FOIWILIHUK HA CO®UNCKUA YHUBEPCUTET ,CB. KIUMEHT OXPUICKU“
PAKYJITET TO MATEMATUKA U UH®OPMATUKA

Kaura 1 — MaremaTuka u mexaHuka
Tom 91, 1997

ANNUAIRE DE L'UNIVERSITE DE SOFIA | ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques et Mecanique
Tome 91, 1997

EACH 11-VERTEX GRAPH WITHOUT 4-CLIQUES HAS
A TRIANGLE-FREE 2-PARTITION OF VERTICES

EVGENI NEDIALKOV, NEDYALKO NENOV

7

Let G be a graph, cl(G) denotes the clique number of the graph G. By G — (3,3) we
denote that in any 2-partition Vj U V; of the set V(G) of his vertices either V; or V;
contains 3-clique (triangle) of the graph G; o = min{|V(G)|, G — (3,3) and cl(G) =
4}, 8 = min{|V(G)|, G — (3,3) and cl(G) = 3}. In the current article, we consider
graphs G with the property G — (3,3). As a consequence from proven results it follows
that a = 8 and 8 > 12. :
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1. INTRODUCTION

We consider only finite, non-oriented graphs without loops and multiple edges.
V(G) and E(G) denote respectively the set of the vertices and the set of the edges of
the graph G. We say that G is an n-vertex graph when [V(G)| = n. If v,w € V(G)
and v, w] € E(G), then v and w are called adjacent vertices of the graph G, and the
edge [v, w] is called incidental to the vertices v and w. For v € V(G) we denote by
Ad(v) the set of all vertices adjacent to v, and by d(v) the number of such vertices,
i.e. d(v) = |Ad(v)|. For the graph G we put §(G) = min{d(v) | v € V(G)} and
A(G) = max{d(v) | v € V(G)}. The set of vertices of a given graph is called clique
if arbitrary two of its elements are adjacent vertices. If the number of vertices in
a given clique is p, then we call it p-cligue. The biggest natural number p, such
that the graph G contains a p-clique, is called cligue-number of G and is denoted

by cl(G).
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Let u € V(G) and [v,w] € E(G). We say that the vertex u is adjacent to the
edge [v, w] if {u,v,w} is a 3-clique of G.

The set of vertices of a given graph is called anticlique if each two of them
are not adjacent. The anticlique consisting of p vertices is called p-anticlique. The
biggest natural number p, for which the graph G has p-anticlique, is called the
number of independence of G and is denoted by a(G).

The graph G, is called a subgraph of the graph G if V(G;) C V(G) and
E(G)) C E(G). Let M C V(G). We denote by (M) the subgraph generated by M,
ie. V((M)) = M, and two vertices of M are adjacent in (M) if and only if they.
are adjacent in G. We denote by G — M the subgraph of G that is produced by
taking off the vertices of M and all the edges incidental to the vertices of M.

The partition of V(G) into r pairwise disjoint subsets, V(G) = V;UV,U.. .UV;,
is called r-partition of vertices. If all of V;, i = 1,...,r, are anticliques, then this
partition is called r-chromatic partition. The smallest natural number r, for which
G has an r-chromatic partition, is called chkromatic rumber of G and is denoted by
x(G). The graph G is called k-chromatic if x(G) = k. The graph G is called vertez-
critical k-chromatic graph if x(G) = k and x(G — v) < k for arbitrary v € V(G).
We need the following obvious

Proposition 1. If G is a vertez-critical k-chromatic graph, then 6(G) > k—1.

The supplement G of a given graph G is defined by setting V(G) = V(G); two
vertices are adjacent in G if and only if they are not adjacent in G. It is clear that
a(G) = (G). :

Let p and ¢ be given natural numbers. The number R(p, ¢) is the minimum of
all natural numbers n, such that for arbitrary n-vertex graph G either cl(G) > p
or a(G) > q. The existence of the numbers R(p, q) is proved by F. Ramsey in [14].
Therefore they are refered as Ramsey numbers. We need the identity R(4,3) =
R(3,4) = 9, see [3], and more precisely, its obvious consequence:

Proposition 2. If |V(G) > 9 and cl(G) < 3, then a(G) 2> 3.

If arbitrary two vertices of the given n-vertex graph are adjacent, then it is
called complete n-vertex graph and is denoted by K,. The simple cycle of length
n is denoted by C,. Let G; and G, be two graphs without common vertices, i.e.
V(G1)NV(G2) = @. We denote by G1+G> the graph G, for which V(G) = V(G1)U
V(G,) and E(G) = E(G1)UE(G2)UE', where E' = {[vy,v5] | vi € V(Gi), i =1,2}.

2. MAIN RESULTS

Definition. The 2-partition V(G) = Vi U Va of the verteces of the graph G
is free of 3-cliques if each of the sets V) and V, does not contain a 3-clique of the
graph G. We write G — (3,3) when there is no 3-cliques free 2-partition of the
vertices of G.
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It is obvious that if x(G) < 4, then G has a 3-cliques free 2-partition of vertices.
Therefore we have the following

Proposition 3. If G — (3,3), then x(G) > 5.

It is clear that K5 — (3,3) and, conversely, if cI(G) > 5, then G — (3,3). The
opposite direction is false since it is easy to check that Cy — (3,3), but ¢I(Cy) = 4.

Definition. We denote by o the minimum of all natural numbers n such that
there exists an n-vertex graph G — (3,3) with cl(G) = 4. We denote by 8 the
smallest natural n such that there is an n-vertex graph G — (3,3) with cl(G) = 3.

We prove in this paper that @ = 8 and the unique 8-vertex G — (3,3) with
cl{(G) = 4 is the graph K} + C7 (Theorem 1). The existence of the number 8
is proved by P. Erdos and C. Rogers in [1]. R.Irving shows in [5] that 8 < 17.
N. Nenov constructs in [9] a 14-vertex graph 'y — (3,3) with cl(I';) = 3 (see
Fig. 1), showing that 8 < 14. In the paper [10] N. Nenov proves that 8 > 11. In
the present work we prove that 8 > 12 (Theorem 2),

Theorem 1. Let the graph G be such that G — (3,3) and <|(G) = 4. Then
[V(G)] > 8 and |V(G)| = 8 only if G = K, + Cr.

Fig. 1. Graph I'y
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Theorem 2. Let the 11-vertez graph G be such that cl(G) = 3. Then G has a
3-cliques free 2-partition of vertices.

Definition. We say that the graph G is 3-saturated, if for an arbitrary anti-
cliqgue A of G, the subgraph G — A contains a 3-clique.

To prove the Theorems 1 and 2 we need also the next assertions.

Theorem 3. Let G be a 3-saturated graph and cl(G) = 3. Then [V(G)[ > 7
and |V(G)| =7 only if G = Cr.

Theorem 4. Let G be a 3-saturated graph, |V(G)| = 8 and cl(G) = 3. Then
either G is isomorphic to one of the gralhs Li,1=1,...,14, shown at Fig. 2-15,
or there is v € V(G) such that G — v = C7.

Theorem 5. The graphs L;, it = 1,...,14, are 3-saturaled, L; is not isomor-
phic to L; fori# j and for arbitrary v € V(L;) the graph L; — v is not isomorphic
to C5.

The connection between the 3-saturated graphs and the graphs satisfying G —
(3,3) is given by the following

Proposition 4. Let G — (3,3) and B be an anticlique in G. Then the
subgraph Gy = G — B 1s 3-saturated.

Proof. Assume that in fact G; is not 3-saturated and let A be such anticlique
of G, that G5 = G — A contains no 3-cliques. In such case V(G) = V(G2)U(AUB)
is a 3-clique free 2-partition, which is a contradiction. m

If a given graph has a 3-chromatic partition, then obviously it is not 3-saturated.
That is why we have

Proposition 5. If G is 3-saturated, then x(G) > 4.

We state also the following obvious

Proposition 6. If cl(G) = 3, then Ad(v) does not contain 3-cliques for
arbitrary v € V(G). :

We are going to use the next results.

Theorem A ([6]). Let G be an 8-vertezx graph with cl(G) =3 and a(G) = 2.
Then G is isomorphic to one of the graphs Ly, Ly, L3 from Fig. 2-4.

Different proofs of the above theorem could be found in 8], [12] and [13].

Theorem B ([10]). Let the graph G be such that cl(G) < r and x(G) > r+1
for some r > 3. If |V(G)| = r+ 4, then one of the following two assertions is
satisfied: :

(1) there is a vertez v € V(G) such that G — v = K,_3 + Cs;

(i1) the graph G is isomorphic to one of the graphs K._3 + F;, i = 1,...,7,
where the graphs Fy, ..., F7 are shown at the Fig. 16-22.
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Theorem C ([11]). Let the graph G be such that |V(G)| < 10 and l(G) = 3.
Then x(G) < 4.

3. PROOFS OF THEOREMS 3,4 AND 5

Proof of Theorem 3. Assume that GG is 3-saturated and |V(G)| < 7. By
adding if necessary few isolated vertices, we may assume that [V(G)| = 7. Accord-
ing to Proposition 5, x(G) > 4. As cl(G) = 3, we see that G satisfies the conditions
of Theorem B with r = 3 and we conclude that there are only two possible cases:

Case l. G—v = K; + Cj; for some vertex v € V(G). Let V(K,) = {u}.
If u and v are not adjacent, then G — {u,v} = Cs and consequently the graph G
is not 3-saturated. If u and v are adjacent, then G — u = (Ad(u)). According to
Proposition 6, Ad(u) does not contain 3-cliques and therefore G is not 3-saturated.

Case 2. G coincides with some of the graphs F;, i = 1,...,7 (Fig. 16-22).
Each of the graphs F;, i = 1,...,6, satisfies F; — {vg,v7} = Cs, so these graphs are
not 3-saturated. Then the assumption |V(G)| < 7 leads to G = C7. Obviously, C
is 3-saturated, which finishes the proof. m

To prove Theorem 4, we need some preparation.

Lemma 1. Let the graph G be such that |V (G)| = 8, cl(G) = 3, and o(G) > 3.
Then G is not 3-saturated.

Proof. Let {vy, vy, v3, v} be a 4-anticlique in G and vs, ve, v7, vz be the other
vertices of G. If G — {vy, vy, v3, v4} contains no 3-cliques, we are done. In the other
case, let for example {vs, ve,v7} be a 3-clique in G. From cl(G) = 3 it follows that
vg is non-adjacent to some of the vertices vs, vg, v7. We may assume without a loss
of generality that [v7,vg] &€ E(G).

Case 1. The vertex vg is adjacent to some of vs and vg, for example vy is
~ adjacent to vs. We denote by A the set consisting of the vertex vs and these of

the vertices vy, v, vs, vq, which are not adjacent to vs. It is clear that A is an
anticlique in G. As G — A = (Ad(vs)), according to Proposition 6 G — A does not
contain 3-cliques and the assertion of the lemma is shown to be true in this case.

Case 2. The vertex vg 1s not adjacent neither to vs nor to vg. If A is the
anticlique defined in Case 1, then G — A = (Ad(vs) U {vs}). As the vertex vg is
not adjacent to vg and vy and Ad(vs) does not contain 3-cliques, G — A does not
contain 3-cliques, too. m

Lemma 2. Let G be a 3-saturated 8-vertex graph and cl(G) = 3. Then
A(G) £ 5. Moreover, if v is a vertez of a 3-anticlique of G, then d(v) < 4.

Proof. Assume that for some v € V(G) we have d(v) = 7. Then G ~v =
(Ad(v)). According to Proposition 6, Ad(v) does not contain 3-cliques of G, which
contradicts the fact that G is a 3-saturated graph. If we assume that d(v) = 6 and
denote by w the vertex of G non-adjacent to ¢, then G — {v,w} = (Ad(v)). Once
again the last equality contradicts the 3-saturatedness of G. So, by now we have
proved that A(G) < 5. '
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Assume now that the second part of the lemma is false and let for example
{v,u, w} be a 3-anticlique of G and d(v) > 4. It follows that G—{v, u, w} = (Ad(v)).
Again an application of Proposition 6 gets a contradiction to the fact that G is a
3-saturated graph. m

Lemma 3. Let G be a vertez-critical 4-chromatic graph, |V(G)| = 8, and G
contain two 3-anticliques without common vertices. Then G is not a 3-saturated

fraph.

Proof. As x(K4) = 4 and G is vertex-critical, cl(G) < 4. Let {v1,vs,v3} and
{va,vs,ve} be the two 3-anticliques given by the condition, and v7 and vz be the
other vertices. If G — {v4, vs, ve} contains no 3-cliques, then the assertion is proved.
Assume that G — {v4, vs,v6} contains a 3-clique and let for example {v1, v7,vs} be
such 3-clique. By a similar argument we may assume that the graph G —{vy, v2, v3}
contains a 3-clique, say {v4,v7,vs}. From cl(G) < 4 it follows that [v1,v4] € E(G).

Assume that v7 is not adjacent to v, and vs. If v7 is not adjacent also to vs and
vg, then G—vg does not contain 3-cliques and the lemma is proved. If v7 is adjacent
to both vs and vg, then v7 is adjacent to each of the vertices of the subgraph
G — {vz,v3,v7}, and from Proposition 6 it follows that G — {v2,v3,v7} contains
“no 3-cliques. If the vertex v is adjacent to only one of vs and vg, for example
[vs, v7] € E(G) and [vs, v7] € E(G), we consider the following two situations:

1. {vs,vs] &€ E(G). It is clear that G — {vs,vs} does not contain 3-cliques and
consequently G is not 3-saturated.

2. [vs,vs) € E(G). From cl(G) < 4 it follows that [v1,vs5] ¢ E(G). The
. subgraph G — vg does not contain 3-cliques and consequently G is not 3-saturated.

So, in the case when v7 is not adjacent to the vertices v and v3 the assertion
is proved. Therefore we assume that v7 is adjacent to some of the vertices v, and
vs. Similarly, we may assume also that v7 is adjacent to some of the vertices vs
and vg. We put then without a loss of generality [vy,v7] € E(G) and [vs,v7] €
E(G). If the vertex v7 is adjacent to some of v3 and vg, then our assertion is a
consequence of Lemma 2, because d(v7) > 6. That is why we may and do assume
that [‘03, 'U7], ['Us, U7] ¢ E(G)

Consider the subgraph G — {vs,v7}. If it does not contain 3-cliques, we are
done. Let G—{vs, v7} contain 3-cliques. Because G—{vs,v7} = (Ad(v7)U{ve}) and
Ad(v7) = {v1,vo,v4,v5,v3} does not contain 3-cliques, certainly [vs,vs] € E(G).
By similar argument we conclude that [vs, vs] € E(G). If the vertex vg is adjacent
also to some of vy, vs, then d(vsg) > 6 and we may apply Lemma 2 to get the
conclusion. Therefore we assume that vs is not adjacent neither to vy nor to vs.

Let us mention that at least one of the pairs {vy,vs}, {vi,v5}, {v2,va} is not
adjacent in the graph G, because otherwise we would have (Ad(v7)) = Cs and
K, + Cs C G, which contradicts to the fact that G is a vertex-critical 4-chromatic
graph, since x(K; + Cs) = 4. To conclude, let see that:

If [vg,vs) € E(G), then {va,vs,v3} is an anticlique and G — {v3,vs, vg} does
not contain 3-cliques. |

If [v1,vs] € E(G), then G — {v2,vs} does not contain 3-cliques.
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If [vy, v4] & E(G), then G — {vs,vs} does not contain 3-cliques. w

Lemma 4. Let G be a vertez-critical 4-chromatic graph and |V(G)| = 8.
Then a(G —v) > 3 for arbitrary v € V(G).

Proof. It is obvious that if a 7-vertex graph has no 3-anticliques, then its
chromatic number is bigger than 3. Therefore a(G — v) < 3 implies x(G — v) > 3,
which contradicts the fact that G is a vertex-critical 4-chromatic graph. =

Lemma 5. Let G be a verlez-critical 4-chromatic graph and |V(G)| =
Then G is not a 3-saturated graph.

Proof. If a(G) > 3, then the assertion follows from Lemma 1. So, we assume
that a(G) < 4. Taking into account Lemma 3 we may assume that each two
3-anticliques in G have a common vertex.

Case 1. There are two 3-anticliques in G that have exactly one common
vertex. We put them to be the 3-anticliques A = {a,c,y} and B = {a,b,z}.
Consider the subgraph G — a. According to Lemma 4, this subgraph has a 3-
anticlique C = {u,v,z}. Because the sets A and C could not be disjoint, as well
as B and C, we may assume that u = ¢ and v = b, i.e. C = {¢,b,z}. From the
assumption a(G) < 4 it follows that z # 2, z # y, [a, 2] € E(G), [b,y] € F(G) and
[¢, z] € E(G). From the assumption that there are not two disjoint 3-anticliques in
G it follows that [z, ], [z, 2], [z, y] € E(G). So we may see that in fact the subgraph
generated by the vertices a, b, ¢, z, y, z coincides with the graph shown at Fig. 23
(the bold lines denote the edges of G and the thin lines — the ones of G). Let u and
v be the last two vertices of G. According to Lemma 2, max{d(z), d(y),d(z)} < 4.
From this inequality we conclude that none of z, y, z can be adjacent to both u
and v, hence one of u and v is not adjacent to at least two of z, y, z. We assume
without a loss of generality that [u,z], [u,y] € E(G).

Subcase 1.a. The vertex u is not adjacent to the vertex z. From cl(G) = 3
it follows that v is not adjacent at least to one of z, y, z. Because of the obvious
symmetry we may assume that [v,z] ¢ E(G). In the subgraph G — {v, z} there are
no 3-cliques and consequently the graph G is not 3-saturated.

- Subcase 1.b. The vertex u is adjacent to the vertex z. Because d(z) < 4
(Lemma 2), we have [z,v] ¢ E(G). In the subgraph G — {z,v} there are no 3-
cliques, which shows that G is not 3-saturated.

Case 2. Each two different 3-anticliques in G have two common vertices. Let
A = {u,v,w} be a 3-anticlique in G. According to Lemma 4, the subgraph G — w
contains a 3-anticlique B. Then B = {u,v,z}, since |[AN B| = 2. Similarly, the
subgraph G — u contains 3-anticlique C that has two common vertices with A as
well as with B. Then C = {z,v,w} and {u,v, z, w} is a 4-anticlique and the graph
(7 1s not 3-saturated according to Lemma 1. =

Lemma 6. Let G be a T-vertez graph, cl(G) = 3, o(G) = 2 and A(G) < 4
Then G is isomorphic to one of the graphs F;, i =1,...,7 (Fig. 16-22).
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Proof. From o(G) = 2 it follows that x(G) > 4. Because cl(G) = 3, we may
apply Theorem B with » = 3. From A(G) < 4 it follows that the graph G contains
no subgraph isomorphic to K; 4+ Cs. The only possibility remaining is G to be
isomorphic to one of F;. m

Proof of Theorem 4. Theorem C implies that x(G) < 4 and from Proposi-
tion 5 we know that x(G) > 4. Consequently, x(G) = 4. According to Lemma 5,
G is not a vertex-critical 4-chromatic graph, i.e. there is a vertex, say vg € V(G),
such that x(G — vg) = 4. We apply Theorem B with » = 3 to the subgraph G — vg
to conclude that either G — vy is isomorphic to some of Fj, i = 1,...,7 (Fig. 16-22)
or there is a v7 € V(G) such that G — {v7,vs} = K; + Cs. Assume that there is no
v € V(G) such that G — v # C7 = F7. The above considerations show that there
are the following possibilities:

Casel. G—vg = F; (Fig. 16). We shall use the following automorphisms of
the graph Fy:

o(v2) = vg, w(va) =v7, @(ve) =va, (v7)=v4, @(vi)=v;, i=1,3,5,
Y(vi) =v7, Y(vs) =wve, Y(ve) =v3, Y(v7)=wv1, Y(vi)=wv, i=245.

Subcase 1.a. The vertex vg is adjacent to at least one of the vertices vs, v3, vg.
Because p(vg) = vz, ¥(vs) = vz, we may do assume without a loss of generality
that vg is adjacent to vg. From cl(G) = 3 it follows that vg is not adjacent to
at least one of v and v3. Because of the symmetry it is enough to consider the
case [vs,vs] € E(G). Certainly, v; € Ad(vs), since otherwise {v,vs, vs} would be
an anticlique and G — {vy,v3,vs} would not contain 3-cliques. From cl(G) = 3
and vy, ve € Ad(vg) it follows that vy, ¢ Ad(vs). If we assume that vy ¢ Ad(vs),
then {vs,vs,vs} is an anticlique and G — {vz, v4, v} does not contain 3-cliques;
and if we assume that vs & Ad(vs), then G — {vs, v7} does not contain 3-cliques.
We have got a contradiction in both cases, which means that vs,vs € Ad(vs).
Consequently, either Ad(vs) = {vi,v4,vs,vs} and G is isomorphic to L4 (Fig. 5) or
Ad(vs) = {v1,v4,v7,vs,v6} and G is isomorphic to Lg (Fig. 7).

~ Subcase 1.b. The vertex vg is adjacent to none of vq, v3, vg. If we assume that
vy € Ad(vs), then {vy, v3, vg} is an anticlique and G — {v;, v3, v} does not contain
3-cliques; if v4 ¢ Ad(vg), then {vs,vs4,vs} is an anticlique and G — {vg,v4,vs}
does not contain 3-cliques; if we assume that vs ¢ Ad(vs), G — {vs, v7} does not
contain 3-cliques, and if v; ¢ Ad(vs), then the subgraph G — {vs, v7,vs} does not
contain 3-cliques. Thus we have proved that {v;,vs4,vs,v7} C Ad(vs). Because
vo,v3, v ¢ Ad(vs), we compute Ad(vs) = {v1,vs,vs,v7}, and G is isomorphic to
the graph Ls (Fig. 6).

Case 2. G —uvg = I, (Fig. 17). We shall use the followmg automorphism of
the graph Fy:

() =vs, @(v2) =va, @(va) =v3, ¢(ve) =y,
p(vs) =v1, (vs) = vz, (v7) = vs.

The vertex vg is adjacent to at least one of the vertices vg, v7, since otherwise
{vs, v7,vs} would be an anticlique and G — {vg, v7,vs} would contain no 3-clique.

137



Because of the certain symmetry (¢(vs) = v7) we may assume that ve € Ad(vs).
From cl(G) = 3 it follows that vs is not adjacent to the edges [vi, v}, [vs,vs],
[vs, vq]. Because G — {vs, v7} contains 3-cliques, we have two possibilities:

Subcase 2.a. The vertex vs is adjacent to the edge [vy,vs]. From cl(G) = 3 it
follows that vy @ Ad(vs). Certainly, v4 € Ad(vs), since otherwise {vz, v4, v3} would
be an anticlique and G — {v5, v4, v} would contain no 3-clique. So, {v1, v4,vs,v6} C
Ad(vs). Because cl(G) = 3, we have Ad(vs) = {v1,v4,vs5,v6}. Wesee that o(G) = 2
and then by Theorem A the graph G is isomorphic to the graph L, (Fig. 3).

Subcase 2.b. The vertex vs is adjacent to the edge [v4,vs]. From cl(G) = 3 it
follows that vs, v7 & Ad(vs). If v; & Ad(vs), then G — {vz, v4} contains no 3-clique.
If v; € Ad(vs), then as in subcase 2.a we conclude that the graph G is isomorphic
to the graph Lo (Fig. 3).

Case 3. G —vg = F3 (Fig. 18). If vg,v7 ¢ Ad(vs), then {ve,v7,vs} is an
anticlique and G — {vg, v7, vs} contains no 3-clique, which is a contradiction. Thus
the vertex vg is adjacent to at least one of vg, v7. Because of the symmetry we
may assume that vg € Ad(vs). From cl(G) = 3 it follows that vg is not adjacent
to the edges [vi, v2], [v2, v3], [v3, v4). Because G — {vg, v7} contains 3-cliques, vg is
adjacent to at least one of the edges [v;,vs], [va, vs].

Subcase 3.a. The vertex vs is adjacent to the edge [vy, vs] and is not adjacent
to the edge [v4,vs], i.e. v1,vs € Ad(vs) and v4 € Ad(vg). From cl(G) = 3 it
follows that vy, v7 & Ad(vs). So, {vi,vs,ve} C Ad(vs) and vy, vs,v7 & Ad(vs).
That is why either Ad(vs) = {v1,vs,v6} or Ad(vs) = {v1,vs,v6,v3}. If Ad(vs) =
{vy,vs, v}, then the graph G is isomorphic to the graph Ly (Fig. 10). If Ad(vs) =
{vy, vs,ve, v3}, then a(G —v) = 2 and A(G —v2) = §(G —v,) = 4. From Lemma 6
it follows that G — v9 is isomorphic to some of the graphs F;, 7 =1,...,7. Because
§(F;)=3fori=1,...,6, we have that G — vy = C7 = F7, which contradicts the
assumption at the top of the proof.

Subcase 3.b. The vertex vg is adjacent to the edge [v4, vs] and is not adjacent
to the edge [v1, vs), i.e. v4,vs € Ad(vs) and vy & Ad(vs). From cl(G) = 3 it follows
that vs, vz € Ad(vs). If v2 € Ad(vs), then G — vs is isomorphic to the graph Fy
and we are back to the case 1. If v, € Ad(vs), then G is isomorphic to the graph
Lo (Fig. 11).

Subcase 3.c. The vertex vg is adjacent to the both edges [v;,vs] and [v4, vs).
From cl(G) = 3 it follows that vg is not adjacent to any of v, v, v7. We take the
conclusion that G is isomorphic to the graph Ly (Fig. 12).

Cased4. G —vg = Fy (Fig. 19). We use the following automorphism of the

graph Fy:
o(vi) =vs, @(v2) =vr, @(v3) =vs, ¢(va)= v,
w(vs) = v1, (ve) =vs, @(vr)=va. |

We consider three subcases:

Subcase 4.a. The vertices vsq,vs € Ad(vg). From cl(G) = 3 and vs € Ad(vs)
it follows that the vertex vs is not adjacent to the edges [vy,vs], [v2, va], [v3, va].
From this fact we conclude that vs € Ad(vs) (otherwise vz is not adjacent to
any of the edges of the 5-cycle vy, vy, v3, v4, vs, v1 and G — {vg,v7} contains
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no 3-cliques). From cl(G) = 3 and vs € Ad(vs) it follows that the vertex vg is
not adjacent to the edges [v3, ve], [v3, v7], [v7,vs]. Hence v; € Ad(vs) (otherwise
vs is not adjacent to any of the edges of the 5-cycle vy, vg, vs, vz, vs, v; and
G'—{v2, v4} contains no 3-cliques). So, {v;,v4, vs, vs} C Ad(vg). Because (G) =3,
we compute Ad(vs) = {vi, v4, vs,v6}, and G is isomorphic to the graph L7 (Fig. 8).

Subcase 4.b. The vertex vz is adjacent to only one of the vertices v4, vg.
Because of the certain symmetry (¢(ve) = v4) we may assume that vs € Ad(vs) and
va & Ad(vs). If vy & Ad(vs), then {v2, v4,vs} is an anticlique and G — {vs, v4, v8} =
Cs contains no 3-cliques — a contradiction. If v € Ad(vg), then from cl(G) = 3 it
follows that vg Is not adjacent to v; and v3. Since vg is not adjacent also to vg4, we
have that vg is not adjacent to any of the edges of the 5-cycle vy, vq, vs, v4, vs, vy.
This is a contradiction, because G — {vs, v7} does not contain 3-cliques.

Subcase 4.c. The vertices vsq,ve € Ad(vs). Certainly, vo,v7 € Ad(vs): if
vy ¢ Ad(vs), then G — {vz,v4,vs} contains no 3-cliques; if v; ¢ Ad(vg), then
G — {vs,v7,vg} contains no 3-cliques. If v is adjacent to the edge [vy, vs}, then
a(G) = 2 and from Theorem A it follows that the graph G is isomorphic to the
graph L; (Fig. 2). Assume now that the vertex vs is not adjacent to the edge
[v1,vs]). Then either v, ¢ Ad(vs) or vs ¢ Ad(vs). From the reasons of symmetry
(¢(v1) = vs) we may assume that vy  Ad(vs). The subgraph G — {ve, v7} contains
a 3-clique and thus vz € Ad(vs). If vs € Ad(vs), then Ad(vs) = {vz,v3,v7}, and G
is isomorphic to the graph Lg (Fig. 9). If vs € Ad(vg), then the subgraph G — v
is isomorphic to Fy, which is the case 1.

Cased. G —vg= Fs (Fig. 20). We consider the following two possibilities:

Subcase 5.a. The vertex vg & Ad(vg). Here we surely have vs,v7 € Ad(ws):
if vs  Ad(vs), then {vs,vs,vs} is an anticlique and G — {vs, v, vs} contains no
3-cliques; if vz ¢ Ad(vs), then {vg,v7,vs} is an anticlique and G — {vg, v7, vs}
contains no 3-cliques. From cl(G) = 3 it follows that v;,vs & Ad(vs). Because
G — {vs, v7} contains a 3-clique, the vertex vs is adjacent to the edge [vy, v3]. Thus
the subgraph G — v7 is isomorphic to Fy, which is the case 1.

Subcase 5.b. The vertex ve € Ad(vs). From cl(G) = 3 it follows that the vertex
vg is not adjacent to the edges [v1,vs], [v2, v3] and [v3, v4]. Because G — {vs, v7}
contains a 3-clique, the vertex vs is adjacent to at least one of the edges [v;, v5] and
[vg, v5]. For the symmetry we may assume that vg is"adjacent to the edge [vy, vs)].
From cl(G) = 3 we have that v; € Ad(vs) and thus v is not adjacent to the edges
[v1,v7] and [v4,v7]. But vg is not adjacent also to the edges [vy,v2], [v2,v3] and
[v3, v4] and the subgraph G — {vs, v¢} contains no 3-cliques, a contradiction.

Case 6. G—vg = Fs (Fig. 21). We shall use the following automorphisms of

the graph Fjg:
§9(U2) = Vs, ‘P(UG) =vy, (vs) =v7, (v7)=vs, p(vi) =v 1=1,3,4,
P(vi) =v1, Y(v2)=vs, ¥(va) = vg, Y(vg) = va,
Y(vs) = va, WY(ve) =vr, Y(vr) = v,
v(vy) = vy, v(ve)=v7, v(vs)=uvs, v(va)= vz,

v(vs) =vg, v(ve)=wvs, v(vr)=vs.

139



Subcase 6.a. The vertex vg is not adjacent to some of the vertices va, vs, v,
v7. Because of the symmetry (p(v2) = ve, ¥(v2) = vs, v(v2) = v7) it is enough to
consider only the situation when v; ¢ Ad(vs). In this situation certainly vs,v7 €
Ad(vs) (if vs € Ad(vs), then {vs, vs5, vs} is an anticlique and G—{vz, vs, v3} contains
no 3-clique; if vz € Ad(vs), then {ve,v7,vs} is an anticlique and G — {vy, v7, vs}
contains no 3-clique). From cl(G) = 3 and vs,v7 € Ad(vs) it follows that vy, vy ¢
Ad(vs). The subgraph G — {ve,v7} contains no 3-cliques, a contradiction.

Subcase 6.b. The vertex vs is adjacent to all vertices vq, vs, vg, v7. From
cl(G) = 3 it follows that v is not adjacent to the vertices vy, vs, va. We get the
conclusion that the subgraph G — {vg, v7} contains no 3-cliques, a contradiction.

Case 7. There are vy,vg € V(G) such that G — {vr7,vs} = K; + Cs. Let
V(K1) = {ve} and C5 = vy, v2,v3,v4,vs5,v1. From Lemma 2 and the fact that
d(ve) > 5 we conclude that A(G) = 5 and v7,vs ¢ Ad(vg). Certainly, {v7,vs] €
E(G) (or, otherwise, {vg, v7,vs} is an anticlique and G — {vs, v7,vs} contains no
3-clique). If we assume that (G — v7) = a(G — vg) = 2, then from [v7, vs] € E(G)
it follows that a(G) = 2 and according to Theorem A the graph G is isomorphic
to some of Ly, Lo, L3.

Let us now assume that at least one of the numbers a(G — v7), a(G — vs)
is ‘bigger than 2. Without a loss of generality, a(G — v7) > 2. This means that
the vertex v; together with two non-adjacent vertices of the cycle vy, va, vs, vs,
vs, v; form a 3-anticlique. Let, for example, {vs, vs,v7} be a 3-anticlique. Then
v1,v2 € Ad(v7), since G ~ {vs, vz} contains a 3-clique. From cl(G) = 3 it follows
that vg is not adjacent to at least one of the vertices vy, v2. Let vs be non-adjacent
to U1,

Assume first that vg is not adjacent also to vy. Put V5(G) = {v € V(G) |
d(v) = 5}. Then V5(G) C {v4,v6}. Because G — {ve,v7} contains a 3-clique, it
follows that the vertex vg is adjacent to at least one of the edges [v3, v4], [v4,vs)].
For the symmetry we may assume that vs is adjacent to the edge [v4,vs]. Then
o(G — v3) = 2 and from V5(G) C {va,ve} it folows that A(G — v3) = 4. According
to Lemma 6, G — v3 is isomorphic to some of the graphs F; fori=1,...,7. By our
assumption G — v3 # F7 and thus we turn to one of the cases 1-6.

Assume now that vg is adjacent to vo.

" Subcase 7.a. The vertex vq € Ad(vs). It is clear that a(G —v3) = 2. Note that
A(G — v3) = 4 since V5(G) C {va,va,v6,v8}. According to Lemma 6, G — v3 is
isomorphic to some of the graphs F; fori = 1,...,7. By our assumption G—v3 # F7
and thus we turn to one of the cases 1-6.

Subcase 7.b. The vertex vq4 ¢ Ad(vs). Because we have also v; ¢ Ad(vs), the
vertex vg is adjacent to none of the edges [vi, vs), [v1, v2), [v3, v4], [v4, vs]. But the
subgraph G — {vg, v7} contains a 3-clique and therefore the vertex vs is adjacent to
the edge [vz,v3). So, we proved that the vertex vz is adjacent to the edge [v),v]
and, eventually, to the vertex vq, and the vertex vs is adjacent to the edge [v3, v3]
and, eventually, to the vertex vs. Now,if v4 ¢ Ad(v7) and vs ¢ Ad(vs), then the
graph G is isomorphic to the graph Lj, (Fig. 13). If v4 € Ad(v7) and vs ¢ Ad(vs)
or v4 € Ad(v7) and vs € Ad(vs), then the graph G is isomorphic to the graph L3

140



(Fig. 14). If v4 € Ad(v7) and vs € Ad(vg), then the graph G is isomorphic to the
graph Lq4 (Fig. 15). =

Proof of Theorem 5. We fix some notations:

e(G) = |E(G)],

t(G) is the number of the 3-cliques of the graph G,

t(G) is the number of the 3-anticliques of the graph G,

n(G) is the number of the pairs of 3-anticliques that have only one common
vertex,

m(G) is the number of the pairs of 3-anticliques that have no common vertex;

i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14
e(Ls) 16 17 18 16 16 17 16 15 16 16 17 15 16 17
t(L;) 8 10 12 8 7 9 9 7 8 8 10 8 8 8
L) o o o0 1 1 1 1 2 2 2 1 2 2 2
n(Ly) 0 0 0 0 0 0 0 1 0 1 0 0 0 0

mLj) 0 0 0 0 0 0 0 0 0 0 0 1 1 1

From these relations we see that each two of the graphs L;, i = 1,...,14, are
not isomorphic. As a(L;) < 3, for proving that the graphs L;, i = 1,..., 14, are
3-saturated, we need to show that:

(1) t(L; — v) > 1 for an arbitrary v € L;, i = 1, ..., 14;

(2) t(L; — {u,v}) > 1,1 =1,...,14, for each two non-adjacent vertices u and v
from L;;

(3) t(L; — {u,v,w}) > 1,7 =1,...,14, for an arbitrary 3-anticlique {u, v, w} of L;.

We need the following assertions:

Proposition 7 ([2], see also [7]). Let [V(G)| = 6. Then {(G) +{(G) > 2.

Proposition 8 ([4], see also {7]). Let |V(G)| = 6, {(G) = 2 and the both
3-anticliques of G have only one common vertez. Then t(G) > 1.

For arbitrary ¢ = 1,..., 14 and for arbitrary vertex of L; there is non-adjacent
vertex of L;, therefore (2) implies (1). Because #(L;) < 2, the check of (3) is easy.
We only show the 3-anticliques of the graphs L;. The graphs L,, Ls and L3 have not
3-anticliques. The graphs L4, Ls and Lg have the unique 3-anticlique {v;,v4,v7}.
The graph L; has the unique 3-anticlique {vg,v7,vs}. The graph Ls has two 3-
anticliques — {v;,v4,vg} and {vs,ve,vs}. The graph Lg has two 3-anticliques —
{va,v4,vs} and {va,v7,vs}. The graph Lo has two 3-anticliques — {v;, v3, vs}
and {vs,v7,vg}. The graph L;; has the unique 3-anticlique {v2,v7,v3}. Each of
the graphs L;3, L13 and L4 has only these two 3-anticliques — {vs,vs,v7} and
{vi,vq,vs}. i

We now show the inequalities (2). If 1 = 1,2,3,4,5,6,7,11, then #(L;) < 1
and the inequality (2) follows from Proposition 7. Let ¢ = 8,10. If at least one
of the vertices u, v is a vertex of a 3-anticlique of the graph L;, then (2) follows
from Proposition 7. If none of the vertices u, v is a vertex of a 3-anticlique of the
graph L;, then the subgraph L; — {u, v} satisfies the conditions of Proposition 8
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and hence (2) is satisfied. Let i = 9. The graph Lg has only the 3-anticliques
{ve,vs,vs} and {vs,v7,vs}. If u,v € V(Lg), [u,v] & E(Lg), and at least one of the
vertices u, v is a vertex of a 3-anticlique, then ¢(Lg — {u,v}) < 1 and the inequality
t(Lg —{u,v}) > 1 follows from Proposition 7. If none of the vertices u, v is a vertex
of a 3-anticlique, then the pair {u,v} coincedes with one of the following pairs of
non-adjacent vertices of Lg: {v1,va}, {vs,vs}, {vs, vs}, for which (2) is obvious.

Consider the graphs L2, L3 and Ly4. It is enough to prove (2) for L, since
Ly, is a subgraph of L3 and Li4. The only vertices of L, that do not take part
in 3-anticliques are v, and vg. Since v, and ve are adjacent vertices of the graph
L9, if the vertices u and v are not adjacent, it follows that one of them is a vertex
of a 3-anticlique of L12. Therefore (Ly2 — {u,v}) < 1. From Proposition 7 we get
Lz — {u,0}) > L.

We can see that L;—v # C, Vv € V' (L), comparing the inequalities 6(L; —v) <
3and 6(C7)=4. m

4. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. Assume that |V(G)| < 8. By adding if necessary
isolated vertices, we may consider only the case |V(G)| = 8. According to Propo-
sition 3, we have x(G) > 5. We apply Theorem B (r = 4) to conclude that either
G=K,+F;,i=1,...,7,or there exists v € V(G) such that G —v = K3+ Cs. We
are going to prove that in the second case we can also find a vertex that is adjacent
to all other vertices of the graph G. Let G — v = Ky + Cs and V(K3) = {z,y}. If
the vertex v is not adjacent to the edge [z,y], then {z,y,v} U V(Cs) is a 3-cliques
free 2-partition of the vertices of G, which is impossible. Hence the vertex v is
adjacent to the edge [z,y] and then z is adjacent to all other vertices of the graph
G. So, if the graph G satisfies the conditions of Theorem 1, then there is a vertex
vg € V(G) which is adjacent to all other vertices of the graph G. Proposition 4
implies that G — vg is a 3-saturated 7-vertex graph. It is clear that cl(G — vo) = 3.
According to Theorem 3, G —vg = C and since vg is adjacent to all vertices of C7,
it follows that G = Ky + C7. m

We need the next lemmas.

Lemma 7. Let A be an anticliqgue of the graph G, Gy = G — A; and V(G,) =
BUC be a 3-cliques free 2-partition of vertices of Gy such that: each verter of A,
that is adjacent to some edge of the subgraph (B), is not adjacent to any edge of
the subgraph (C). Then G has a 3-cliques free 2-partition of vertices.

Proof. Let A} = {v € A | v is not adjacent to any edge of (B)}. Put Vi =
AjUB and V5 = (A\ A4;)UC. Consider the 2-partition V(G) = ViUV, ViNV, = @.
It is clear that V; does not contain 3-cliques of the graph G. If v € Vo N A, then v
is adjacent to some edge of the subgraph (B) and therefore is not adjacent to any
edge of the subgraph (C). That is why V> does not contain 3-cliques, too. =
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Lemma 8. Let G be a graph, |V(G)| = n, cl(G) = 3, and A be an anticlique
of G, |A|=n~8. Put Gy = G — A. If G — (3,3), then either Gy = L4 (Fig. 15)
or there ezists v € V(Gy) such that G, — v = C7.

Proof. According to Proposition 4, the subgraph G, is a 3-saturated graph.
Since [V(G1)| = 8 and cl(G) = 3, we can apply Theorem 4 to the subgraph G,. If
we assume that the assertion of Lemma 8 is false, then G is isomorphic to one of
the graphs L;, 1 =1,...,13. We shall consider all these cases:

Casel. G) is some of the graphs Ly, Ly, L3. We put B = {v3, v4, v7, vg} and
C = {v1,v2,vs,v6}. For any of L, Ly, L3 we have E((B)) = {[vs, v4], [v7, v3]}.

For any of Ly, Ly, L3 it is true that each edge of (C) belongs either to
E({(Ad(v3))) or to E({Ad(v4))). Therefore, if we assume that some v € A is ad-
jacent to the edge [v3,vs], then cl(G) = 3 implies that v is not adjacent to any
of the edges of (C). Similarly, if some v € A is adjacent to {v7,vs], then v is not
adjacent to any of the edges of (C). We see from Lemma 7 that G has a 3-cliques
free 2-partition of vertices, which is a contradiction.

Case 2. G; is some of the graphs L4, Ls, L. We put B = {v2, v3,vs,vs} and
C = {vy,v4,v6,v7}. For any of L4, Ls, Le we have E((B)) = {[va, va], [vs, vs]} and
E({(C)) = {[v1, vs], [va,v6]}. If some of the vertices of the anticlique A is adjacent
to the edge [ve, v3), then cl(G) = 3 implies that this vertex is not adjacent to the
edges [v1,vs], [v4, ve], 1.€. it is not adjacent to any of the edges of (C). If any of
the vertices of the anticlique A is adjacent to the edge {vs, vs)], then from cl(G) = 3
it follows that this vertex is not adjacent to the vertices v; and v4. Consequently,
it is not adjacent to the edges [v;,vs] and [v4,vg] of the subgraph (C). We see
then from Lemma 7 that G has a 3-cliques free 2-partition of vertices, which is a
contradiction.

Case 3. G, is some of the graphs L7, Ls, Lio Ly1. We put B = {v,v3,v4}
and C = {vy, vs, ve,v7,v3}. Foranyof L7, L, Lo, L11 we have E((B)) = {[vs, va]}.
AlSO, for L7, Llo, L11 we denote E1 = E((C)) — {[‘vz,vs], [vs,‘vgl, [’03,1)5], [05,1)7]},
and for Lgs — E, = E((C)) = {[vz, ve], [v2,vs), [vs,v7], [vs, v7]}.

Let the vertex u € A be adjacent to the edge [vs,vs4). For the graphs Lo,
Lyo, L11 we have that {vy,vs} C Ad(vs) and {vs,ve, v7,v8} C Ad(vs). Therefore
cl(G) = 3 implies that the vertex u is not adjacent to any of the edges from E;.
For the graph Lg we have that {vy,ve,v7,v8} C Ad(vs) and {vs,v7} C Ad(vs).
Therefore cI(G) = 3 implies that the vertex u is not adjacent to any of the edges
from Es.

So, the conditions of Lemma 7 are satisfied and we conclude that in the con-
sidered case the graph G has a 3-cliques free 2-partition of vertices, which is a
contradiction. |

Case 4. G, coincides with the graph L. We put B = {v1,vs,v4,vs} and
C = {vy,vs,v6,v7}. We have that E({(B)) = {[v1,vs], [vs,v4]}. If some of the
vertices of the anticlique A is adjacent to the edge [v1,vs], then cl(G) = 3 and
C C Ad(v;) imply that this vertex is not adjacent to the edges v, ve] and [vs, v7),
i.e. it is not adjacent to any of the edges of (C). If the anticlique A contains a
vertex that is adjacent to the edge [v3, v4], then from cl(G) = 3 it follows that this
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vertex is not adjacent to the edges [vs, vg], [vs, v7], 1.e. it is not adjacent to the edges
of (C'). We see from Lemma 7 that G has a 3-cliques free 2-partition of vertices,
which is a contradiction.

Case 5. G .is some of the graphs L3, Liz. We put B = {v;,vs,v4} and
C = {vs,vs, ve,v7,vs}. We have that E((B)) = {[v1,v2]} and E({(C)) = {{v7, vs],
[vs, vs], [v3, ve], [Us, ve]}. Let some of the vertices of the anticlique A be adjacent to
the edge [v;,vs]. From cl(G) = 3 and {v3, vs,v7,v8} C Ad(vz) it follows that this
vertex is not adjacent to the edges [v7, vs], [v3, vs] and [vs, vg]; from cl(G) = 3 and
{vs, v} C Ad(v1) it follows that this vertex is not adjacent to the edge [vs, ve].

The above reasoning shows that the conditions of Lemma 7 are satisfied and
we conclude that the graph G has a 3-cliques free 2-partition of vertices, which is
a contradiction. m '

Lemma 9. Let G be an 1l-vertez graph, cl(G) = 3, and G have three 3-
anticliques, each two of which have an empty intersection. Then the graph G has
a 3-cliques free 2-partition of vertices.

Proof. Let A, B and C be the antichiques given by the condition. As-
sume the contrary, i.e. G — (3,3). We put G; = G — A. Because G has
two anticliques B and C with empty intersection and a(C7) = 2, we have that
Gy —v # Cr, Yv € V(G;). From Lemma 7 it follows that G; = L4 (Fig. 15).
Let A = {vg,vi0,v11}. At least one of the vertices vg, vio, v11 Is adjacent to the
edge [vg,ve] (if not, {v2, ve,ve,v10,v11} U {v1,v7,v8,v3,v4,vs5} is a 3-cliques free
2-partition of the vertices of G). Thus we assume that vg is adjacent to [vs, ve].
At least one of the vertices vy, v19, v1; is adjacent to the edge [v1,v2] (if not,
{v1,vs, v4, v9, V10, v11} U {v3, 5, V6, v7, v8} Is a 3-cliques free 2-partition of the ver-
tices of G). The vertex vy is not adjacent to the edge [vy, v}, since otherwise
{v1,v3,v6,v9} would be a 4-clique. Hence we may assume that vy, is adjacent to
the edge [v1, v3]. Surely, one of the vertices vg, v10, 11 is adjacent to the edge [vy, ve]
(if not, {vy, ve, vs, v, v10,v11} U {v2, v3, v4,vs5, v7} is a 3-cliques free 2-partition of
the vertices of G). cl(G) = 3 implies that both vertices vg and v1o are not adjacent
to the edge [v1, ve], thus vy is adjacent to the edge [vy, vs].

Consider the 2-partition V(G) = V; U V5, where V; = {vg,v7,vs,v10} and
Vo = {v1, v, v3, va, Us, Vo, v11}. Since vyg is adjacent to the vertex vy and cl(G) = 3,
the vertex vy is not adjacent to the edge [v7,vs]. That is why Vj contains no 3-
cliques. From cl(G) = 3 and the fact that vg is adjacent to the edge [vg, vg] it
follows that vg is not adjacent neither to the vertices vy, vs nor to the edge [v4, vs).
Thus vg i1s not adjacent to any of the edges of the 5-cycle vy, vy, vs, v4, vs, v;.
From cl(G) = 3 and the fact that v;; is adjacent to [vi, ve] it follows that vy is
not adjacent neither to the vertices vy and vs nor to the edge [vs, v4]. This shows
that vy; is adjacent to none of the edges of the 5-cycle vy, va, va, v4, vs, v1. Since
vg and v;; are not adjacent, Vo does not contain 3-cliques. We have proved that
V(G) = VUV, is a 3-cliques free 2-partition of the vertices of G. This contradiction
completes the proof. =
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Proof of Theorem 2. Assume the contrary, ie. G — (3,3). According
to Proposition 2, a(G) > 3. Let A = {vg,v10,v11} be a 3-anticlique of G. Put
Gi = G- A; V(Gy) = {v1,...,vs}. Because L4 (Fig. 15) has two disjoint 3-
anticliques, Lemmma 9 implies that G; # L;4. From Lemma 8 it follows that there
exists v € V(G1) such that Gy — v = C7. Let, for example, G, — vg = Cr = F»
(Fig. 22). '

We shall prove first that the vertex vs together with some two vertices of C7
form a 3-anticlique of the graph G. From cl(G) = 3 it follows that the vertex v
is not adjacent to some of the vertices of C7. Let, for example, v be not adjacent
to vy (Fig. 22). If the vertex vs is not adjacent to vz or vz, then {vy,vs, v} or,
respectively, {vy,v7,vg} is a 3-anticlique of G. If vy is adjacent to both v, and vy,
then ¢l(G) = 3 implies that {v4, vs,vs} i1s a 3-anticlique of G.

So, we may assume that {vy, vy, vs} is a 3-anticlique of the graph G. From
cl(G) = 3 it follows that vs is not adjacent to one of the vertices of the 3-clique
{vs,vs,v7}. We shall consider the following two cases.

Case 1. The vertex vg is not adjacent to vz or vy, for example vg is not
adjacent to vz. One of the vertices vg, v10, v11 is adjacent to the edge [vy, v3] (if
not, {vi, va, vs, vs, v, V10, v11 } U {v4, vs, vs, v7} is a 3-cliques free 2-partition). Let,
for example, vg9 be adjacent to the edge [v1,v3]. From cl(G) = 3 it follows that
{vs,ve,vg} is a 3-anticlique. One of the vertices vg, vjg, v1; is adjacent to the
edge [v1,vg] (if not, {vy,ve, v7,ve,v10,v11} U {v2, v3,v4,v5,v8} is a 3-cliques free
2-partition). From cl(G) = 3 it follows that vg is not adjacent to the edge [v;, vs].
Therefore we may assume that vyg is adjacent to the edge [vy, vg]. From cl(G) = 3 it
follows that {vs,v4,v10} 1s a 3-anticlique. We obtain that G contains the pairwise
disjoint 3-anticliques {vy,vs,vs}, {vs,ve,ve} and {v3,v4,v10}, which contradicts
Lemma 9.

- Case?2. The vertex vg is not adjacent to vs. Surely, one of the vertices vg, v,
vy, is adjacent to the edge [vy, ve] (if not, {v1, ve, v7, v, V10, v11} U {v2, v3, v4, s, v8}
is a 3-cliques free 2-partition). Let, for example, vg be adjacent to [v;,vg]. From
cl(G) = 3 it follows that {vs, v4,ve} is a 3-anticlique. One of the vertices vg, v1p, v11
is adjacent to the edge [v2, v4] (if not, {v, va, va, ve, v10, v11 }U{v1, vs5, V6, V7, s} Is
3-cliques free 2-partition). Because vg is adjacent to vg and cl(G) = 3, we know that
vg is not adjacent to the edge [v2, v4]. Consequently, we may assume that the vertex
v10 is adjacent to the edge [vy, v4]. From cl(G) = 3 it follows that {vs,v7,v10} is a
3-anticlique. We have obtained that G contains the pairwise disjoint 3-anticliques
{vy,vs,vs}, {v3,va,v9} and {ve,v7,v10}, which contradicts Lemma 9.

The proof of Theorem 2 is completed. =

5. AN EXAMPLE

We consider the graph L4 (Fig. 15) and the following subsets of V(L14): M; =
{1)2,'1)4,1)6,'07}, M2 = {v2)v5)v61v8}, M3 = {vlaUQ)v5sv8}a M4 = {’03,1)5,1)5,‘08},
Ms = {va,v3, va,v7}, Ms = {v1,v4,v6,v7}, M7 = {v4,v5,v7,v8}. We denote by I'y
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the extension of the graph L;4 that is obtained by adding to V(L14) new 7 vertices
uy, ..., u7, none of which are adjacent and such that Ad(w;) = M;, 1 =1,...,7.

Proposition 9. I's — (3,3) and cl(I'z) = 3.

Proof. The equality cl(T'y) = 3 is true, because cl(Ly4) = 3, {u;,...,u7} is an
anticlique, and Ad(u;) does not contain 3-cliques fori =1,...,7.

Let V(I's) = V1 UV, be an arbitrary 2-partition of the vertices of I';.

Case 1. vp and vg belong to only one of the sets V; and V5, for example
ve,ve € V1. From ve,vg € Vp it follows that at least one of the vertices vy, v
belongs to V5. Let, for example, vz € V5. From ve,vs € Vj it follows also that
at least one of the vertices v4, vs belongs to V5. Therefore we have only two
possibilities:

Subcase 1.a. vq € V. If u; € Vi, then {u;, vy, v6} is a 3-clique of T'y, contained
in V. If u; € Vs, then {u;,vq,v7} is a 3-clique of I'y, contained in V5.

Subcase 1.b. vs € V,. From vy, vg € V] 1t follows also that vy € V5. Let vg € V).
If ug € Vi, then {us,vq,vs} is a 3-clique of T'y, contained in V;. If uz € V,, then
{us, v1,v5} is a 3-clique of I', contained in V,. Assume that vgs € V5. If ug € Vi,
then {us, vy, ve} is a 3-clique of I'y, contained in Vi. If uy € Vo, then {uy, vs,vs} is
a 3-clique of I'y, contained in V5.

Case 2. One of the vertices vy, vg belongs to V; and the other one belongs
to Vo. Let, for example, vy € V}, vg € V5.

Subcase 2.a. One of the vertices vy, vs belongs to V), for example vz € V). If
vg € V; or v; € Vi, then V; will contain respectively the 3-clique {vy, vz, vs} or the
3-clique {vy, vy, v7}. Therefore we assume that vy, vs € Va.

Let v4 € V;. If ug € Vi, then {ug,vs,v7} is a 3-clique of T'y, contained in V;.
If ug € Vo, then {us, vy, vs} is a 3-clique of I'y, contained in V5.

Let vq4 € V. If u; € Vi, then {uy,vy,v7} is a 3-clique of Ty, contained in Vj.
If uy € Vs, then {u,v4,ve} is a 3-clique of I'y, contained in V5.

Subcase 2.b. vy,vg € V5. Assume first that at least one of the vertices vy,
vs belongs to Vs and let, for example, v4 € Vo. If vz € Vo, then {v3,vs, v} is a
3-clique of I'y, contained in V5. Thus we assume that vz € V;. Now, if us € Vi,
then {us,vs,v3} is a 3-clique of 'y, contained in V;. If us € V3, then {us,vq,v7} is
a 3-clique of I', contained in V5.

Finally, we consider the case when v4,vs € Vy. If uz € Vi, then {u7, v4,vs} is
a 3-clique of 'y, contained in V;. If uz € V,, then {uz,v7,vs} is a 3-clique of I'y,
contained in V5. m
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