy < a, H,NDom(a) = @, a‘} <o0;,1<j<k,
then for W = I'(Rgg) at least one of the conditions (*) and () fails.

Let sg,s1,... be an arbitrary enumeration of B and zg, z;,... be an enumer-
ation of N°, ao(z0) = so and ag(z) be undefined for z # zo. Let Hy = @ and
each of ¢7,...,0) be the totally undefined predicate. Let ¢ > 0 and ay, H, be
0,...,0 defined for r < g. We have to consider the following two cases:

[. ¢ =2n. Let z be the first element of the sequence z, z, ... which does not
belong to Dom(a,-1) U Hy_1, and s be the first element of the sequence sg, 51, . .
which does not belong to Range(ay—1). If such s does not exist, then let s be
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an arbitrary element of B. Define ay(z) ~ s and a,(z) =~ ag-1(z) for z # 2,
H,= H,_y and 0] = 0';'1, 1<5<k.

II. ¢ = 2n + 1. Let E, be the finite set of natural numbers with code v. Th
set E, is called g-consistent iff: '

(i) each element k of E, is equal to (j,z,¢) for some n+ 1< j < n+k and
e€{0,1}or1<j<nande=0; |
(i1) if (j,z,€1) and (j, z,€2) belong to E,, then £, = €3;
(iii) if (j, z,€) € By, n+ 1< j <n+kand g(z) € Hy1, then ¢! ' (z) > €.

Let T, be the n-th enumeration operator defined by W,, — the n-th r. e. set,
that is for each set R of natural numbers

z €T,(R) & 3v({v,z) € Wn & E, CR).

Let u = (v, ) be element of W,, Dom(a,-1) = {wy,. W}, and Zy, ..., Z;,
be distinct variables. Corresponding to u, we define predicates I1*(Z;, ..., Zn) and
P“(Zy,...,Zm) and a term 7%(Z;, ..., Zm) as follows. If E, is not g-consistent,
then IT* = P¥ = =Tp(Z)). ‘

Further we consider the case when E, is g-consistent. We define II* in the
following way. If E, does not contain elements of the form (7,z,¢€), such that
g(z) € Dom(ay—y), then ¥ = To(21).

Let (ji,z1,€1),.--,(jp,Zp,€p) be all elements of E, such that g(z;) €
Dom(a,_1), 1 <i<p,and I'(Y}),...,[P(Y};) be atomic predicates such that:

If g(x;) = wj for some j, 1 < j < m, then Y; = Zj;

For each standard enumeration (a,®B), if g(z;) € Dom(a), then (ji,zi, &) €
Res & Iy (Y:/a(g(:))) = 0. |

Define I* to be the conjunction of II'(Y}), ..., IP(Y,). Now we define P* and
7% to follow the behavior of .

If g(z) ¢ Dom(ag—1), then P¥ = -~Ty(Z;) and 7% = 2.

If g(z) € Dom(ag=1) and g(z) = wj for some j, 1 < j < m, then let Y =
Z; and T(Y) be a term such that for each standard enumeration (a,B), a(z) ~
ra(Y/a(g(z))) holds. '

Define P¥ = II¥*&Ty(7) and ™ = 7.

We have described a way to construct the r. e. sets {II* }yew,, {P*}uew, and

{r%}uew, for a given Wi
Denote a(w;) by t;, 1 <i<m, and let D be a subset of B such that s € D iff

Ju(u € Wa & PE(Z1 /1, ., Zmftm) = 0 & T4(Z1 /11, . .., Zm[tm) = 5).

It is clear that D is weak-computable and hence D # A. There are two possible -
cases.

Case 1. There exists s, which is an element of B, such that s € A and s ¢ D.
In this case we have also two possibilities:
a. For some u € W,,, u = (v, z), we have

M&(Z1 /b1, - -, Zontm) = 0 | (1)
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and

P2 [ts, ., Zon ) 0. @
From (1) and (2) it follows that
9(z) € Dom(ay-1) = 7a(Y/e(g(z)) is undefined. (3)

Let .
| L=Hy1U{g(y) [3j3e((j, y,€) € Ey & g(y) & Dom(ay-,))}.

We define oy = a,-1. If g(z) € Dom(ay), then define Hy=L,else Hy= H,_, U
{9(z)}. And, finally, we define 07, 1 < j < k, by the following clauses:

If g(y) ¢ H,, then o (y) is undefined;

Ifg(y) € Hy\ Hy—1, then if (n+j,y,¢) € E, we have ai(y) > ¢, else oi(y) ~ 0

If g(y) € Hy—1, then a}(y) a a}"l(y). :

It follows from (1) that E|, is g-consistent and hence 0! (y) are correctly defined
and a}"l <di.

Let (o, B) be a standard enumeration such that o > oy, Dom(a) N H, = D,
0j 20],1<j<k, and let W =T (Rg). We shall prove that £, C Rsg.

Indeed, let (j,y,¢) € E,. If g(y) € Dom(a,), then g(y) € Dom(e) and (1)
yields (j,y,€) € Rp. If g(y) ¢ Dom(a,), then g(y) € H, and we also have 0; > o}
and H,N N, = @, hence (j,y,¢) € Rp.

Suppose that z € Dom(a). Then g(z) € Dom(cy_1). From the definition
of 7% we obtain that 73(Y/a(¢(z))) ~ a(z) and 74(Y/a(g(z))) is defined. This
contradicts (3), hence x ¢ Dom(a), which implies W ¢ Dom(a).

b. For each u € W, such that v = (v,z), I§(Z,/t1, s Zm[tm) =~ 0 implies
Py(Zi/t1,.. ., Zm[tm) =~ 0. In this case let @y = oy, H, = H,_; and o} =
a}'l, 1 < j < k. Let (@ B) be a standard enumeration such that a« > a,
Dom(a)N Hy = @, 05 > a}, 1<j<k ,and W =T,(Rg). Suppose that there
exists z € W such that a(z) = 5. Then there exists u € W, such that u = (v, z)
and Ey, C Rg. From the definitions it follows that IT}(Z; /1, ..., Zpn/tm) ~ 0 and
hence Py(Z1/t1,...,Zm/[tm) ~ 0.- We obtained a(z) ~ r$(Y/a(g(z))) ~ s, which
contradicts the assumption s ¢ D. We conclude that A # o(W).

Case 2. There exists s € B such that s ¢ A and s € D. This implies the
existence of u € W,, such that u = (v,z) and Py(Zi/ty,...,Zm/tm) =~ 0 and
T8(Z1/t1,. .., Zm/tm) =~ s. Then I%(Z1/t, ..., Zin/tm) ~ 0 and hence E, is
g-consistent. Let oy = ay-1 and

H, = Hy_y U {g(y) I ajae((j’y: E)EE, & g(y) ¢ Dom(aq—l))}-
We define the predicates a}, 1 < j < k, by the following clauses:

If g(y) € Hy, then o (y) is undefined;
If g(y) € Hy, then

€, if (j,y,€) € Ey,
ol (y) = {0’ if g(y) € Ho/Hy-1 and (j,y,€) & By,
o (y), if q(y) € Hyer.
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Let {(a,B) be a standard enumeration such that o > ay, Dom(a) N H, = 9,
0j > 05,1 < j <k and W=Tn(Rg). Analogously to Case la, we can prove
that E,, C Ry and hence z € W. From P¥(Z1/t),...,Zm[tm) =~ 0 and from the
definition of 7% it follows that z € Dom(a,) and a(z) ~ s. And s ¢ A implies
A # a(W).

Now we are ready to complete the proof defining the required enumeration.

oQ o0
Let o° = qUOQq’ o] = qUo 1 <j<k adH= Uqu. Let (o,B =
= = g=

(N;@1,...,%n;00,...,0m)) be a standard enumeration with basis o® and

o3 (z), ifx & Ng,

i(z) =~ 1<57<k.
73 (®) { ¥;(a(z)) otherwise, sisk

Let F(2) be the class of all Fridman computable functions in 2.

Let % = (B;;0%,...,05;%8,...,5%), i = 1,2, be two partial structures, where
the corresponding functlons and pred1catw have the same arity. The mapping & of
B, onto B, is called a strong homomorphism iff:

(i) « is a surjective mapping;
(i) K(6}(s1,..-,8a,)) = 02(k(s1), ..., &(sa,)) for each (s1,...,5q;) € By,
1<1<n;
(i) Z}(s1,...,5;) & L2(k(s1), .-, &(ss;)) for each (s1,..., ;) € BY,
1<j<k
It is easy to show the following properties of the Fridman computability:

1. Invarianiness. If k is a strong homomorphism between 2; and 2 and
8, € F(%), then there exists 6; € F(2) (of the same arity) such that
k(01 (s1,.-.,54)) = O2(k(s1), . .., K(sq)) for each (s1,...,5q) € BY.

2. Effectiveness. If A = (N;1,...,9n;00,. ak) is a partial structure and
peF (‘21) then ¢ is r. e. in the functions and predxcates of .

3. Substructure property. Let 2, and 2y be partial structures such that B, C
Bs. Let <p and 21 be the restrictions oftp and 22 onBy,1<j<k1<i1<n, and
6, € F(Qll) Then there exists 6, € F(ng) such that 0y(s1,...,8) =~ 02(31, ..y Sa)
for each (s1,...,5q) € BY.

Using these properties we are ready to establish a relation between V-weak-
admissibility and Fridman computability.

Theorem 2. A is V-weak admissible iff there ezists 6 € F(2) such that A =
03, ... ,1%) for some (1,...,12) € B".

Proof Let § € F(?) and A = 6(1,...,t2) for some t9,...,t2) € B". Let
(@, B) be an arbitrary partial enumeration of 2 and

B’ = (Dom(a); @}, Pn; 001 Ok),
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where ¢} and o} are the restrictions of ¢; and o} on Dom(e),1<i<n,0<j<k.

Then a is a strong homomorphism between B’ and 2. Thus there exists ¢’ € F(%B)
such that ¢’ is an a-prototype of #. From the substructure property of Fridman
computability, there exists ¢ € F(B) such that p(z,,...,z,) ~ ¢'(zy,...,z,) for
each (z1,...,2,) € (Dom(a))". Because of the effectiveness of Fridman computabil-
ity, ¢ is 1. e. in B. We obtained that 4 = a(¢/(zy, ..., zr)), T1,...,z, € Dom(a)
and a(z;) >~ ¢;,1 <i < r. Theset W = p(z;,...,2,)isr. e. in B, because @ is such
and ¢ > ¢'. Finally, W C Dom(a) and A = a(W), i.e. A is V-weak-admissible.

Now let A be V-weak-admissible. Then from the previous theorem, A is weak-
computable. Using the corresponding definitions, we can easily prove the “if” part
of the theorem. O

5. SUFFICIENCY AND' WEAK-ADMISSIBILITY

In this section we introduce the notion of sufficiency and establish the relation
between sufficiency and weak-admissibility. |

Further we assume that the structure 2 = (B;01,...,0n;%0,...,5%) is such
that the predicates £,,...,X; take only value 0 (true) wherever defined. This
assumption is not restrictive, because each predicate ¥ can be represented by the
following two predicates:

2(0) = {

The extra condition we impose is due to the syntax of Horn clause logic pro-
grams. The negative information of the structure cannot be used because a negation
in clause tails is not allowed. Let fix the structure 2 and modify some of the notions
introduced according to the new limitation.

A standard enumeration (a,B) is called positive iff oy, ..., 0% take only value
0 wherever defined. Further all the enumerations are assumed to be positive and
thus we can simplify the code of the structure considering the set

(B) = {(j,z) In+1<j<n+kand gj_,(z) is defined }U
{(t,z) | 1 <1< nand Di(z) is defined}

instead of Reg. Note that (a,B) is a positive standard enumeration and W is r. e.
in B iff W = I'((8B)) for some enumeration operator I'.
The pair (o/, H') is called a finite part iff:

0, if $(s) =~ 6,

undefined otherwise, 6=0,1.

(i) o' is a finite mapping of N° onto B;

(i) H'is a finite subset of N° and Dom(a’)NH' = @.

The positive standard enumeration (o, B) eztends the finite part (o/, H ) iff:
(i) a 2o |

(i) Dom(a)N H' = &,

(iii) o;(z) ~ 0 for each z € N such that g(z) € H', 1 < j < k.
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Let fix an arbitrary finite part (o/, H'), Dom(a’) = {wy,...,w,} and o'(w;) =
si, 1 <i<r. Let ¢,,...,¢;, be new constants which we shall interpret as names
of s1,...,5r. Further we consider terms and predicates of the first order language
L= (C,l,...,C,r,fl,...,fn,To,...,Tk).

The finite set with code v, E,, is called correct iff it consists only of elements
of the form (j, z) for some natural z and 1 < j <k +n.

" The next propositions are similar to the propositions for the standard enumer-
ations and have straightforward proves.

Proposition 9. Let ¢ € N and g(z) € Dom(ca'). Then there ezisis an
effective way to define a term 1 without variables such that each positive standard
enumeration (o, B) ertending (o, H') satisfies a(z) >~ 4.

Proposition 10. Let z € N, g(z) € Dom(a’) and 1 < j < n+k. Then
there exists an effective way for u = (j,z) to define an atomic predicate II* without
variables and negations such that for each standard enumeration (o, B) we have

(j,z) € (B) © % ~0.

We shall identify each finite set of atoms without variables with their conjunc-
tions. The empty set we shall identify with the logical constant irue.
Let E be a correct finite set of naturals. By E we denote the set

(I | u = (j,z) & g(z) € Dom(a') & u € E}.

We shall call the set E appropriate for the finite part (o', H')) iff it is correct and
Em ~ 0.

Let W be a r.e. set and I' be the enumeration operator defined by W. The
notion of compatibility of a finite part and an enumeration operator introduced
below reflects the fact that in logic programs, where a search in the domain of the
structure is not allowed, only a finite information supplied by constants is available,
while W contains much more information which is not accessible.

The finite part {a’, H') and the enumeration operator I are compatible iff for
each u = (v,z) € W, such that E, is appropriate for (o', H'), we have g(z) €
Dom(a').

LetI be an enumeration operator and let the finite part (o', H') be compatible
to I'. The subset A of B is called sufficient for (o', H') and T iff: ‘

(i) For each positive standard enumeration (o, B) extending (@', H'"), it is
true that a(T'((B))) C A;

(ii) For each s € A there exists a finite part (o”, H") such that o > o/,
H” D H' and for each positive standard enumeration (a,B) extending
(o', H") it is true that s € a(T'({(%B))).

It is easy to show the following

Proposition 11. For each compatible finite part (o', H') and enumeration
operator I’ there ezists at most one subset of B which is sufficient for them.
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A class of sets P is called sufficient iff for each compatible finite part (o, H.')
and enumeration operator I' there exists a set A € P which is sufficient for I' and
(o, H').

Theorem 3. Each sufficient class contains all V-weak-admissible sets.

Proof. Let P be a sufficient class and A ¢ B. We will prove that A is not
V-weak-admissible constructing by steps a positive standard enumeration in which
A 1s not weak-admissible. For the purpose we shall construct a partial surjective
mapping a° of N° onto B and a subset H of N° such that Dom(a®) N H = &,
The set H defines the predicates o1,...,0 out of N,. Even steps ensure that
a® is a surjective mapping and the odd steps ¢ = 2n + 1 ensure that A is not
weak-admissible for the n-th enumeration operator I'y,.

Let sp,s1,... be an arbitrary ordering of elements of B and zg, z;,... be an
arbitrary ordering of elements of N°. Let ag(zo) ~ so and ag(z) be undefined
otherwise. Let Ho = ©&. Now suppose we have defined (a;, H;), 0 < I < ¢q. We
define (o, H,) as follows:

[. ¢ = 2n. Then let H, = H,_; and s be the first element of the sequence
80, 81,... which is not in Range(a,—1) (if there is no such element, let s be an
arbitrary element of B). Let z be the first element of the sequence zg, z1, ... which
is not in Dom(ag.1) U Hy—1. Then let a4(y) =~ ay—1(y) for each y € N°, y # 2
and ay(z) >~ s. :

II. q‘ = 2n+1. Let I',, be the n-th enumeration operator. Consider the following
cases: -

Case 1. Ty, and (ag—1, Hy—1) are incompatible. Let W, be ther. e. set defining
I'n. Then there exists u € W, such that u = (v,z) and E, is appropriate for
(g1, Hy-1) and g(z) ¢ Dom(ay). Let L = {9(y) | 3i((iiz) € Eu & o(y) ¢
Dom(ceg-1))}, Hy = Hy—y UL U {g(z)} and a, = a4-1. Let (a,B) be a positive
standard enumeration extending (&g, H,) and k = (5,y) € E,. If g(y) € Dom(a,),
then g(y) € Dom(ay_1), hence I ~ 0 and thus h € (B). If g(y) ¢ Dom(ay), then
9(y) € Hy—1. If k+1 < j < k+n, then we obtain h € (B) from the definition
of extension, and if 1 < j < n, then we obtain this from the definition of standard
enumeration and from Dom(a®)N H, = @.

In this way we have proved that E, C (), which implies z € T',((B)). From
g9(z) € Hy it follows that z ¢ Dom(a), that is [',({(®B)) € Dom(a) and A is not
weak-admissible in (c, B).

Case 2. T'y and {(ag—1,H,_1) are compatible. Let D € P be the set which
is suffictent for I'y and (ag-1, Hy-1). Then D # A. In this case there are two
subcases possible:

a. There exists s € B such that s € A and s ¢ D. Let oy = -1 and
Hy = Hy_,. Sufficiency of D implies that for each standard enumeration (a, B)
extending (g1, Hy-1) we have a(Tn({(B))) C D. Then s ¢ a(T'x({B))), which
means A # a(L,(('B))).
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b. There exists s € B such that s ¢ A and s € D. In this case there exists
a finite part (o', H') extending (a,—1, Hg—1), that is o’ > a,_; and H' D H,_,
and for each positive standard enumeration extending (ag—1, H4—1) it is true that
s € a(T'a({'B))). Let oy = o’ and H, = H'. Then for each standard enumeration
extending (o, Hy) it is true that o(T,((B))) £ A.

. o0 o0 o0-

Finally, let o® = |J ag, H° = |J H, and 0] = |J o, where
g=1 q=1 q=1

0, if g(z) € Hy,

undefined otherwise, 1<j<k

oj(e) = {

We define the predicates oy, ..., 0k as follows:

_ Ej(a(:c)), if z € Ny,
7j(z) = {a;(:c) otherwise.

It is clear that the standard enumeration (a, B), determined by o° and o7, . ..,
0%, is positive, correctly defined and it extends the finite parts (o, Hy),¢=0,1,...,
which means that A is not weak-admissible in (o, B). O

6. LP-DEFINABILITY AND WEAK-ADMISSIBILITY

In this section we give a formal definition of LP-definable sets and for each
compatible enumeration operator I' and finite part (o, H') we construct a logic
program (P, F') which defines a set sufficient for them. In this way we prove the
equivalence between LP-definability and V-weak admissibility.

Let fix a structure 2 which predicates are true wherever defined and let £ =
(fi,..-» fa; To, ..., Tk) be a first order language corresponding to 2. Let £¢ be the
enrichment of £ with constants ¢;,...,c, and T¢c be the set of all terms without
variables of £c. We denote the set of all atoms of the form Tj(7), where 0 < 5 < &,
7 € Tc and Tj(my) ~ 0 (the last means that Tj(r) is true in ) by 8¢ (A).

Logic programs are called formulae of the form F'&...&F ! where F* is an
universal closure of Horn clause, i.e. F* is of the form

VX, VX (VI V.. -),

where n > 0 and II, Iy, . .., II,, are atomic predicates. We shall use the usual Prolog
notation _
II - Hl, .-..,Hn.

for the Horn clauses. II is called a head and IIy,...,II, — a tail of the clause.

Let F be a new predicate symbol which is not among T, ..., Ti. For the sake
of simplicity F' is assumed to be an unary predicate symbol. All the definitions and
proofs can be easily generalized for the case of a higher arity.

By £, we denote the language of the logic program P. The symbols from £¢
contained in £p are interpreted in the usual way, that is P does not redefine the
predicates in £¢.
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The subset A of B is LP-definable iff there exist a set of constants ¢ =
{c1,...,¢-} and a pair (P, F'), where P is a logic program and F is a new predicate
symbol such that

sEA & HT(TETc&(?C(Ql)U{P}l-F(‘r)&rg:s),

‘where “t” means deducibility in the sense of first order predicate calculus.

Let fix a finite part (a’, H') such that Dom(a’) = {wy,...,w,} and o’(w;) ~ s,
1 <7< r. Let cg,...,c5, be names for sy,...,s,. We shall construct a logic
program P such that the set'. LP-definable by (P, F') and c;,, . . ., ¢c,, is sufficient for
(@', H') and I'. The program repeats the constructions in the proof of Theorem 1.

Let 0 and nil be new constant symbols, fo be a new unary functional sym-
bol and h be a new binary functional symbol. Let C = {c,,...,¢,.}, £p =
{csyy--oves,,0,mil, fo, by fi, ..., fa,To, ..., Tk} and T be the set of all terms with-
out variables of £¢. For each program P we consider Herbrand interpretations in
L£p with domain T. If @ is a predicate symbol of £p and I is a Herbrand interpre-
tation of P, by I1(Q) we denote the corresponding predicate of . An interpretation
Iof Pis called a model for P iff all clauses of P are true in 1.

For each natural n, by n we denote the term f7'(0). Let N denote the set
{n|neN}.

It is well-known (see [3]) that:

Proposition 12. For each r. e. subset W of N¥ and for each k-ary predicate
symbol Q there exists a logic program P with the following properties: ’

(1) If (z1,...,2zx) €W, the P+ Q(zy,...,z;);
(i1) There erists a Herbrand interpretation I of P which is a model for P and

I(Q)(ay, ..., ax) =
& Jzy.. 3z((zr, .., z) EWkay =2, & .. a; = z,).

Such an interpretation for P we shall call standard.
We define a list to be an element of T such that: (i) nil is a list; (ii) if a is a
term and b is a list, then A(a,b) is a list.

We use the usual Prolog notation for lists.

Let cod be a new ternary predicate symbol and nat be a new unary pred-
icate symbol. Let P.q and Pnat be logic programs representing the r.e. sets
Cod = {(z,y,z) | = = (y,2)} and Nat = {z | g(z) ¢ Dom(a')} by cod and

nat, respectively, and

Py
ta_u(l_v.j)cs,‘):" j:l,...,r
tau(X, fi(V)) - cod(X,i,Y), tau(Y,V). i=1,...n
Peog.

The following proposition verifies the logic program Py using the method pro-
posed in [3].
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Proposition 13. Let £ € N. Then Py & tau(z, 7)) iff g(z) € Dom(a’) and

r=r71°.

Proof. The “if” part is easily proved by induction on |z|. To prove the “only
if” part, let I be a standard Herbrand interpretation for cod. We define I on 7 as
follows:

(i) I(taw)(a,b) = 0,if a ¢ N ;
(ii) I(tau)(a,b) =0,ifa € N,a =z, g(z) € Dom(a’) and b = 77,
(iii) I(tau)(a,b) = 1 otherwise. :

It is easy to show that I is a model for Py. O

Consider the following program:

pi((]) - |
pi([X|Y]) - cod(X, j, Z),nat(Z),pi(Y). j=1,...,n+k

pi((X]Y]) - cod(X, §, Z), tau(Z, V), To(f;(V)),pi(Y). j=1,...,n
pi([X|Y)) - cod(X, j, Z),tau(Z, V), Tj_a(V),pi(Y). j=n+1...,n+k
Pp. '

Pnat-

Proposition 14. Let E = {vy,..., v} be a correct finite set. Then for each fi-
nite set G' of atoms without variables in £ it is true that Py F G’ = pi([vy, . .-, u])
ifG' DE.

Proof. The “if” part is easily proved by induction on I. To prove the “only

if” part, we define a class & of Herbrand interpretations of P;. The Herbrand
interpretation I belongs to class & iff:

(i) I is standard for Pna and the predicate symbols in Py are interpreted as in
the prove of the previous proposition;

(ii) Let @ € T. If a is not of the form [vy, ..., v;] for any correct set {v1,...,u},
then I(pi(a)) ~ 0. If a is of the form [y;,... ,v;] for some correct set E =
{v1,...,u}, then I(pi(a)) = 0 iff there exists a finite set of atoms without variables

G={B,...,B}, ¢> 0 of £¢, such that ECGand I(8;)~0,1<j<q.

It is easy to show that each I of & is a model of Py. Let G = {B1,..., 8¢}
be a finite set of atoms without variables of £, £ = {v1,..., v} be a correct set
and Py F G’ = pi([vy,...,y]). Let I € & be such that if § is an atom without
variables of £, then I(8) ~ 0 & 8 € G. Since I is a model of P;, we have
I(pi)([vy,--- 1)) =0, that is EC G. U .

Proposition 15. For each enumeration operator I' compatible with (o', H')
there ezists a logic program P such that the set A, LP-definable by (P, F) and
C ={csy, - Cs,}, is sufficient for (a’, H') and T
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Proof. Let I' be an arbitrary enumeration operator and W be the r. e. set which
determines I', i. e. if R is a set of natural numbers, then z € I'(R) & Fu((u,z) €
W & En C R). Let Wy = {(u,z) | (u,z) € W and E, is correct}. It is clear that
Wiis r.e. set. Let @ be a new predicate symbol and P, be the logic program
representing Wi by Q. Let list be a new binary predicate symbol and P3 be a logic
program such that:

- (1) If uis a code of the finite set {v1,..., %}, >0, then Ps + list(u, (v, ..., 2]);

(i) There exists a Herbrand interpretation [ of Ps, which is a model of Ps, and
if Ey = {v1,..., v} for some natural u, then I(list)(u,5) =0 b=[v,,...,1]).

Consider the following logic. program:

P
F(Y) - Q(2), cod(Z,U, X), tau(X, Y ), To(Y ), ist(U, V), pi(V).

We shall use the next lemma, which proof is similar to the proof of the previous
propositions.

Lemma 1. Let G be a finite set of atoms without variables of L. Then for
each term T without variables of £, P = G = F(r) iff there ezists (u,z) € W,
such that:

(i) g(z) € Dom(a') and T = 77%;

(ii) £, U{To(r)} CG.

Let A be defined by (P, F) and C = {c,,,...,¢,,}. Let (o, B) extend (o, H'),
s € a(I'((®))), = be such that a(z) ~ s and let there exist (u,z) € W such
that E, C 8. This implies (Ey)g ~ 0. From the compatibility of T' and (o', H')
and the correctness of Ey it follows that g(z) € Dom(a’). And we also have
Tq = a(z) =~ s, hence (To(7%))a ~ true. From the above arguments we obtain
Pt E,U{To(r")} = F(r%) and from the LP-definability of A it follows that
s € A, that is o(T'((B))) C A.

Now let s € A. Then there exists 7 € T¢ such that 79 ~ s and J(A) U P

H(r). From the reduction theorem it follows that there exists a finite set G of
atoms without variables such that Gy ~ 0 and P+ G = F(7). Hence, there exists

(u,z) € Wy such that g(z) € Dom(a'), 7= 7%, E, C G and 7£ ~ 5. Let
L={g(w) | (/y) €EE,&1<j<n+k&g(y) ¢ Dom(c)}.

Let o = o' and H" ~ H'U L. Let (a,®B) extend (o”, H"). Then (a,B)
also extends (a’, H'). Consider the set E, and let t = (j,y) € E,. There are two
possibilities:

1. g(y) € Dom(ay), hence II§ ~ 0, that is (j,z) € (B).
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2. g(y) & Dom(ey), hence g(y) € H”. If 1 < j < n, then (j,z) € (B) from the
fact that {a,B) is standard and Dom(a)NH"” =@. Inthecasen+1<j<n+k
we also obtain (j, z) € (B) from the definition of extension.

Finally, we have proved that £, C (®B), i.e. z € I'({(B)). On the other hand,
a(z) ~ 78 ~ 19 ~ s or s € a(I'((B))). Thus we obtained that A is sufficient for
(¢/,H'Yyand T. O

We already proved the next theorem.

Theorem 4. Each weak-admissible set in A is LP-definable.

Theorem 5. If the set A is LP-definable by (P, H) and C = {c1,...,c.}, then
A s V-weak-admassible.

Proof. Let £¢ = (cl,...,c,;fl,...,fn;To,...,Tk) be a first order language
corresponding to % and T¢ be the set of the terms without variables of £¢. Let

s€EA & I(r€Tc&I“(AYUPFH(T) & Ty = 5). (%)

Fix an arbitrary partial enumeration (a,B) of 2A. We shall define a r.e. in B set
W of naturals such that W C Dom(a) and a(W) = A.

Let £ = (f1,---,fa;T0,.--,Tx) and let for each (¢;)u € B choose z; € N
such that a(z;) = (¢i)a (there exists such z; since a is a surjective mapping). Let
K' = {zy,...,z,}-and K = {Z | ¢ € K'}, where  is a new constant for each
z€ K'and KNLec = . Since K is a finite set, K ist.e. in B. Let Lg = LUK
and let B* be the enrichment of B in £x, where 7 is interpreted as z. Consider
the set Tk of terms without variables of £x. For each term 7 of Tk we define a
term [7] of T¢ by the following inductive clauses:

(i)if 7 = Z for some Z € K, then [7] = ¢; & a(z) = (ci)a;

(i) if T = fi(r1), then [r] = fi([77).

It is easily seen that for each term 7 € Tk, T+ is defined iff [7]a is defined
and also that a(rg+) =~ [7]a.

Let 0¢(B) = {Ti(7) |0<j<k& 7€ & Ti([7]) € d°(A)}. The set
8C(B) is r.e. in B, because for 1 < j < k and 7 € T the following equivalences
hold:

Tj(r) € Y (B) & Ti([7]) € 9°(Y) & Z;([r]a) =0
~ E,‘(a(ﬂg')) ~0 & Uj(‘rmv) ~ 0.

By changing each appearance of ¢; to Z; in P and 7 we obtain P and 7. Now

we define the set W by

zeW & I7(7 €Tk & T =z & OF (W)U {P} - H(F)).

From that definition it is clear that W is r.e. in B. Since Dom(a) is closed
with respect to ¢;, 1 < i < n, we have W C Dom(e). And finally, from the
constant theorem and reduction theorem it follows that a(W) = A, which proves
the theorem. O
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Now we are ready to state the main results of the paper as corollaries of the
theorems already proved.

Corollary 1. The subset A of B is LP-definable iff there ezists § € F(U) such
that A = 0(toy, ..., tor) for some fized (to1,...,t0,) € B.

Corollary 2. The subset A of B is LP-definable iff A is weak-computable.

7. CONCLUSIONS AND RELATED WORK

The subject of this paper is a semantics of logic programs without searching
in the structure domain. The paper is a part of a more general exploration being
performed at the Department of Mathematical Logic of Sofia University. All these
works use the enumerations approach which is extremely suitable for problems of
finding normal form of objects obtained by certain kind of computations. In [3] is
considered a semantic, for which searching in the domain of the structure is allowed.
There are also results for more general parameterized semantics.
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