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Let X = (B/T')’ be a smooth toroidal compactification of a quotient of the complex
2-ball B = PSUg31/PS(Uz x Uy) by a lattice I' < PSUz1, D := X \ (B/T") be the
toroidal compactifying divisor of X, p: X — Y be a finite composition of blow downs
to a minimal surface Y and E(p) be the exceptional divisor of p. The present article es-
tablishes a bijective correspondence between the finite unramified coverings of ordered
triples (X, D, E) and the finite unramified coverings of (p(X), p(D), p(E)). We say that
(X, D, E(p)) is saturated if all the unramified coverings f : (X', D', E'(p')) = (X, D, E)
are isomorphisms, while (X, D, E(p)) is primitive exactly when any unramified cover-
ing f: (X,D,E(p)) = (f(X), f(D), f(E(p))) is an isomorphism. The covering rela-
tions among the smooth toroidal compactifications (B/I")" are studied by Uludag’s [7],
Stover’s [6], Di Cerbo and Stover’s [2] and other articles.

In the case of a single blow up p = 8: X = (B/T')’ — Y of finitely many points of Y,
we show that there is an isomorphism ® : Aut(Y, (D)) — Aut(X, D) of the relative
automorphism groups and Aut(X, D) is a finite group. Moreover, when Y is an abelian
surface then any finite unramified covering f : (X, D, E(B8)) — (f(X), f(D), f(E(B)))
factors through an Aut(X, D)-Galois covering. We discuss the saturation and the
primitiveness of X with Kodaira dimension k(X) = —oo, as well as of X with K3 or
Enriques minimal model Y.
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1. UNRAMIFIED PULL BACK OF A SMOOTH COMPACTIFICATION

Lemma 1. Let M be a complex manifold and N be a complex analytic subva-
riety of M or an open subset of M.

(i) If f : M — f(M) is an unramified covering of degree d then f : N — f(N)
is an unramified covering of degree d exactly when f: M\ N — f(M)\ f(N) is an

unramified covering of degree d.

(ii) Let us suppose that f : M — f(M) is a holomorphic map onto a complex
manifold, f(N)N f(M\ N) =0 and f : N = f(N), f: M\ N — f(M\ N) are
unramified coverings of degree d. Then f : M — f(M) is an unramified covering
of degree d.

Proof. (i) Let X := N or X := M\ N. Then f: X — f(X) is an unramified
covering of degree deg(f|x) = deg(f|a) = d exactly when f~1(f(X)) = X. If so,
then the intersection f=1(f(M \ X)) N X = () is empty, whereas f~1(f(M\ X)) =
M\ X, the union f(M) = f(X)]] f(M\X) isdisjoint and f : M\ X — f(M\X) =
F(M)\ f(X) is an unramified covering of degree d.

(ii) The union f(M)= f(N)]]f(M\N) is disjoint, so that f~(f(M\N))=
M\N, f~Y(f(N)) = N and f : M — f(M) is an unramified covering of degree d.[]

Lemma 2. Let f : X — X' be an unramified covering of degree d of smooth
projective surfaces.

k
(1) Suppose that D = [ Dj is a divisor on X with disjoint smooth irreducible
j=1
components D; and f restricts to an unramified covering f : D — f(D) of degree
d. Then f(D) = Us_, f(D;) has smooth irreducible components f(Dy), f restricts
to unramified coverings f : D; — f(D;) for all1 < j <k and f(D;)N f(D;) =10
for F(D:) # f(D;).
In particular, D; are smooth elliptic curves if and only if f(D;) are smooth
elliptic curves.

(i) If C' is a smooth irreducible rational curve on X' then the complete preim-

d

age f~1(C") = ] C; consists of d disjoint smooth irreducible rational curves C;
i=1

and [ restricts to isomorphisms [ : C; — C’ for all 1 <i < d.

Proof. (i) The unramified covering f : D — f(D) is a local biholomorphism, so
that f(D) is a smooth divisor on X'. Thus, all the irreducible components f(D,)
of f(D) are smooth curves and f(D;)N f(D;) # 0 requires f(D;) = f(D;). For any
1 <i < klet J(i) be the set of those 1 < j < k, for which f(D;) = f(D;). Then
there exists a subset I C {1,...,k} with [] J(i) = {1,...,k} and f(D) = [] f(D;).

iel iel

By the very definition of J(i), there holds the inclusion [[ D; C f~'(f(D;)).
jeJ (@)
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Since f restricts to an unramified covering f : D — f(D) of degree d, any p €
F7Y(f(D;)) belongs to Dy for some 1 < s < k. Then f(p) € f(D;) specified that
s € J(i), whereas f~1(f(D;)) € [l Djand f~'(f(D;)) = ]I Dj;. Thus, for
JEJ () JEJ(@)
any ¢ € I the morphism f restricts to an unramified covering f : [[ D; — f(D;)
JEJ ()
of degree d. By definition, any f(p) € f(D;) with p € [[ D, has a trivializing
JEJ(9)
neighborhood U on f(D;), whose pull back f~(U) =[] V, is a disjoint union
q€f~*(p)
of neighborhoods V, of ¢ € f~'(p) on [[ D; with biholomorphic restrictions
JEJ (1)
f:Vy, = U. For a sufficiently small U one can assume that V, C D; for ¢ € D;.
That is why f restricts to unramified coverings f : D; — f(D;) = f(D;). In
particular, D; are smooth elliptic curves exactly when f(D;) are smooth elliptic
curves.

(i) Let f~Y(C") = ZC be a union of k irreducible curves Cj,

d; = deg|[flc, : C; = C'] and Br(f|c) ={q e | |f ﬂC’i‘ < d;} be the
branch locus of f|¢, for 1 < i < k. Any Br(f|g,) is a ﬁnite set, as well as the
intersection Uj<;<;<xC; N C; of different irreducible components, so that

¥ = (Ul Br(f

c)] UlUi<icj<if(Ci N C;)]

k
is a finite subset of C’. For any ¢ € C’\ ¥ one has f~1(q) = [[ f~*(¢)NC;, whereas

i=1

K k
o= [ onc]=)"d.
i=1 i=1

If q; € Br(f|c,) then f~'(g;) = U, f~1(q;) NC; with | f~1(g;) N C;| < dj, so that

k k
d=|f"a)| <D [F g nCi| <> di=d.
=1

i=1

This is absurd, justifying Br(f|c,) = 0 for all 1 < j < k. Similarly, for any
p € C; N Cj there holds

k k
d= 70| <D | wnGl = di=d
i=1 i=1

The contradiction shows that the irreducible components C; of f~(C") are disjoint.
The unramified coverings f|¢, : C; — C’ of the smooth irreducible rational curve

k
C’ are of degree d; = 1, due to m1(C’) = {1}. Therefore d = > d; = k and

i=1
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d

f7Y(C") = ]] C; consists of d disjoint smooth irreducible rational curves with
i=1

biholomorphic restrictions f

¢, :Ci—=C forall1 <i<d. O

A (=1)-curve L; on a smooth projective surface Y is a smooth irreducible
rational curve with self-intersection L? = —1. Throughout, we say that a smooth
projective surface Y is minimal if it does not contain a (—1)-curve. This is slightly
different from the contemporary viewpoint of the Minimal Model Program, which
considers a smooth projective surface Y to be minimal if its canonical divisor Ky
is nef (i.e., Ky.C > 0 for all effective curves C C Y'). The numerical effectiveness
of Ky excludes the existence of (—1)-curves on Y. If Y is of Kodaira dimension
k(Y) = —oo then Ky is not nef, regardless of the presence of (—1)-curves on Y.
That is the reason for exploiting the older, out of date notion of minimality of
a smooth projective surface, which requires the non-existence of (—1)-curves on
Y. By a theorem of Castelnuovo (Theorem V.5.7 [5]), for any smooth irreducible
projective surface X there is a birational morphism p : X — Y onto a minimal
smooth projective surface Y, which is a composition of blow downs of (—1)-curves.
If X is of Kodaira dimension x(X) > 0 then the minimal model ¥ of X is unique
(up to an isomorphism). This is not true when X is birational to a rational or a
ruled surface.

Lemma 3. (i) Let Bl : X1 — Y] be a blow down of a (—1)-curve Ly C X,
and ¢ : Yo — Y7 be an unramified covering of degree d. Then the fibered product
commutative diagram

B
Xo =X Xy, Yo — Y,

f v (1)

Bl

X, Y
consists of an unramified covering f : Xo — X1 of degree d and the blow down
d
B: Xa — Ya of the disjoint union f~'(L1) = ] L1, of the (—1)-curves L1 ;.
j=1
(i) Let p1 : Bly...BL._1Bl. : T, :== X1 — Y7 =: T be a composition of blow
downs Bl; : Ty — T;—1 of (—1)-curves L; C T; and ¢ : Yo — Y7 be an unramified
covering of degree d. Then the fibered product commutative diagrams

Si = Tz X4 Si—l L Si—l
Yi Pi—1 (2)
Bl;
T; Ti1
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fit into a commutative diagram

S LS =T X,y Si_1 i» Si_1 .S =Y,
f Jw J%l Jw—cpo (3)
T. .= X T Bl T, L Ty=Y,

and induce a fibered product commutative diagram

X2:X1 Xy1Y2l>Y2

X, Y

with an unramified covering f : Xo — X1 of degree d and a composition ps =

d
B1...8r_18r : Xo — Y3 of blow downs of gai_l(Li) = ][ L;; foralll <i<r.
j=1

Proof. (i) By the very definition of a blow down Bl : X; — Y; of L; to
BI(L1) = q1 € Y1, one has X7 \ L1 = Y1 \ {1 }. Then

Xy = X1 Xy, Yo = [(X1\ L) xy, V2] [[ [L1 xv, Y2
decomposes into the disjoint union of
(X1 \ L1) xv; Yo = {(z1,92) [ 21 = Bl(21) = ¢(y2)} = Y2 \ ¢~ '(¢1) and

Ly xy, Y2 = {(z1,32) | = Bl(z1) = ¢(y2)} = L1 x ¢ ' (qn).

If o7 (q1) = {p1,j] 1 <j<d} then X5 is the blow up of Y at {p; ;| 1<j< d}. Due
to Blf = (03, the exceptional divisor of Bis 37 ({p1,; |1 <j <d}) =B 1o Haq) =

d
(eB)"Haq1) = BIf)Hq) = f_lBlfl(ql) = fYL) = ]_[1 Ly ;. According to
j=

Corollary 17.7.3 (i) from Grothendieck’s [4], f : X3 — X is an unramified covering,
since ¢ : Yo — Y7 is an unramified covering.

(ii) By an increasing induction on 1 < ¢ < r, one applies (i) to the fibered
product commutative diagrams (2) and justifies (ii). O

Lemma 4. (i) In the notations from Lemma 8 (i) and the fibered product
commutative diagram (1), let D@ be a (possibly reducible) divisor on Xo, which
does not contain an irreducible component of the exceptional divisor of B and D™ be
a (possibly reducible) divisor on Xy, which does not contain the exceptional divisor
Ly of Bl. Then the restriction f : D? — DW is an unramified covering of degree
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d = deg[f : Xo — Xi] if and only if ¢ : B(DP) — BIDW) is an unramified
covering of degree d.

(ii) In the notations from Lemma 8 (i) and the fibered product commutative
diagram (4), let D) be a (possibly reducible) divisor on Xy, which does not contain
an irreducible component of the exceptional divisor of ps and DV be a (possibly
reducible) divisor on Xi, which does not contain an irreducible component of the
exceptional divisor of p1. Then the restriction f : D® — DW s an unramified
covering of degree d if and only if the restriction o : pa(D®) — pi(DW) is an
unramified covering of degree d.

Proof. (i) If f : D® — DWW is an unramified covering of degree d then
FFADOM NL) = fFY(DODYN f~YL) = D® N f~Y(L,) and the restriction
f DY N fYL) - DM N Ly is an unramified covering of degree d. After

d

denoting f~*(L1) = [] L1, B(L1,j) = p1,; and BI(L1) = g1, one applies Lemma 1
j=1

(i), in order to conclude that

p=[:BDP)\{pr;|1<j<dy=DP\f (L) — DY\L =BUDY)\{q1}

is an unramified covering of degree d. As a result, the morphism ¢ restricts to
o :{p1,; |1 <j<d} — {q1}, so that

p: BDP) =BDN\{pr;11<j<d [[ipsl1<j<dy —
— [BUDD)\ {ar}| [[{ar} = BUDY)

is an unramified covering of degree d by Lemma 1 (ii).

Conversely, assume that ¢ : S(D®) — BI(D(Y) is an unramified covering of
degree d. Choose a sufficiently small neighborhood V' of ¢; = BI(L1) on Y7, such

that o~ 1(V) = I_[ U; is a disjoint union of neighborhoods U; of p1 5, 1 < j < d

on Y, with blholomorphlc restrictions ¢ : U; — V of ¢. Bearing in mind that
Bl : X7 — Y7 is the blow up of Y; at ¢, one decomposeb

B(DW) = [BI(D(U)\V}H[BI(D(U)OV} and

D = [BI(D(”) \ V} [IB ' ®BUDY) V).

Similarly, 8 : Xo — Y3 is the blow up of Yz at ¢~ !(q1) = {p1,; |1 < j < d}, so that
there are decompositions

B(D?) = [0\ = (V)] TT [0®) 0 @’IW and
D@ = [a(D)\ o (V)| T8 (BODP) N~ (V).
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According to ¢~ (Bl(D<1>) NV) = ' BIDMD)) np=1(V) = B(DP) N 1(V),
the restriction ¢ : S(D@) N~ (V) = B(DM)NV is an unramified covering of
degree d. Now, Lemma 1 (ii) applies to provide that

f=e: D)\ e (V) — BUDW)\V

is an unramified covering of degree d. According to Lemma 1 (ii), it sufficed to
show that
F87HBDP) ne (V) — BT BIDM) N V)

is an unramified covering of degree d, in order to conclude that f : D) — DM is
an unramified covering of degree d. To this end, note that

d
“UBUDD)NY) = BDP)ng (V) = BDP)N HU =11 [0 no;],
Jj=1

so that }
]_[ { B(D®) } — BI(DW) NV
is an unramified covering of degree d. Thus, the biholomorphisms ¢ : U; =V

restrict to biholomorphisms ¢ : B(D?) N U; — BI(DW) N V. According to
©(p1,j)=q1, there arise biholomorphisms

¢ (B NUH)\ {p1;} — BIDD)NV)\ {ar}.
By the very definition of a blow up at a point, these induce biholomorphisms
75 [BDD) U\ pg}| [T L — [BOD) )\ {0} [T £

for all 1 < j < d. Bearing in mind that

ﬁ{[ D)UY\ 1)) T Ers} = 571 BDP) 0 (),

one concludes that ¢ induces an unramified covering
[:B7HBIDP) N (V) — BT (BIDM) N V)

of degree d.

(ii) Along the commutative diagram (3), if f : D — DM is an unramified
covering of degree d then by a decreasing induction on 7 > ¢ > 1 and making use of
(i), one observes that ¢; : Bit1 .. .ﬂT(D(2)) — Bligg... BIT(D(l)) is an unramified
covering of degree d, whereas ¢ : pa(D®?) — p;(DM) is an unramified covering
of degree d. Conversely, suppose that ¢ : po(D®)) — p(DM) is an unramified

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77. 59



covering of degree d. Then by an increasing induction on 1 < 4 < 7 and making
use of (i), one concludes that

@i Big1 .- Br(DP) = Bl ... BlL.(DW)

is an unramified covering of degree d. As a result, f : D) — D is an unramified
covering of degree d. O

Corollary 5. Let X1 = (B/T'1) be a smooth toroidal compactification, py :
X1 — Y7 be a composition of blow downs onto a minimal surface Y1, p : Yo — Y7
be an unramified covering of degree d and (4) be the defining commutative diagram
of the fibered product Xo = X1 Xy, Ya. Then:

(i) there is a subgroup Ty of Ty of index [I'y : T's] = d, such that Xy = (B/T3)’
is the toroidal compactification of B/Ts;

(i) f: Xo — X1 restricts to unramified coverings f : B/Ty — B/I'q, respec-
tively, f: D@ := X5\ (B/T2) — X1\ (B/T'1) = DU of degree d;

(i) the composition py : Xo — Ya of blow downs maps onto a minimal surface
Y2;'

(iv) @ restricts to an unramified covering ¢ : pa(D®) — py (DM of degree d.

Proof. By Lemma 3 (ii), the fibered product diagram (4) consists of an un-
ramified covering f : Xo — X; of degree d and a composition ps : X9 — Y5 of
blow downs. The surface Y2 is minimal. Otherwise any (—1)-curve L} on Y3 maps
isomorphically onto a (—1)-curve p(L}) C Y7, according to Lemma 2 (ii). That
contradicts the minimality of Y7 and shows the minimality of Y5.

The unramified covering f : Xo — X7 = (B/T'1)’ of degree d restricts to an
unramified covering f : f~1(B/I';) — B/T; of degree d. The smoothness of B/I'y
excludes the existence of isolated branch points of the I';-Galois covering ¢; : B —
B/I';. However, ¢; can ramify along divisors and B is not the usual universal cover of
the complex manifold B/T';. Nevertheless, B is the orbifold universal cover of B/T'y
and the orbifold universal covering map ¢; : B — B/T"; factors through a (possibly
ramified) covering (; : B — f~*(B/I'1) and the covering f : f~1(B/I'1) — B/I'y,
i.e., (1 = f(a. Since 7™ (B) = {1} is a normal subgroup of I'y := 7™ (f~1(B/I)),
the covering ¢, is Galois and its Galois group I'y is a subgroup of I'; = 7™ (B/T';)
of index [['; : '] = d. In particular, f~*(B/I';) = B/T3. By Lemma 1 (i), f
restricts to an unramified covering f : D := X, \ (B/Ty) — X; \ (B/T;) =: DM

k
of degree d of the toroidal compactifying divisor D) = ] D§1) of B/I";. Note that
j=1
for any 1 < j < k the restriction f : f*I(Dﬁ.l)) — D;l) is an unramified covering

of degree d, whereas a local biholomorphism. Therefore f _1(D§1)) = UzilDﬁ) is

(

J

k ]
D(Q) _ f—l(D(l)) _ H f_l(Dj('l)) = H HD;?
Jj=1

j=1li=1

smooth and has disjoint smooth irreducible components D 21) As a result,
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(2)

has disjoint smooth irreducible components D;"/. By assumption, D(l) are smooth

elliptic curves, so that all D! .) are smooth elhptlc curves by Lemma 2 (i). That is
why X5 = (B/T'2) is the t0r01da1 compactification of B/T's. According to Lemma 4
(ii), ¢ : Y3 — Y] restricts to an unramified covering ¢ : po(D®) = py(DM) of
degree d. O

Lemma 6. (i) Let f : Xo — X3 be an unramified covering of degree d of
smooth projective surfaces and Bl : X1 — Y7 be a blow down of a (—1)-curve L1 C
X;. Then the Stein factorization o of BLf consists of the blow down B : Xo — Yo

d

of f~Y(L1) = 11 L1; and an unramified covering ¢ : Yo — Yy of degree d, so that
j=1

X9 = X Xy, Ys is the fibered product of X; and Yy over Y.

(i) Let p1 = Bly...Bl. : T, .= X; — Yy =: Ty be a composition of blow downs
of (=1)-curves L; C T; and f : Xo — X1 be an unramified covering of degree
d. Then the Stein factorization pps of p1f : Xo — Y7 closes the fibered product
commutative diagram (4) with the composition py = By ...0, : Sy = Xo — Y5 1=

d
So of the blow downs f3; : S; — S;_1 of <pi_1(Li) = ][ L;; foralll1 <i<r and an
j=1
unramified covering ¢ : Yo — Y7 of degree d.

Proof. (i) If Blf = o8 : Xo — Y; is the Stein factorization of Blf and
q1 := BI(Ly) then (Blf)"Y(q1) = f~'Bl ' (q1) = f (L)) = ]_[ Ly ; has irre-

ducible components Ly ; by Lemma 4. For any ¢ € Y7 \ {q1} one haﬁ (Blf)~(q) =
f~'BI"(q) = f~Y(q) of cardinality |f | = d. Therefore, the surjective mor-
phism g : X5 — Y5 with connected ﬁbres is the blow down of Ly ;, V1 < j < d.
According to Lemma 1 (i), the restriction f : X5 \ f~1(L;) — X1 \ Ly is an un-
ramified covering of degree d, since f : f~*(L1) — L; is an unramified covering of
degree d. In such a way, there arises a commutative diagram

X5\ f7HLa) T Yo\ B (L)
f ®
X\ L —2 7 v\ {a}
and ¢ : Yo \ Bf7Y(L1) — Y1\ {@:} is an unramified covering of degree d. If

d
p1; = B(L1y) then B~1o " a1) = (pB) M q) = (BLf) Har) = ]_[1 Ly j reveals
f=

that ¢ '(q1) = {p1,;]11 < j < d} consists of d points and ¢ : Yo — Y} is an
unramified covering of degree d. By Lemma 3 (i), the fibered product X} :=
X1 Xy, Ya is the blow up of Y3 at ¢ '(q1) = {p1,;|1 < j < d}, so that X = X,.
According to Grothendieck’s Corollary 17.7.3 (i) from [4], it suffices to show
that X} = X5, in order to conclude that ¢ : Yo — Y7 is an unramified covering of
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degree d. We have justified straightforwardly that ¢ : Y5 — Y7 is an unramified
covering of degree d, in order to use it towards the coincidence of X5 with the
fibered product X} := X; xy, Ya.

(ii) is an immediate consequence of the fact that the composition of morphisms
with connected fibres has connected fibres. O

Corollary 7. Let f : Xo — X5 = (B/T1)" be an unramified covering of
degree d of a smooth toroidal compactification X1 = (B/T'1), p1 : X1 — Y71 be a
composition of blow downs onto a minimal surface Yy and D™ := X, \ (B/T'1) be
the toroidal compactifying divisor of B/T'1. Then:

(i) there exist a composition ps : Xo — Yo of blow downs onto a minimal
surface Yo and an unramified covering ¢ : Yo — Y7 of degree d, which exhibits
X9 = X3 Xy, Y2 as a fibered product of X1 and Y over Yi;

(i) there is a subgroup I's < T'1 of index [I'y : T's] = d, such that Xo = (B/T'2)’
is the toroidal compactification of B/T'y and f restricts to unramified coverings
f:B/Ty = B/Ty, f:D® := X5\ (B/T2) — X1 \ (B/T2) = DU of degree d;

(iii) @ restricts to an unramified covering o : po(D3) — p1 (DM) of degree d.

Proof. (i) is an immediate consequence of Lemma 6 (ii) and the fact that any
inramified cover Y5 of a minimal surface Y7 is minimal.

(ii) The unramified covering f : Xo — X; = (B/I'1)’ of degree d restricts
to an unramified covering f : f~!(B/T';) — B/I'; of degree d. As in the proof
of Corollary 5, there is a subgroup I's < I'; of index [I'; : T's] = d, such that
Xo = (B/T'y)’ is the toroidal compactification of B/T'y and f restricts to unramified
coverings f : B/Ty — B/T'y, f: D@ = Xy \ (B/T2) — X; \ (B/T'y) =: DO of
degree d.

(iil) is an immediate consequence of Lemma 4 (ii). O

Definition 8. A smooth toroidal compactification X; = (B/T';)’ is saturated
if there is no unramified covering f : X5 = (B/T'y) — (B/T1)’ = X; of degree d,
which restricts to an unramified covering f : B/T's — B/T'; of degree d.

Bearing in mind that the fundamental group of a smooth projective variety is
a birational invariant, one combines Corollary 5 with Corollary 7 and obtains the
following

Corollary 9. A smooth toroidal compactification X1 = (B/T'1)’ is saturated if
and only if one and, therefore, any minimal model Y1 of X7 is simply connected.
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2. UNRAMIFIED PUSH FORWARD OF A SMOOTH COMPACTIFICATION

Let X5 be a smooth projective surface, 5 : Xo — Y5 be a blow down with
d

exceptional divisor E(8) = [[ L1,s and f: X2 — X; be an unramified covering of
s=1

degree d, which restricts to an unramified covering f : E(8) — f(E(S)) of degree
d. According to Lemma 2 (ii), Ly := f(E(B)) is a (—1)-curve on X;. Then Lemma
6 (i) implies that there is a fibered product commutative diagram (1) with the blow
down Bl : X3 — Y; of L; and an unramified covering ¢ : Yo — Y7 of degree d,
which shrinks B(E(B)) = {p1,j := B(L1;)|1 < j < d} to a point ¢; € Y;. We say
that ¢ is induced by f.

Suppose that po = 51...06, : S = X9 =Yy =: 5) is a composition of blow
downs

ﬂi HICTES 51’-&-1 cee ﬂr(sr) — S = 51 . . BT‘(ST‘) (5)

d

with exceptional divisors E(8;) = ][] L;s for all 1 < ¢ < r. By a decreasing
s=1

induction on r > ¢ > 1, let us assume that there is a fibered product commutative

diagram

S, o S, 1 o Si — g,
f=pr PYr—1 \ Pit1 ©i
Bl, Bliy1
f(Sr) —— ¢r_1(Sr-1) o i1 (Sip1) —— ()

with fibered product squares Bljp; = ¢;_18;, such that ¢; restricts to an un-
ramified covering ¢; : E(B;) — L; := @;(E(B;)) of degree d and ¢;_; shrinks
the set 5;(E(B;)) = {pjs := Bj(Ljs)|1 < s < d} to a point ¢; € pj—1(Sj—1)
forall r > 5 > i+ 1. If ¢; : S; — ¢;(S;) restricts to an unramified cover-
ing ¢; : E(8;) = L; := ¢i(F(5;)) of degree d then there is an unramified covering
Yi—1 S¢,1 — (,Di,1(Si,1) of degree d, which shrinks Bi<EBi) = {pi)s = Bi(Li,s) | 1 <
s < d} to a point ¢; € S;—1 and closes the fibered product commutative diagram
wi—18; = Bljp;. Thus, if an unramified covering f : Xo — X3 of degree d induces

d
unramified coverings E(53;) = [[ L;s — L; of degree d for all 1 < ¢ <r then there
s=1

is an unramified covering ¢ = o : Yo = Sy — ¢0(Sp) =: Y7 of degree d, which
induces unramified coverings B;(E(53;)) = {pis :== Bi(Lis)|1 < s < d} = {¢:} C
©i—1(S;—1) of degree d for all 1 <14 <r.
Conversely, assume that Y5 is a smooth projective surface, 8 : Xo — Y5 is
d
a blow down with exceptional divisor E(f) = [[ Li1s and ¢ : Y2 — Y; is an
=1

unramified covering of degree d, which shrinks ﬂ?E(ﬁ)) ={p1s = B(L1s)|1 <
s < d} to a point ¢; € Y;. According to Lemma 3 (i), there is a fibered product
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commutative diagram (1), where Bl : X; — Y7 is the blow up of Y; at ¢1 € 1
and f : Xy — X; is an unramified covering of degree d, which restricts to an

d
unramified covering f : E(8) = ][ Lis — L1 := Bl"'(q1) of degree d. Let
s=1

p2 = P1...Br Sy = X9 = Yy = Sy be a composition of blow downs (5) with
d

exceptional divisors E(3;) = [ Lis. By an increasing induction on 1 < i < r,
s=1

suppose that

Bi B1

Pi %1{ 801{ p=ro
Bl; Bl
©0i(Si) — pi—1(Si-1) o p1(S1) — ¢(Ya)

is a fibered product commutative diagram with fibered product squares ¢;_13; =
Blg;, such that ¢;_; restricts to an unramified covering

pj—1: B (E(B;)) ={pjs == Bi(Ljs) [1 < s < df — {g;} C ¢;j-1(5j-1)
of degree d and ¢; restricts to an unramified covering

d

;i B(B;) =[] Lis — 0i(EB;)) = L;

s=1

of degree d for all 1 < j <. If p; restricts to an unramified covering

@it Bir1(E(Biv1)) = Apit1,s = Bix1(Liv1,s) |1 < s < d} — {qiy1} C 0i(Sh)

of degree d then there is an unramified covering

Pit1 + Sip1 — Piv1(Sit1)
of degree d, which restricts to an unramified covering

d
ir1: E(Biy1) = H Lit1s — Lit1 = @ir1(E(Bit1))

s=1

of degree d and closes the fibered product commutative diagram ;3,11 = Bl; 110,41
with the blow down Bl;11 : wi41(Sit1) — ©i(S;) of L;11. In such a way, if ¢ :
Y5 — Y7 is an unramified covering of degree d, which induces unramified coverings

Bi(E(B:)) = {pis = Bi(Lis) |1 < s < d} — {qi} C 0i—1(Si—1)
of degree d for all 1 <i < r then f := ¢, : X5 — f(X2) is an unramified covering

d
of degree d, which induces unramified coverings E(8;) = [[ Lis — L; of degree d

sS=
for all 1 <4 < r. The above considerations justify the following
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Lemma-Definition 10. Let X5, Y5 be smooth projective surfaces and
pgzﬁl...BTIST = X —>}/2:ZSO

be a composition of blow downs (5) with exceptional divisors E(B;) for all1 <i <r.
Then the following are equivalent:

(i) there is an unramified covering [ : Xo — f(X2) of degree d, which induces
d
unramified coverings E(B;) = [ Lis — L; of degree d for all1 <i <r;
s=1

(ii) there is an unramified covering ¢ : Yo — ©(Ya) of degree d, which induces
unramified coverings Bi(E(B;)) = {pi,s = Bi(Lis) |1 < s <d} — {q:i} C i—1(Si-1)
of degree d for all 1 < i <.

If there holds one and, therefore, any one of the aforementioned conditions
then there is a fibered product commutative diagram (4), where

p1 = Bll .. Blr : X1 = (p(XQ) — (p(Yg) =: Y1

is the composition of blow downs Bl; of L; for all 1 < i < r and we say that
f:Xo— f(X2) and ¢ : Yo — o(Ya) are compatible with p.

Corollary 11. Let Xo = (B/I'3)" be a smooth toroidal compactification and
p2 : Xo = Yy be a composition of blow downs onto a minimal surface Yo. If there
is an unramified covering f : Xo = (B/T3) — f(X2) =: X1 of degree d, which is
compatible with pa and restricts to an unramified covering f : B/T'y — f(B/T'3) of
degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified cover-
ing ¢ : Yo — o(Ya) =: Y7 of degree d and a composition of blow downs p1 : X1 — Y1
onto a minimal surface Yi;

(i) there is a lattice Ty of Aut(B) = PU(2,1), containing T's as a subgroup of
index [’y : Ta] = d and such that X1 = (B/T1)’ is the toroidal compactification of
B/Fl,’

(iii) @ restricts to an unramified covering o : po(D3)) — p1 (DM) of degree d,
where D) := X; \ (B/T;) are the compactifying divisors of B/T';, 1 < j < 2.

Proof. (i) is an immediate consequence of Lemma 10.

Towards (ii), let us note that the composition f(s : B — f(B/T'2) of the orbifold
universal covering (5 : B — B/T'y with the unramified covering f : B/T's — f(B/T'2)
is Galois, since 7$"™*(B) = {1} is a normal subgroup of 'y := 7™ (f(B/I2)).
Moreover, 7§**(B/Ty) = D'y is a subgroup of I'; of index [['; : I'y] = d and
f(B/T2) = B/Ty. By Lemma 1 (i), f : X2 — X; restricts to an unramified
covering f : D@ = X, \ (B/T'y) — DM := X, \ (B/T';) of degree d. The toroidal
compactifying divisor D of B /T2 has disjoint smooth elliptic irreducible compo-
nents, so that Lemma 2 (i) applies to provide that DM consists of disjoint smooth
elliptic irreducible components and X; = (B/T';)’ is the toroidal compactification

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77. 65



of B/T'y. According to Lemma 4 (ii), that suffices for ¢ : Yo — Y3 to restrict to an
unramified covering ¢ : pa(D®) — py(DW). O

Corollary 12. Let X5 = (B/T2)’ be a smooth toroidal compactification, D) :=
X2\ (B/T3) be the compactifying divisor of B/Ta and ps : Xo — Yy be a composi-
tion of blow downs onto a minimal surface Ya. If ¢ : Yo — ¢(Y2) is an unramified
covering of degree d, which is compatible with ps and restricts to an unramified
covering ¢ : pa(DP)) = ©po(DP)) of degree d then:

(i) there is a fibered product commutative diagram (4) with an unramified
covering f : Xo — f(X3) =: X1 of degree d and a composition of blow downs
p1: X1 — Y1 onto a minimal surface Yq;

(ii) there is a lattice T'1 of Aut(B) = PU(2,1), containing I's as a subgroup of
index [['1 : T's] = d and such that X1 = (B/T'1)" is the toroidal compactification of
B/Fl;

(iii) f restricts to an unramified covering f : B/To — B/T'y of degree d.

Proof. Lemma 10 justifies (i). According to Lemma 4 (ii), f restricts to an
unramified covering f : D) — f(D®) of degree d. Then Lemma 1 (i) applies to
provide that f : Xy \ D® = B/Ty — X, \ f(D®) is an unramified covering of
degree d. The proof of Corollary 11 (ii) has established that this is sufficient for
the existence of a lattice 'y of Aut(B) = PU(2,1), containing I's as a subgroup
of index [['; : T's] = d and such that X; \ f(D®) = B/I';. That justifies (iii).
By assumption, D) consists of smooth elliptic irreducible components. Therefore
f(D®) has smooth elliptic irreducible components and X; = (B/T1) [[ f(D®) is
the toroidal compactification of B/T';. O

Definition 13. Let X = (B/T')’ be a smooth toroidal compactification. If
there is no unramified covering f : X — f(X) of degree d, which restricts to an
unramified covering f : B/I' — f(B/T") of degree d and is compatible with some
composition of blow downs p : X — Y onto a minimal surface Y, we say that
X = (B/T")’ is primitive.

The Euler characteristic of a smooth toroidal compactification X = (B/T")’ is
a natural number e(X) = e(B/I"). That is why there exists a primitive smooth
toroidal compactification Xy = B/T'y and a finite sequence

fn fl

XnZ:X%Xn_l XZLX’L—ZL X1

Xo

of unramified coverings f; : X; = (B/T;) — (B/T;—1) = X;—1 of degree d; of
smooth toroidal compactifications X; = (B/T';)’, which restrict to unramified cov-
erings f; : B/T'; — B/T;_; of degree d; and are compatible with some compositions
of blow downs p; : X; — Y; onto minimal surfaces Y;. Combining Corollary 11 with
Corollary 12, one obtains the following
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Corollary 14. Let X = (B/T) be a smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/T"). Then X is primitive if and only if
no minimal model Y of X with a composition of blow downs p: X — Y admits an
unramified covering ¢ : Y — ¢(Y') of degree d > 1, which restricts to an unramified
covering ¢ : p(D) — pp(D) of degree d and is compatible with p.

Let us suppose that a smooth toroidal compactification X = (B/T')" with
toroidal compactifying divisor D := X \ (B/T") admits a blow down 5 : X — Y
of n € N smooth irreducible rational (—1)-curves onto a minimal surface ¥ and
there is an unramified covering ¢ : Y — ¢(Y") of degree d, which restricts to un-
ramified coverings ¢ : (D) — ¢B(D) and ¢ : B(E(B)) — ¢B(E(B)) of degree d.

Then the Euler number of the smooth surface ¢(Y) is e(p(Y)) = %1{) € Z and

the cardinality of pB(E(B)) if |0B(E(B))| = %W = % € N, so that d € N
divides e(Y') and n = |B(E(B))|. As a result, d divides the greatest common divisor
GCD(|B(E(B))], e(Y)).

Note that the compatibility of an unramified covering ¢ : Y — o(Y) with
B : X — Y reduces to ¢ 1 (pB(E(B)) = B(E(B)) and is detected on Y. When
p=01...0-: X =Y is a composition of r > 2 blow downs, the compatibility of
an unramified covering ¢ : Y — p(Y) of degree d with p cannot be traced out on the
minimal model Y of X alone. Namely, if Sy := Y, Ty := ¢(Y) then in the notations
from the commutative diagram (3), the unramified covering ¢ : S1 — T3 of degree
d may restrict to an unramified covering 1 : B2(E(B82)) — ¢152(E(B2)) of degree d,
but ¢g := ¢ is not supposed to restrict to an unramified covering ¢ : 81 82(E(82)) —
©B1PB2(E(B2)) of degree d. More precisely, if an irreducible component L ; of
E(f1) intersects B2(E(B2)) in at least two points then |81 82(E(B2))| < d and ¢ :
B1B2(E(B2)) — ¢B182(E(B2)) is of degree < d.

3. SATURATED AND PRIMITIVE SMOOTH COMPACTIFICATIONS OF
NON-POSITIVE KODAIRA DIMENSION

Definition 15. Let X = (B/T")’ and Xy = (B/To)" be smooth toroidal com-
pactification. We say that X dominates Xy and write X »= Xy or Xy < X if there
exist a finite sequence of ball lattices

Iy =<1 <...<I <o < ... <y < Ty,

with smooth toroidal compactifications X; = (B/I';)" of the corresponding ball
quotients B/T'; and a finite sequence of unramified coverings

Xn.:Xi»X’ﬂfl --~Xii>Xi71"' Xl fl

Xo

of degree deg [f; : X; — X;—1] = [[—1 : I';] = d; € N, which restrict to unramified
coverings f; : B/T'; — B/I';_1 of degree d; and are compatible with some com-
positions p; = Bi1...Bir, + Xi — Y; of blow downs j3;; onto minimal surfaces
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It is clear that a smooth toroidal compactification X = B/T is saturated if and
only if it is maximal with respect to the partial order >. Similarly, X is primitive
exactly when it is minimal with respect to . Note that the partial order = on
the set S of the smooth toroidal compactifications X = (B/I')’ is artinian, i.e., any
subset S, C S has a minimal element X, = (B/T,)’ € S,. The minimal X € § are
exactly the primitive ones, but the minimal X, € S, are not necessarily primitive,
since such X, is not supposed to be a minimal element of S.

The present section discusses the saturated and the primitive smooth toroidal
compactifications X = (B/I")’ of Kodaira dimension x(X) < 0.

Proposition 16. If X = (B/T') is a smooth toroidal compactification of Ko-
daira dimension k(X) = —oo then X is a rational surface or X has a ruled minimal
model m:Y — E with an elliptic base E.

Any smooth rational X = (B/T") is both saturated and primitive.

There is no smooth saturated X = (B/T')', whose minimal model is a ruled
surface w:Y — E with an elliptic base E.

Proof. (i) Let p : X = (B/T')’ — Y be a composition of blow downs onto a
minimal surface Y of £(Y) = —oo, Then Y = P?(C) is the complex projective plane
or 7 : Y — E is a ruled surface with a base E of genus g € Z=°. The toroidal

k
compactifying divisor D := X \ (B/T') = ][ D, has disjoint smooth irreducible
j=1
elliptic components D;. If g > 2 then the morphisms 7p : D; — E map to
points p; = wp(D;) € E, so that p(D;) C n~(p;) for all 1 < j < k. The
exceptional divisor L of p: X — Y has finite image p(L) = {q1,...,qm} on Y and

p(L) C ]:[1 7~ Y(7(g:)). Therefore

m

Hﬂl(ﬂ(qz‘))] CY\p(L)=X\L

=1

Y=Y\

and p acts identically on Y’. Moreover,

k m k
vy T )| =3 | (T et ) T (T )| <20

However, Y contains (infinitely many) fibres 771(e) ~P!(C),e€ Eofn:Y — F
and that contradicts the Kobayashi hyperbolicity of B/I". In such a way, we have
shown that any minimal model Y of a smooth toroidal compactification X = (B/T")’
of k(X) = —o0 is birational to P?(C) or to a minimal ruled surface 7 : Y — E with
an elliptic base FE.

Any rational X = (B/T")" is simply connected and does not admit finite un-
ramified coverings X; — X of degree d > 1. That is why X is saturated. Let us
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suppose that f: X = (B/T) — Xo = (B/T) is an unramified covering of degree
d > 1, which is compatible with some composition of blow downs p: X — Y onto a
minimal rational surface Y and restricts to an unramified covering f : B/T' — B/T
of degree d. The Kodaira dimension is preserved under finite unramified coverings,
so that x(Xo) = k(X) = —oo. The surface X is not simply connected, whereas
non-rational. Therefore, there is a composition pg : Xg — Yy of blow downs onto a
ruled surface 7y : Yy — Ey with base Ey of genus g9 € N. The surjective morphism
pof : X = (B/T) — Yp induces an embedding (pof)* : H*!(Yy) — H%1(X). On
one hand, the irregularity of Yy is h®1(Yy) := dim¢c H%1(Yy) = go € N. On the
other hand, the rational surface X has vanishing irregularity h%*(X) = 0. That
contradicts the presence of a finite unramified covering f : X — Xy of degree
d > 1 and shows that any smooth rational toroidal compactification X = (B/T") is
primite.

Let X = (B/T)’ be a smooth toroidal compactification, whose minimal model
Y is a ruled surface m : Y — F with an elliptic base E. Since Y is birational to
P}(C) x E and the fundamental group is a birational invariant, one has 7 (X) ~
7 (Y) ~ 71 (F) ~ (Z%,+). In particular, Y is not simply connected. According to
Corollary 9, X cannot be saturated. O

According to the Enriques-Kodaira classification, there are four types of min-
imal smooth projective surfaces Y of Kodaira dimension x(Y) = 0. These are the
abelian and the bi-elliptic surfaces with universal cover C2, as well as the K3 and
the Enriques surfaces with K3 universal cover. If ¢ : Yo — Y7 is a finite unramified
covering of smooth projective surfaces then the Kodaira dimension k(Y1) = k(Y2)
and the universal covers 5/: = E coincide. Let Y5 be a smooth projective surface
with a fixed point free involution g, : Y52 — Y5 and 8 : X9 — Y5 be the blow up of
Y5 at a (go)-orbit {p1.1,p1,.2 = go(p1.1)} C Ya. Then by the very definition of a blow
up, go induces a fixed point free involution g; : Xo — Xs, which leaves invariant
the exceptional divisor E(8) = L1 1[[L12, Li; := 871 (p1.i) of B and there is a
fibered product commutative diagram (4) with a (g,)-Galois covering ¢ : Yo — Y7,
a (g1)-Galois covering f : X9 — X; and the blow up Bl : X; — Y7 of V7 at
{e1} = ¢({p1,1,p1,2}). Now, suppose that po = f1...6, : S, == Xo = Yo = 5
is a composition of blow downs with exceptional divisors E(3;) = L; 1 [[ Li 2 and
go : So — Sy is a fixed point free involution. By an increasing induction on
1<i<r,ifg;—1:85;,_1 — S;_1 is a fixed point free involution, which leaves invari-
ant 3;(E(8;)) = {pi1,pi2} then there is a fixed point free involution g¢; : S; — S;,
which leaves invariant E(8;) = L;1[[Li2. In such a way, if a fixed point free
involution g : So — Sy induces isomorphisms L;; — L; 9 for all 1 < i < r then
there is a fixed point free involution g, : S, — S, and a fibered product commu-
tative diagram (4) with a (g,)-Galois covering ¢ : Y5 — Y1, a (g,)-Galois covering
f: X9 — X and the composition p; = Bl;...Bl,. : X7 — Y] of the blow downs of
E(B:)/{g:) = L; =~ PY(C). If g, : Sy — Sp induces isomorphisms L;; — L; o of the
irreducible components of E(8;) = L;1[[ L2 for all 1 < i < r, we say that g, is
compatible with py = £1... 3.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77. 69



Proposition 17. Let X = (B/T")" be a smooth toroidal compactification, D :=
X\ (B/T') be the toroidal compactifying divisor of B/T and p=01...5, : X =Y
be a composition of blow downs onto a K3 surface Y. Then:

(i) X is a saturated compactification;

(i) X is non-primitive exactly when there is a fized point free involution g, :
Y — Y, which is compatible with p and leaves invariant p(D);

(iii) if X is non-primitive then there is a fibered product commutative diagram

|

Xo 2+ ¥

with a primitive smooth toroidal compactification Xo = (B/T)’, a composition of
blow downs pg : Xog — Yy onto a minimal Enriques surface Yy and unramified
double covers f: X — Xg, p: Y = Y).

Proof. (i) is an immediate consequence of m;(Y) = {1}, according to Corol-
lary 9.

(i) and (iii) follow from Corollary 14 and the fact that a minimal projective
surface Yy admits an unramified covering ¢ : Y — Yy by a K3 surface Y if and
only if Yj is the quotient of Y by a fixed point free involution g, : ¥ — Y. Such
Yo = Y/(g,) are called minimal Enriques surfaces and do not admit unramified
coverings g : Yo = o(Yo) of degree > 1. O

Proposition 18. Let X = (B/T")’ be a smooth toroidal compactification and
p:Pr...6r : X =Y be a composition of blow downs onto a minimal Enriques
surface Y. Then:

(i) X is a primitive compactification;

(ii) X is not saturated;

(iii) there is an unramified double cover f : X; = B/T; — B/T = X by a
saturated smooth toroidal compactification X1 = (B/T'1)" with K3 minimal model
Y;.

Proof. (i) is due to the lack of an unramified covering ¢ : Y — ¢(Y) of degree
d>1

(ii) follows from m1(Y) = (Za, +) # {1}.
(iil) is an immediate consequence of the Enriques-Kodaira classification of the
smooth projective surfaces. O

Let X = (B/T) be a smooth toroidal compactification with abelian or bi-
elliptic minimal model Y. According to Theorem 1.3 from Di Cerbo and Stover’s
article [3], X can be obtained from Y by blow up 8 : X — Y of n € N points
Pl Pn €Y.

70 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 53-77.



Proposition 19. Let X = (B/T)" be a smooth toroidal compactification with
a blow down §: X =Y onto a minimal surface Y with exceptional divisor E(f) =

11 Li and D := X \ (B/T) be the toroidal compactifying divisor of B/T. Then:
i=1

(i) B transforms E(B) onto the singular locus B(E(B)) = B(D)%"¢ of B(D) C
Y;

(i) X is non-primitive if and only if there is an unramified covering p : Y —
oY) of degree d > 1, which restricts to an unramified covering ¢ : S(D) — ¢B(D)
of degree d;

(iii) the relative automorphism group Aut(Y, 3(D)) = Aut(Y,5(D), 3(D)%ns)
admits an isomorphism

O Aut(Y,5(D)) — Aut(X, D)

with the relative automorphism group Aut(X, D) = Aut(X, D, E(8));
(iv) go € Aut(Y, B(D) is fized point free if and only if it corresponds to a fized
point free g = ®(g,) € Aut(X, D).

Proof. 1) If D = ﬁ D has irreducible components D; then the singular locus
of B(D) is =
BDY™ = [Uj_1 B(D;)™8] U [Ur<ic < B(Di) N B(D))].
Since D; are smooth irreducible elliptic curves, (D)*"& C B(E(8)). Conversely,
any (—1)-curve L; on X = (B/T")’ intersects D = ﬁ D; in at least three points,

due to the Kobayashi hyperbolicity of B/T. In fact |L; N F| > 4, according to
Theorem 1.1 (2) from Di Cerbo and Stover’s article [3 ] Therefore, the multiplicity
of B(L;) = p; with respect to (D) is > 4 and p; € ﬂ(D)Si“g. That justifies
B(E(B)) € B(D)™™& and B(E(B)) = B(D)™".

(ii) By Corollary 14 and (i), X = (B/I")’ is non-primitive if and only if there is
an unramified covering ¢ : Y — ¢(Y") of degree d > 1, which restricts to unramified
coverings ¢ : B(D) — pB(D) and ¢ : B(D)*"& — B(D)%"8 of degree d. Let us
observe that any unramified covering ¢ : (D) — ¢B(D) of degree d restricts to
an unramified covering ¢ : B(D)*"8 — B(D)*"& of degree d, as far as the local
biholomorphism ¢ : 5(D) — ¢B(D) preserves the multiplicities of the points with
respect to 3(D) and B(D)""# consists of the points of 3(D) of multiplicity > 2.

(iii) If a holomorphic automorphism g, : ¥ — Y restricts to a holomorphic
automorphism g, : (D) — (D) then g, preserves the multiplicities of the points
with respect to 3(D) and (D)8 is (g,)-invariant. That justifies Aut(Y, 3(D)) <
Aut(Y, §(D), B(D)*"%) and Aut(Y; B(D)) = Aut(Y, 3(D), B(D)").

In order to show the existence of a group isomorphism

@ : Aut(Y, B(D), B(D)"™) — Aut(X, D, B(8)).
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let us pick a g, € Aut(Y, 3(D),3(D)*"8). Then X \ E(8) = Y \ B(E(B)) =Y \
B(D)%"¢ is acted by D(90)|x\E(8) = Goly\s(p)sins- By the definition of a blow up at
a point, the bijection g, : S(D)*"® — S(D)*"® with g,(8(L1,)) = B(L1,;) induces
isomorphisms ®(g,) : L1,; — L1 ; and provides an element ®(g,) € Aut(X, E(3)).
After observing that ®(g,)(D \ E(8)) = g,(3(D) \ B(D) ") = B(D) \ A(D)*"s =
D\ E(pB), one concludes that ®(g,) transforms the Zariski closure D of D \ E(f)
onto itself and ®(g,) € Aut(D).

The correspondence @ is a group homomorphism since g, and ®(g,) coincide
on Zariski open subsets of Y, respectively, X. Towards the bijectiveness of ®, let
g € Aut(X, D, E(B)) and note that Y \ (D)*"8 = X \ E(B). That allows us to
define ¢’1(g)|y\B(D)s;ng = glx\r(p)- The isomorphism g : E(8) — E(S) of the
exceptional divisor E(3) of 3 induces a permutation ®~1(g) : 3(D)%"¢ — B(D)%e
of the finite set 3(D)"& and provides an automorphism ®~1(g) € Aut(Y, B(D)s"8).
Bearing in mind that &~ (g)(3(D) \ B(D)™) = ¢(D \ E(8)) = D \ E(8) =
B(D) \ B(D)*"8, one concludes that ®~1(g) € Aut(8(D)) is an automorphism of
the Zariski closure 3(D) of 3(D) \ B(D)s"& = p(D)smooth,

Note that any automorphism g € Aut(X, D) acts on the set of the smooth
irreducible rational curves on X. Moreover, g preserves the self-intersection num-

ber of such a curve and (g) acts on the set E(8) = ][] L; of the (—1)-curves
=1

on X. Thus, g € Auwt(X, D, E(f)) and Aut(X,D) C Aut(X, D, E(B)), whereas
Auwt(X,D,E(B)) = Aut(X, D).

(iv) If g € Aut(X, D) has no fixed point on X then g, := ®~1(g) € Aut(Y, 5(D))
restricts to go|y\p(E(5)) = 9lx\r(s) without fixed points. The assumption g,(p;) =
p; = BI(L;) for some 1 < ¢ < n implies that g restricts to an automorphism
g: L; — L;. Any biholomorphism g € Aut(L;) = Aut(P*(C)) = PGL(2,C) of the
projective line L; = P!(C) is a fractional linear transformation and has two fixed
points, counted with their multiplicities. That contradicts the lack of fixed points of
g on X and implies that the associated automorphism g, = ®~1(g) € Aut(Y, 8(D))
has no fixed points on Y.

Conversely, if g, € Aut(Y, (D)) has no fixed points on Y and g := ®(g,)
then the restriction g|x\ () = go|y\s(5) has no fixed points. If g(x) = = for some

n

x € E(B) = ][] L; then « € L; for some 1 < i < n and g(L;) = L;. As a result,
i=1

go fixes p; = B(L;) € Y, which is absurd. In such a way, any fixed point free

go € Aut(Y, B(D)) corresponds to a fixed point free g = ®(g,) € Aut(X, D). O

Proposition 20. Let X = (B/T)" be a smooth toroidal compactification with
toroidal compactifying divisor D := X \ (B/T") and a blow down 8 : X — Y of
n € N smooth irreducible rational (—1)-curves. Then Aut(X, D) is a finite group.

Proof. By Proposition 19 (iii), Aut(X,D) = Aut(X,D,E(8)). Any g €

k
Aut(X, D) acts on D = ][ D; and induces a permutation of the smooth elliptic
j=1
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irreducible components D1, ..., Di of D. In such a way, there arises a representa-
tion

¥yt Aut(X, D) — Sym(Dq, ..., Dy) = Sym(k).
The image of ¥y in the finite group Sym(k) is a finite group, so that it suffices
to show the finiteness of ker(X;), in order to conclude that Aut(X, D) is a finite
group. Similarly, Aut(X, D) = Aut(X, D, E(8)) acts on the exceptional divisor

E(B)=]] Li of 8: X — Y and defines a representation
i=1

Yot Aut(X, D) — Sym(Lq,...,L,) = Sym(n).

Since ¥y (ker(X1)) is a finite group, it suffices to show that G := ker(23) Nker(X;)
is a finite group. For any 1 <i < n, 1 < j <k and g € G, the finite set L; N D;
is transformed into itself, according to g(L; N D;) C g(L;) N g(D;) = L; N D;.
Therefore, there is a representation

E%j G — Sym(Ll N DJ)

The image ¥; ;(G) is a finite group, while the kernel K; ; := ker(%; ;) fixes any point
p € L;ND; and acts on D;. It is well known that the holomorphic automorphisms
Aut,(D;) of an elliptic curves D;, which fix a point p € D;, form a cyclic group of
order 2, 4 or 6. Therefore, K; ; < Aut,(D), G, ker(X;) and Aut(X, D) are finite
groups. O

Definition 21. A smooth toroidal compactification X = (B/T")" with a blow
down 8 : X — Y of n € N smooth irreducible rational (—1)-curves onto a minimal

surface Y is Galois non-primitive if there is a fixed point free automorphism g €
Aut(X, D)\ {Idx}.

Any Galois non-primitive X = (B/T")’ is non-primitive, because the (g)-Galois
covering ¢ : X — ((X) = X/{g) is unramified and restricts to unramified coverings

¢:B/I' = ¢(B/T) and ¢ : E() = I;[l Li = ¢(E(B)) of degree [(g)| = ord(g).

Note that the presence of an unramified covering ¢ : ¥ — ¢(Y) 1mpl1es the

coincidence Y = cm of the universal cover Y of Y with the universal cover gp(Y)
of o(Y). The fundamental group m (p(Y)) of ¢(Y) acts on ¥ by biholomorphic
automorphisms without fixed points and contains the fundamental group 71 (Y") of
Y as a subgroup of index [m1(p(Y)) : m (V)] = d.

Proposition 22. Let X = (B/T")’ be a smooth toroidal compactification with
toroidal compactifying divisor D := X\ (B/T'), 8: X =Y be a blow down of n € N
smooth irreducible rational (—1)-curves to a minimal surface Y and N(mw1(Y)) be
the normalizer of the fundamental group m(Y') of Y in the biholomorphism group
Aut( ) of the universal cover'Y of Y. Then X is Galois non-primitive if and only if
there exist a natural divisor d > 1 of GCD(|3(D)*8| ,e(Y)) € N and an unramified
covering ¢ : Y — @(Y) of degree d, such that m1(p(Y)) N N(m(Y)) > m1(Y) and
v : B(D) = ¢B(D) is an unramified covering of degree d.
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Proof. If X = (B/T")’ is Galois non-primitive then there exists a fixed point
free biholomorphism g € Aut(X, D)\ {Idx} of X. By Proposition 19(iv), g induces
a fixed point free biholomorphism g, = ®7'(g) € Aut(Y, 8(D)) \ {Idy} of Y. The
element g, of the finite group Aut(Y, 3(D)) is of finite order d € N\ {1} and the
(90)-Galois coverings ¢ : Y — Y/(go), ¢ : B(D) — (B(D) are unramified and of
degree d. The automorphism g, of Y lifts to an automorphism o € Aut(Y’) of the
universal cover Y of Y, which normalizes m (Y) and belongs to

M(C(V) = (V/{g0) = m ((V/m (1)) (om (1))
= (?/<a, m(y)>) = (o, m(Y)).

Conversely, suppose that ¢ : Y — ¢(Y) is an unramified covering of degree
d > 1, which restricts to an unramified covering ¢ : (D) — pB(D) of degree d and
there exists o € [m1(o(Y)) N N(m1(Y))] \ 71(Y). Then g, := om(Y) € Aut(Y) =
N(m1(Y))/m(Y) is a non-identical biholomorphism g, : ¥ — Y. Since (o, m1(Y))
is a subgroup of 71 (¢(Y)), the unramified covering ¢ : Y — (Y factors through
the (g,)-Galois covering ¢ : Y — Y/(g,) and a covering ¢, : Y/{go) = ¢(Y") along
the commutative diagram

Y — ¥/(g,)
o %o (6)

o(Y)

The finite coverings ¢ : Y — Y/{g,) and ¢, : Y/{go) — ¢(Y) are unramified,
because their composition ¢ = ¢, : Y — ¢(Y) is unramified. That is why
go has no fixed points on Y. If (D) C Y is not (g,)-invariant then there is
an orbit Orb, y(y,) C Y of some y, € (D) which intersects both 3(D) and
Y \ B(D). Therefore, ¢ : B(D) — ¢B(D) has a fibre (71(¢(y,)) of cardinality
¢ (o)) < deg(€) = [{go)] = ord(gy) and ¢ : B(D) — CB(D) is ramified. As a
result, the composition ¢ = ¢,( : S(D) — @B(D) is ramified. The contradiction
shows the (g,)-invariance of B(D). According to Proposition 19 (iv), the fixed
point free g, € Aut(Y, (D)) \ {Idy } corresponds to a fixed point free g = ®(g,) €
Aut(X, D)\ {Idx} and X is Galois non-primitive. O

Definition 23. A covering ¢ : Y — ¢(Y") by a smooth projective surface Y has
Galois factorization if there exist g, € Aut(Y)\ {Idy } and a covering ¢, : Y/(go) —
©(Y), such that ¢ = ¢, factors through the (g,)-Galois covering ¢ : Y — Y/(g,)
and a covering ¢, along the commutative diagram (6).

Now, Proposition 22 can be reformulated in the form of the following
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Corollary 24. Let X = (B/T) be a non-primitive smooth toroidal compacti-
fication with toroidal compactifying divisor D :== X \ (B/T'), B: X — Y be a blow
down of n € N smooth irreducible rational (—1)-curves onto a minimal surface Y
and ¢ : Y = o(Y) be an unramified covering of degree d, which restricts to an un-
ramified covering ¢ : B(D) — @B(D) of degree d. Then X is Galois non-primitive
if and only if ¢ admits a Galois factorization.

Corollary 25. (i) Let X = (B/T')" be a smooth toroidal compactification with
abelian minimal model Y. Then X is not saturated and X is non-primitive if and
only if it is Galois non-primitive.

(ii) If X = (B/T") is a smooth toroidal compactification with bi-elliptic minimal
model Y then X is not saturated.

Proof. (i) Any abelian surface Y has non-trivial fundamental group m(Y") ~
(Z*,+). According to Corollary 9, that suffices for a smooth toroidal compactifi-
cation X = (B/T")" with abelian minimal model Y to be non-saturated.

By Theorem 1.3 from Di Cerbo and Stover’s article [3], if a smooth toroidal
compactification X = (B/T")" has abelian minimal model Y then there is a blow
down 5 : X — Y of n € N smooth irreducible rational (—1)-curves on X onto
Y. Such X is non-primitive if and only if there exists an unramified covering
v:Y — p(Y) of degree d > 1, which restricts to an unramified covering ¢ : §(D) —
wB(D) of degree d. Since Y and ¢(Y) have one and the same universal cover
©(Y) =Y = C? and one and the same Kodaira dimension x(p(Y)) = x(Y) = 0,
the minimal smooth irreducible projective surface p(Y) is abelian or bi-elliptic.

If o(Y) is an abelian surface then its fundamental group m; (p(Y)) ~ (Z*, +)
is abelian and m;(Y) ~ (Z*,+) is a normal subgroup of 7 (¢(Y)). As a result,
0:Y = oY) isam(e(Y))/m1(Y)-Galois covering and Y is Galois non-primitive.

Let us suppose that ¢(Y) is a bi-elliptic surface. According to Bagnera-de
Franchis classification of the bi-elliptic surfaces from [1], there is an abelian surface
A and a cyclic subgroup (g) < Aut(A) of order d € {2, 3,4, 6} with a non-translation
generator g € Aut(A), such that p(Y) = A/(g). Let AffLin(C) := T(C?)xGL(2,C)

— )

be the group of the affine linear transformations of C2 =Y = o(Y) = A and
L : AffLin(C?) — GL(2,C)

be the group homomorphism, associating to o € AffLin(C?) its linear part £(o) €
GL(2,C). Then the fundamental group of A is the maximal translation subgroup

m1(A) = m1(e(Y)) Nker(L)

of m1(¢(Y)). The translation subgroup m1(Y) < m1(p(Y)) Nker(L) of w1 (p(Y)) is
contained in m(A) and the unramified covering ¢ : Y — (V) factors through
unramified coverings p; : Y — A and 2 : A — ¢(Y), along the commutative
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diagram
251

Y — A

oY)

The covering ¢1 : Y — A is m(A4)/m1(Y)-Galois, so that ¢ = a1 is a Galois
factorization of ¢ for m1(Y) < m1(A4). In the case of m(Y) = m1(A), there is an
isomorphism Y ~ C?/m(Y) ~ C?/m(A) = A and the covering ¢ : ¥ ~ A —
oY) = A/{g) is (g9)-Galois. Thus, X is Galois non-primitive and a co-abelian
smooth toroidal compactification X = (B/T')’ is non-primitive if and only if it is
Galois non-primitive.

(ii) The fundamental group 71 (Y") of a bi-elliptic surface Y is subject to an
exact sequence

1

m(Y) Nker(L) —— w1 (Y) ~ (9) -1

with a non-translation cyclic subgroup (g) of Aut (C?/71(Y) Nker(£)) = Aut(4,)
of order 2, 3, 4 or 6. In particular, Y is not simply connected and a smooth toroidal
compactification X = (B/I")" with bi-elliptic minimal model Y is not saturated. O
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