
GODIXNIK NA SOFI�SKI� UNIVERSITET
”
SV. KLIMENT OHRIDSKI“

FAKULTET PO MATEMATIKA I INFORMATIKA
Tom 106

ANNUAL OF SOFIA UNIVERSITY
”
ST. KLIMENT OHRIDSKI“

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 106

SHAPE PRESERVING PROPERTIES
OF THE BERNSTEIN POLYNOMIALS

WITH INTEGER COEFFICIENTS

BORISLAV R. DRAGANOV

The Bernstein polynomials with integer coefficients do not generally preserve mono-

tonicity and convexity. We establish sufficient conditions under which they do. We
also observe that they are asymptotically shape preserving.

Keywords: Bernstein polynomials, integer coefficients, integral coefficients, shape preserving,

monotone, convex.

2010 Math. Subject Classification: Primary: 41A10; Secondary: 41A29, 41A35, 41A36.

1. MAIN RESULTS

The Bernstein polynomial is defined for n ∈ N+, f ∈ C[0, 1] and x ∈ [0, 1] by

Bnf(x) :=

n∑
k=0

f

(
k

n

)
pn,k(x), pn,k(x) :=

(
n

k

)
xk(1− x)n−k.

It is known that if f ∈ C[0, 1], then (see e.g. [1, Chapter 1, Theorem 2.3])

lim
n→∞

Bnf(x) = f(x) uniformly on [0, 1].

In order to show that any continuous function on [0, 1], which has integer values
at the ends of the interval, can be approximated with algebraic polynomials with
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integer coefficients, Kantorovich [5] introduced the operator

B̃n(f)(x) :=

n∑
k=0

[
f

(
k

n

)(
n

k

)]
xk(1− x)n−k,

where [α] denotes the largest integer that is less than or equal to the real α. L. Kan-
torovich showed that if f ∈ C[0, 1] is such that f(0), f(1) ∈ Z, then (see [5], or
e.g. [4, pp. 3–4], or [6, Chapter 2, Theorem 4.1])

lim
n→∞

B̃n(f)(x) = f(x) uniformly on [0, 1].

Instead of the integer part we can take the nearest integer. More precisely, if
α ∈ R is not a half-integer, we set 〈α〉 to be the integer at which the minimum
minm∈Z |α − m| is attained. When α is a half-integer, we can define 〈α〉 to be
either of the two neighbouring integers even without following a given rule. The
results we will prove are valid regardless of our choice in the latter case. The integer
modification of the Bernstein polynomial based on the nearest integer function is
given by

B̂n(f)(x) :=

n∑
k=0

〈
f

(
k

n

)(
n

k

)〉
xk(1− x)n−k.

Similarly to [5], it is shown that

lim
n→∞

B̂n(f)(x) = f(x) uniformly on [0, 1]

provided that f ∈ C[0, 1] and f(0), f(1) ∈ Z.

Let us note that the operators B̃n and B̂n are not linear for n ≥ 2.

As is known, the Bernstein polynomials possess good shape preserving prop-
erties. In particular, if f is monotone, then Bnf is monotone of the same type, or,
if f(x) is convex or concave then so is, respectively, Bnf (see e.g. [1, Chapter 10,
Theorem 3.3, (i) and (ii)]). Our main goal is to extend these assertions to the
integer forms of the Bernstein polynomials.

The operators B̃n and B̂n possess the property of simultaneous approximation,
that is, the derivatives of B̃n(f) and B̂n(f) approximate the corresponding deriva-
tives of f in the uniform norm on [0, 1]. This was established in [2, 3] under certain
necessary and sufficient conditions, as estimates of the rate the convergence were
proved. Hence, trivially, under these conditions, if f (r)(x) is strictly positive or
negative, then so are (B̃n(f))(r)(x) and (B̂n(f))(r)(x) at least for n large enough,
depending on f . We will establish sufficient conditions on the shape of f that
imply the corresponding monotonicity or convexity of B̃n(f) and B̂n(f) for all n
regardless of the smoothness of f .

The properties we will present below are not hard to prove. However, they
seem interesting and might be useful in the applications of the approximation of
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functions by polynomials with integer coefficients and in CAGD. Let us note that
computer manipulation of polynomials with integer coefficients is faster.

The operators B̃n and B̂n do not generally preserve monotonicity or convexity.
We include counter examples in Section 4. It is quite straightforward to show that
the monotonicity of f(x) implies the monotonicity of the same type of B̃n(f)(x) and
B̂n(f)(x) for n = 1 and n = 2 (see Remark 2.1 below). However, both operators
almost preserve monotonicity or convexity. In order to make this precise, we will
introduce the notions of asymptotic monotonicity and convexity preservation.

Definition 1.1. Let X be a class of functions defined on I ⊆ R and Ln : X →
X, n ∈ N+, be a family of operators. We say that Ln uniformly asymptotically
preserves monotonicity on X if there exist n0 ∈ N+ and functions εn, ηn : I → R,
n ≥ n0, with the properties:

(i) limn→∞ εn(x) = limn→∞ ηn(x) = 0 uniformly on I;

(ii) If f(x) is monotone increasing on I, then so is Ln(f)(x)+εn(x) for all n ≥ n0;

(iii) If f(x) is monotone decreasing on I, then so is Ln(f)(x)+ηn(x) for all n ≥ n0.

Remark 1.2. Let us note that conditions (ii) and (iii) are equivalent if the
operators Ln are linear.

We will show that the following result holds.

Theorem 1.3. The operators B̃n and B̂n uniformly asymptotically preserve
monotonicity on the class of continuous functions on [0, 1] with integer values at 0
and 1.

Similarly, we introduce the following notion.

Definition 1.4. Let X be a class of functions defined on I ⊆ R and Ln : X →
X, n ∈ N+, be a family of operators. We say that Ln uniformly asymptotically
preserves convexity on X if there exist n0 ∈ N+ and functions εn, ηn : I → R,
n ≥ n0, with the properties:

(i) limn→∞ εn(x) = limn→∞ ηn(x) = 0 uniformly on I;

(ii) If f(x) is convex on I, then so is Ln(f)(x) + εn(x) for all n ≥ n0;

(iii) If f(x) is concave on I, then so is Ln(f)(x) + ηn(x) for all n ≥ n0.

Remark 1.5. As above, if the operators Ln are linear, then (ii) and (iii) are
equivalent.

We will show that B̃n and B̂n possess the property described in the definition.

Theorem 1.6. The operators B̃n and B̂n uniformly asymptotically preserve
convexity on the set of continuous functions on [0,1] with integer values at 0 and 1.
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On the other hand, it will be useful to establish sufficient conditions on the
function f under which we have that B̃n(f) and B̂n(f) are monotone, or, respec-
tively, convex or concave. A straightforward corollary of some of our main results
is the following assertion.

Theorem 1.7. Let f : [0, 1]→ R and f(0), f(1) ∈ Z.

(a) If f(x)−x is monotone increasing on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x)
for all n.

(b) If f(x)+x is monotone decreasing on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x)
for all n.

Let us explicitly note that if f(x)− x is monotone increasing on [0, 1], then so
is f(x), and similarly, if f(x) + x is monotone decreasing on [0, 1], then so is f(x).

Also, we will establish the following stronger result.

Theorem 1.8. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Set for n ∈ N+ and
x ∈ [0, 1]

ϕn(x) := (n+ 1)

∫ 1

0

t(1− t)n(1−x) (1− t)nx−1 − tnx−1

1− 2t
dt.

(a) If f(x) − ϕn(x) is monotone increasing on [0, 1], then so are B̃n(f)(x) and
B̂n(f)(x).

(b) If f(x) + ϕn(x) is monotone decreasing on [0, 1], then so are B̃n(f)(x) and
B̂n(f)(x).

As it follows from Remark 2.10, the function ϕn(x) is monotone increasing on
[0, 1] for each n ∈ N+ and it is of small magnitude – it satisfies the estimates

0 ≤ ϕn(x) ≤ 6

n
, x ∈

[
1

n
, 1− 1

n

]
.

In Section 2 we will establish even less restrictive conditions on f that imply the
monotonicity of B̃n(f) and B̂n(f). They show how to construct functions ϕn, which
beside the property given in the theorem above, are also such that |ϕn(x)| ≤ c/n
for all x ∈ [0, 1] and all n ∈ N+, where c as an absolute positive constant; moreover,
the functions ϕn can be constructed in such a way that if f(x)∓ϕn0

(x) is monotone
increasing, respectively, decreasing on [0, 1] with some n0, then so are B̃n(f)(x) and
B̂n(f)(x) for all n ≥ n0.

Concerning the preservation of convexity and concavity, we will establish

Theorem 1.9. Let f : [0, 1]→ R and f(0), f(1) ∈ Z. Set

Φ(x) := 6
(
x lnx+ (1− x) ln(1− x)

)
.

82 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 79–100.



(a) If f(x)−Φ(x) is convex on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x) for all
n ∈ N+.

(b) If f(x) + Φ(x) is concave on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x) for all
n ∈ N+.

Note that Φ(x) is convex and the assumption f(x) ∓ Φ(x) is convex/concave
implies that f(x) is convex/concave, respectively.

A less restrictive sufficient condition is given in the following assertion.

Theorem 1.10. Let f : [0, 1]→ R and f(0), f(1) ∈ Z. Set for n ∈ N+, n ≥ 3,
and x ∈ [0, 1]

Φn(x) := (n+ 1)

∫ 1

0

(
t2 + (1− t)2

)
× (nx− 3)t2(1− t)n−2 − (nx− 2)t3(1− t)n−3 + tnx(1− t)n(1−x)

(1− 2t)2
dt.

(a) If f(x)− Φn(x) is convex on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x).

(b) If f(x) + Φn(x) is concave on [0, 1], then so are B̃n(f)(x) and B̂n(f)(x).

As we will establish in Proposition 3.4, the function Φn(x) is convex on [0, 1]
and it is of small magnitude – it satisfies the estimates

− 4

n
≤ Φn(x) ≤ 16

n
, x ∈

[
1

n
, 1− 1

n

]
.

In Section 3 we will establish even less restrictive conditions on f that imply
the convexity or concavity of B̃n(f) and B̂n(f). They show how to construct
functions Φn, which beside the property given in the theorem above, are also such
that |Φn(x)| ≤ c/n for all x ∈ [0, 1] and all n ∈ N+ with some absolute positive
constant c; moreover, the functions Φn can be constructed in such a way that if
f(x) ∓ Φn0(x) is convex, respectively, concave on [0, 1] with some n0, then so are
B̃n(f)(x) and B̂n(f)(x) for all n ≥ n0.

We proceed to the proof of the results stated above. In the next section we will
establish Theorem 1.3 as well as sufficient conditions that imply the monotonicity
of B̃n(f)(x) and B̂n(f)(x). In particular, we will get Theorems 1.7 and 1.8. In
Section 3 we derive analogues of these results concerning convexity. We present
several examples that illustrate the notion of the asymptotic shape preservation
and some of the sufficient conditions stated above in Section 4.

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 79–100. 83



2. PRESERVING MONOTONICITY

We set

b̃n(k) :=

[
f

(
k

n

)(
n

k

)] (
n

k

)−1
and

b̂n(k) :=

〈
f

(
k

n

)(
n

k

)〉 (
n

k

)−1
,

where k = 0, . . . , n. Then the operators B̃n and B̂n can be written respectively in
the form

B̃n(f)(x) =

n∑
k=0

b̃n(k) pn,k(x)

and

B̂n(f)(x) =

n∑
k=0

b̂n(k) pn,k(x).

For their first derivatives we have (by direct computation, or see [7] or [1, Chap-
ter 10, (2.3)])

(B̃n(f))′(x) = n

n−1∑
k=0

(
b̃n(k + 1)− b̃n(k)

)
pn−1,k(x) (2.1)

and

(B̂n(f))′(x) = n

n−1∑
k=0

(
b̂n(k + 1)− b̂n(k)

)
pn−1,k(x). (2.2)

Proof of Theorem 1.3. First, let f(x) be monotone increasing on [0, 1]. We will
estimate from below (B̃n(f))′(x).

Since f(x) is increasing on [0, 1/n], then

nf

(
1

n

)
≥ nf(0).

We have that nf(0) ∈ Z; consequently[
nf

(
1

n

)]
≥ nf(0).
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Hence

b̃n(1)− b̃n(0) =
1

n

([
nf

(
1

n

)]
− nf(0)

)
≥ 0. (2.3)

Next, using [α] ≤ α, we arrive at

b̃n(n)− b̃n(n− 1) = f(1)− 1

n

[
nf

(
n− 1

n

)]
≥ f(1)− f

(
n− 1

n

)
≥ 0.

(2.4)

Now, let 1 ≤ k ≤ n− 2, n ≥ 3. Using the trivial inequalities α− 1 ≤ [α] ≤ α,
we get

b̃n(k+1)−b̃n(k)=

[
f

(
k+1

n

)(
n

k+1

)](
n

k+1

)−1
−
[
f

(
k

n

)(
n

k

)](
n

k

)−1
≥
(
f

(
k + 1

n

)(
n

k + 1

)
− 1

) (
n

k + 1

)−1
− f

(
k

n

)
= f

(
k + 1

n

)
− f

(
k

n

)
−
(

n

k + 1

)−1
.

(2.5)

Therefore

b̃n(k + 1)− b̃n(k) ≥ −
(

n

k + 1

)−1
, 1 ≤ k ≤ n− 2, n ≥ 3. (2.6)

Below we follow the convention that a sum, whose lower index bound is larger
than the upper one, is identically 0.

We combine (2.3), (2.4) and (2.6) with (2.1), and use the inequality
(

n
k+1

)
≥
(
n
2

)
for k = 1, . . . , n− 3, and the identity

∑n−1
k=0 pn−1,k(x) ≡ 1 to arrive at

(B̃n(f))′(x) ≥ n
n−2∑
k=1

(
b̃n(k + 1)− b̃n(k)

)
pn−1,k(x)

≥ − 2

n− 1

n−3∑
k=1

pn−1,k(x)− (n− 1)xn−2(1− x)

≥ − 2

n− 1
− (n− 1)xn−2(1− x).

We set εn(x) := 2x/(n− 1) + xn/n+ xn−1(1− x), n ≥ 2. It satisfies condition (i).
Its derivative is ε′n(x) = 2/(n − 1) + (n − 1)xn−2(1 − x); hence εn(x) satisfies (ii)
in Definition 1.1 with n0 = 2.

The case of monotone decreasing functions is reduced to the one of monotone
increasing by applying the latter to the function f̄(x) := f(1 − x) and using that
B̃n(f)(x) = B̃n(f̄)(1− x).
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The considerations for the operator B̂n are quite similar as we use that
|α− 〈α〉 | ≤ 1/2. �

Remark 2.1. Formula (2.1) and estimates (2.3) and (2.4) show that if f(x)
is monotone increasing on [0, 1], then so are B̃1(f)(x) and B̃2(f)(x). Similarly, we
have that B̂1(f)(x) and B̂2(f)(x) are monotone increasing if f(x) is such.

We proceed to establishing sufficient conditions on f that imply the mono-
tonicity of B̃n(f) and B̂n(f). We first consider the operator B̃n and the case of
monotone increasing functions.

Proposition 2.2. Let f : [0, 1]→ R, f(0), f(1) ∈ Z and n ∈ N+. If n ≥ 3, let
also φn : [0, 1]→ R be such that

φn

(
k + 1

n

)
− φn

(
k

n

)
≥
(

n

k + 1

)−1
, k = 1, . . . , n− 2. (2.7)

If f(x) is monotone increasing on [0, 1/n] and on [1− 1/n, 1] and if f(x)− φn(x)
is monotone increasing on [1/n, 1−1/n], then B̃n(f)(x) is monotone increasing on
[0, 1].

Proof. We will show that b̃n(k + 1) − b̃n(k) ≥ 0, k = 0, . . . , n − 1. Then, by
virtue of (2.1) we will have (B̃n(f))′(x) ≥ 0 on [0, 1].

As we have already established in (2.3) and (2.4), b̃n(k + 1) − b̃n(k) ≥ 0 for
k = 0 and k = n− 1.

Let 1 ≤ k ≤ n − 2, n ≥ 3. Since f(x) − φn(x) is monotone increasing on
[1/n, 1− 1/n] and φn(x) satisfies (2.7), we have

f

(
k + 1

n

)
− f

(
k

n

)
≥ φn

(
k + 1

n

)
− φn

(
k

n

)
≥
(

n

k + 1

)−1
.

Then (2.5) implies that b̃n(k + 1) − b̃n(k) ≥ 0, k = 1, . . . , n − 2. The proof is
completed. �

Clearly, the function φn(x) := x satisfies (2.7) for all n ∈ N+; hence Theo-
rem 1.7(a) follows for the operator B̃n. The next corollary contains a less restrictive
choice of φn(x). Actually, the function, defined in it, satisfies (2.7) as an equality.

Corollary 2.3. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Let n ∈ N+, n ≥ 3, be
fixed. Set

φn(x) := (n+ 1)

∫ 1

0

t(1− t)n(1−x) (1− t)nx − tnx

1− 2t
dt, x ∈ [0, 1]. (2.8)

If f(x)− φn(x) is monotone increasing on [0, 1], then so is B̃n(f)(x).
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Proof. The motivation for the definition of φn(x) comes from the following
formula, which is derived by the relationship between the beta and gamma functions
(see e.g. [9] or [[1, Chapter 10, (1.8)]). We have∫ 1

0

tk(1− t)n−kdt = B(k + 1, n− k + 1)

=
Γ(k + 1) Γ(n− k + 1)

Γ(n+ 2)

=
1

n+ 1

(
n

k

)−1
.

(2.9)

Consequently, for k = 1, . . . , n− 2 we have

φn

(
k + 1

n

)
− φn

(
k

n

)
= (n+ 1)

∫ 1

0

tk+1(1− t)n−(k+1)dt

=

(
n

k + 1

)−1
.

(2.10)

Thus φn(x) satisfies (2.7).

It remains to observe that φn(x) is differentiable and

φ′n(x) = n(n+ 1)

∫ 1

0

tnx+1(1− t)n(1−x) ln(1− t)− ln t

1− 2t
dt > 0, x ∈ [0, 1].

Therefore φn(x) is monotone increasing on [0, 1]; hence so is f(x).

Now, the assertion of the corollary follows from Proposition 2.2. �

Remark 2.4. The function φn(x), defined in (2.8), can be represented in the
following symmetric form

φn(x) =
n+ 1

2

∫ 1

0

t(1− t)
(
(1− t)n(1−x)−1 + tn(1−x)−1

)
((1− t)nx − tnx)

1− 2t
dt.

Next, we will note the following elementary estimates for the function φn(x),
defined in (2.8).

Lemma 2.5. The function φn(x), defined in (2.8), satisfies the estimates

0 ≤ φn(x) ≤ 4

n
, x ∈

[
0, 1− 1

n

]
, n ≥ 3.

Proof. As we noted in the proof of Corollary 2.3, φn(x) is monotone increasing;
hence

φn(0) ≤ φn(x) ≤ φn
(

1− 1

n

)
, x ∈

[
0, 1− 1

n

]
.
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Clearly, φn(0) = 0.

Next, summing the equalities in (2.10) on k = 1, . . . , n− 2, we arrive at

φn

(
1− 1

n

)
− φn

(
1

n

)
=

n−1∑
k=2

(
n

k

)−1
.

In view of (2.8) and (2.9) with k = 1, we have

φn

(
1

n

)
= (n+ 1)

∫ 1

0

t(1− t)n−1 dt =

(
n

1

)−1
.

It remains to take into account that
(
n
k

)
≥
(
n
2

)
for k = 2, . . . , n− 2, to deduce

that

φn

(
1− 1

n

)
≤
(
n

1

)−1
+ (n− 3)

(
n

2

)−1
+

(
n

n− 1

)−1
≤ 4

n
.

�

Rockett [8, Theorem 1] established a neat formula for the sum of the reciprocals
of the binomial coefficients.

Since generally [−α] 6= −[α] and 〈−α〉 6= −〈α〉 (however, 〈α〉 is an odd function
for some definitions of the nearest integer), the cases of monotone decreasing or
concave functions cannot be reduced, respectively, to the cases of increasing or
convex functions by considering −f in place of f . However, we can swap between
increasing and decreasing functions using the transformation f̄(x) := f(1 − x).
Thus we derive the following sufficient condition concerning the preservation of the
monotone decreasing behaviour from Proposition 2.2.

Proposition 2.6. Let f : [0, 1]→ R, f(0), f(1) ∈ Z and n ∈ N+. If n ≥ 3, let
also ψn : [0, 1]→ R be such that

ψn

(
k + 1

n

)
− ψn

(
k

n

)
≥
(
n

k

)−1
, k = 1, . . . , n− 2. (2.11)

If f(x) is monotone decreasing on [0, 1/n] and on [1−1/n, 1] and if f(x)+ψn(x) is
monotone decreasing on [1/n, 1 − 1/n], then B̃n(f)(x) is monotone decreasing on
[0, 1].

The second assertion of Theorem 1.7 concerning the operator B̃n follows from
the last proposition with ψn(x) := x. A less restrictive ψn is defined in the following
corollary of Proposition 2.6.

88 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 79–100.



Corollary 2.7. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Let n ∈ N+, n ≥ 3, be
fixed. Set

ψn(x) := (n+ 1)

∫ 1

0

t(1− t)n(1−x)+1 (1− t)nx−1 − tnx−1

1− 2t
dt, t ∈ [0, 1].

If f(x) + ψn(x) is monotone decreasing on [0, 1], then so is B̃n(f)(x).

Proof. The assertion is established similarly to Corollary 2.3 as instead of
(2.10) we show that

ψn

(
k + 1

n

)
− ψn

(
k

n

)
=

(
n

k

)−1
for k = 1, . . . , n− 2. The function ψn(x) is monotone increasing. �

Remark 2.8. Similarly to Lemma 2.5, it is shown that ψn(x), defined in
Corollary 2.7, satisfies

0 ≤ ψn(x) ≤ 4

n
, x ∈

[
1

n
, 1

]
.

Analogous results hold for the operator B̂n. They are verified similarly to
Proposition 2.2, as we use |α − 〈α〉 | ≤ 1/2. Let us note that now the assump-
tions concerning the two types of monotonicity are symmetric unlike those for the
operator B̃n.

Proposition 2.9. Let f : [0, 1]→ R, f(0), f(1) ∈ Z and n ∈ N+. If n ≥ 3, let
also ϕ̃n : [0, 1]→ R be such that

ϕ̃n

(
k + 1

n

)
− ϕ̃n

(
k

n

)
≥ 1

2

((
n

k

)−1
+

(
n

k + 1

)−1)
,

k = 1, . . . , n− 2. (2.12)

(a) If f(x) is monotone increasing on [0, 1/n] and on [1 − 1/n, 1] and if
f(x) − ϕ̃n(x) is monotone increasing on [1/n, 1 − 1/n], then B̂n(f)(x) is
monotone increasing on [0, 1].

(b) If f(x) is monotone decreasing on [0, 1/n] and on [1 − 1/n, 1] and if
f(x) + ϕ̃n(x) is monotone decreasing on [1/n, 1 − 1/n], then B̂n(f)(x) is
monotone decreasing on [0, 1].

The assertions of Theorem 1.7 for B̂n(f)(x) follow from the last proposition
with ϕ̃n(x) := x.
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Remark 2.10. Another function satisfying (2.12) is

ϕ̃n(x) :=
n+ 1

2

∫ 1

0

t(1− t)n(1−x) (1− t)nx−1 − tnx−1

1− 2t
dt, x ∈ [0, 1]. (2.13)

As in the previous cases, it is shown that it is differentiable, as

ϕ̃′n(x) =
n(n+ 1)

2

∫ 1

0

tnx(1− t)n(1−x) ln(1− t)− ln t

1− 2t
dt, x ∈ [0, 1]. (2.14)

Consequently, ϕ̃n(x) is monotone increasing on [0, 1] and satisfies the estimates

0 ≤ ϕ̃n(x) ≤ 3

n
, x ∈

[
1

n
, 1− 1

n

]
.

Proof of Theorem 1.8. The function ϕ̃n(x), defined in (2.13), satisfies (2.12).
Then ϕn(x) := 2ϕ̃n(x) satisfies the conditions (2.7), (2.11) and (2.12). Since
f(x) − ϕn(x) is monotone increasing on [0, 1], then so is f(x). Now, Proposi-
tions 2.2 and 2.9(a) yield that B̃n(f)(x) and B̂n(f)(x) are monotone increasing on
[0, 1]. The proof of assertion (b) of the theorem is similar. �

3. PRESERVING CONVEXITY

For the second derivatives of B̃n(f) and B̂n(f) we have (by direct computation,
or see [7] or [1, Chapter 10, (2.3)])

(B̃n(f))′′(x) = n(n− 1)

n−2∑
k=0

(
b̃n(k + 2)− 2b̃n(k + 1) + b̃n(k)

)
pn−2,k(x) (3.1)

and

(B̂n(f))′′(x) = n(n− 1)

n−2∑
k=0

(
b̂n(k + 2)− 2b̂n(k + 1) + b̂n(k)

)
pn−2,k(x). (3.2)

Proof of Theorem 1.6. Similarly to the proof of the corresponding result in the
monotone case, we estimate the second derivative of B̃n(f)(x) and B̂n(f)(x). We
will consider in detail only the former operator in the case of convex functions; the
arguments for the latter operator are quite alike. The case of concave functions is
analogous too.

Let f(x) be convex on the interval [0, 1]. Then

f

(
k + 2

n

)
− 2f

(
k + 1

n

)
+ f

(
k

n

)
≥ 0, k = 0, . . . , n− 2, n ≥ 2.
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Using α− 1 ≤ [α] ≤ α and f(0) ∈ Z, we get

b̃n(2)−2b̃n(1)+b̃n(0)=

[
f

(
2

n

)(
n

2

)](
n

2

)−1
−2

[
f

(
1

n

)(
n

1

)](
n

1

)−1
+f(0)

≥
(
f

(
2

n

)(
n

2

)
− 1

) (
n

2

)−1
− 2f

(
1

n

)
+ f(0)

= f

(
2

n

)
− 2f

(
1

n

)
+ f(0)−

(
n

2

)−1
.

(3.3)

Similarly, we get for n ≥ 2

b̃n(1)− 2b̃n(n−1) + b̃n(n−2) ≥ f(1)− 2f

(
n−1

n

)
+ f

(
n−2

n

)
−
(

n

n−2

)−1
. (3.4)

Let k = 1, . . . , n− 3, n ≥ 4. Just analogously, we arrive at the estimates

b̃n(k + 2)− 2b̃n(k + 1) + b̃n(k)

=

[
f

(
k+2

n

)(
n

k+2

)](
n

k+2

)−1
− 2

[
f

(
k+1

n

)(
n

k+1

)](
n

k+1

)−1
+

[
f

(
k

n

)(
n

k

)] (
n

k

)−1
≥
(
f

(
k + 2

n

)(
n

k + 2

)
− 1

) (
n

k + 2

)−1
− 2f

(
k + 1

n

)
+

(
f

(
k

n

)(
n

k

)
− 1

) (
n

k

)−1
≥f
(
k + 2

n

)
− 2f

(
k + 1

n

)
+ f

(
k

n

)
−

((
n

k

)−1
+

(
n

k + 2

)−1)
.

(3.5)

Thus we have shown that

b̃n(2)− 2b̃n(1) + b̃n(0) ≥ −
(
n

2

)−1
, b̃n(1)− 2b̃n(n−1) + b̃n(n−2) ≥−

(
n

n−2

)−1
,

b̃n(k + 2)− 2b̃n(k + 1) + b̃n(k) ≥ −

((
n

k

)−1
+

(
n

k + 2

)−1)
, k = 1, . . . , n− 3 .

Consequently, from (3.1) we obtain

(B̃n(f))′′(x) ≥−n(n−1)

(
n

2

)−1
(1− x)n−2 − n(n− 1)

(
n

n− 2

)−1
xn−2

− n(n− 1)

n−3∑
k=1

((
n

k

)−1
+

(
n

k + 2

)−1)
pn−2,k(x) .
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Next, by virtue of the inequality
(
n
k

)
≥
(
n
3

)
for k = 3, . . . , n − 3, and the identity∑n−2

k=0 pn−2,k(x) ≡ 1, we have for n ≥ 6

(B̃n(f))′′(x) ≥ −2(1− x)n−2 − (n− 1)(n− 2)x(1− x)n−3

− (n− 2)(n− 3)x2(1− x)n−4 − n(n− 1)

(
n

3

)−1 n−3∑
k=3

pn−2,k(x)

− n(n− 1)

(
n

3

)−1 n−5∑
k=1

pn−2,k(x)− (n− 2)(n− 3)xn−4(1− x)2

− (n− 1)(n− 2)xn−3(1− x)− 2xn−2

≥ −2(1− x)n−2 − (n− 1)(n− 2)x(1− x)n−3

− (n− 2)(n− 3)x2(1− x)n−4 − 12

n− 2

− (n− 2)(n− 3)xn−4(1− x)2 − (n− 1)(n− 2)xn−3(1− x)

− 2xn−2 =: −bn(x).

We set

εn(x) :=
6x2

n− 2
− 2(n− 3)

n(n− 1)

(
xn + (1− x)n

)
+

4

n− 1

(
xn−1 + (1− x)n−1

)
+ xn−2(1− x) + x(1− x)n−2.

We have ε′′n(x) = bn(x); hence εn(x) satisfies condition (ii) in Definition 1.4 with
n0 = 6. Clearly, it satisfies condition (i) too. �

Further, we will derive sufficient conditions on the function f that imply the
convexity and concavity of B̃n(f)(x) and B̂n(f)(x).

Proposition 3.1. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Let n ∈ N+, n ≥ 2,
be fixed and Φn : [0, 1]→ R be such that

Φn

(
2

n

)
− 2Φn

(
1

n

)
+ Φn(0) ≥

(
n

2

)−1
Φn

(
k + 2

n

)
− 2Φn

(
k + 1

n

)
+ Φn

(
k

n

)
≥
(
n

k

)−1
+

(
n

k + 2

)−1
, k = 1, . . . , n− 3, n ≥ 4,

and

Φn(1)− 2Φn

(
n− 1

n

)
+ Φn

(
n− 2

n

)
≥
(

n

n− 2

)−1
.

If f(x)− Φn(x) is convex on [0, 1], then so is B̃n(f)(x).
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Proof. Since f(x)− Φn(x) is convex on [0, 1], then

f

(
k + 2

n

)
− 2f

(
k + 1

n

)
+ f

(
k

n

)
≥ Φn

(
k + 2

n

)
− 2Φn

(
k + 1

n

)
+ Φn

(
k

n

)
, k = 0, . . . , n− 2.

Then (3.3)-(3.5) and the assumptions on Φn(x) imply

b̃n(k + 2)− 2b̃n(k + 1) + b̃n(k) ≥ 0, k = 0, . . . , n− 2,

which, by virtue of (3.1), completes the proof of the proposition. �

Similarly to Proposition 3.1 we prove the following sufficient condition for
preserving concavity.

Proposition 3.2. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Let n ∈ N+, n ≥ 2,
be fixed and Φn : [0, 1]→ R be such that

Φn

(
k + 2

n

)
− 2Φn

(
k + 1

n

)
+ Φn

(
k

n

)
≥ 2

(
n

k + 1

)−1
, k = 0, . . . , n− 2.

If f(x) + Φn(x) is concave on [0, 1], then so is B̃n(f)(x).

Similarly to Propositions 3.1 and 3.2 , we have the following result for the other
integer modification of the Bernstein polynomials, the operator B̂n.

Proposition 3.3. Let f : [0, 1] → R and f(0), f(1) ∈ Z. Let n ∈ N+, n ≥ 2,
be fixed and Φn : [0, 1]→ R be such that

Φn

(
2

n

)
− 2Φn

(
1

n

)
+ Φn(0) ≥ 1

2

(
2

(
n

1

)−1
+

(
n

2

)−1)
,

Φn

(
k + 2

n

)
− 2Φn

(
k + 1

n

)
+ Φn

(
k

n

)
≥ 1

2

((
n

k

)−1
+ 2

(
n

k + 1

)−1
+

(
n

k + 2

)−1)
, k = 1, . . . , n− 3, n ≥ 4,

and

Φn(1)− 2Φn

(
n− 1

n

)
+ Φn

(
n− 2

n

)
≥ 1

2

((
n

n− 2

)−1
+ 2

(
n

n− 1

)−1)
.

(a) If f(x)− Φn(x) is convex on [0, 1], then so is B̂n(f)(x).

(b) If f(x) + Φn(x) is concave on [0, 1], then so is B̂n(f)(x).
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We proceed to the proof of Theorem 1.9.

Proof of Theorem 1.9. For n = 1 the assertion is trivial since B̃1(f)(x) and
B̂1(f)(x) are linear functions. Let n ≥ 2. We will verify that the function Φ(x)
defined in the theorem satisfies the conditions in the propositions stated so far in
this section. We set

∆(k) := Φ

(
k + 2

n

)
− 2Φ

(
k + 1

n

)
+ Φ

(
k

n

)
, k = 0, . . . , n− 2.

First, we observe that

2

(
n

1

)−1
≥ 1

2

(
2

(
n

1

)−1
+

(
n

2

)−1)
≥
(
n

2

)−1
, (3.6)

2

(
n

n− 1

)−1
≥ 1

2

((
n

n− 2

)−1
+ 2

(
n

n− 1

)−1)
≥
(

n

n− 2

)−1
, (3.7)

(
n

k

)−1
+

(
n

k + 2

)−1
≥ 1

2

((
n

k

)−1
+ 2

(
n

k + 1

)−1
+

(
n

k + 2

)−1)
(3.8)

k = 1, . . . , n− 3, n ≥ 4,

and (
n

k

)−1
+

(
n

k + 2

)−1
≥ 2

(
n

k + 1

)−1
, k = 1, . . . , n− 3, n ≥ 4. (3.9)

Relations (3.6) and (3.7) are identical and trivial. It is straightforward to see that
(3.8) and (3.9) are equivalent too. Let us verify the last one. It reduces to

(n− k − 1)(n− k) + (k + 1)(k + 2) ≥ 2(k + 1)(n− k − 1).

We divide both sides of the inequality above by (k + 1)(n− k − 1), to arrive at

n− k
k + 1

+
k + 2

n− k − 1
≥ 2.

It remains to observe that the second term on the left hand-side is larger than the
reciprocal of the first one and then to take into account that the sum of a positive
real and its reciprocal is always at least 2.

Thus to show that Φ(x) satisfies the assumptions in Propositions 3.1, 3.2 and
3.3, it is sufficient to prove that

∆(k) ≥ 2

(
n

1

)−1
=

2

n
, k = 0, n− 2, (3.10)
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and

∆(k) ≥
(
n

k

)−1
+

(
n

k + 2

)−1
, k = 1, . . . , n− 3, n ≥ 4. (3.11)

The function Φ(x) is twice continuously differentiable in (0, 1) and

Φ′′(x) =
6

x(1− x)
.

By Taylor’s formula we get for k = 0, . . . , n− 2

∆(k) =

∫ (k+2)/n

k/n

Mn,k(t) Φ′′(t) dt, (3.12)

where

Mn,k(t) :=

{
t− k

n , t ∈
[
k
n ,

k+1
n

]
,

k+2
n − t, t ∈

(
k+1
n , k+2

n

]
.

For k = 0 formula (3.12) implies

∆(0) = 6

∫ 1/n

0

dt

1− t
+ 6

∫ 2/n

1/n

(
2

n
− t
)

dt

t(1− t)

≥ 6

∫ 1/n

0

dt

1− t

≥ 6

n
.

Thus (3.10) is verified for k = 0. The case k = n− 2 is symmetric to k = 0.

For k = 1, . . . , n− 3, (3.12) yields

∆(k) ≥ 6

maxx∈[k/n,(k+2)/n] x(1− x)

∫ (k+2)/n

k/n

Mn,k(t) dt

=
6

n2 maxx∈[k/n,(k+2)/n] x(1− x)
.

If (k + 2)/n ≤ 1/2, then maxx∈[k/n,(k+2)/n] x(1 − x) = (k + 2)(n − k − 2)/n2 and(
n
k

)
≤
(

n
k+2

)
; hence (3.11) will follow from

6

(k + 2)(n− k − 2)
≥ 2

(
n

k

)−1
.

This inequality follows from

3

n(k + 2)
≥
(
n

k

)−1
,
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which is trivial for k = 1, and otherwise follows from

3

n(k + 2)
≥
(
n

2

)−1
=

2

n(n− 1)
.

The case k/n ≥ 1/2 is symmetric to the case just considered.

It remains to verify (3.11) for k such that 1/2 ∈ (k/n, (k + 2)/n). Then
maxx∈[k/n,(k+2)/n] x(1−x) = 1/4. The condition 1/2 ∈ (k/n, (k+2)/n) is equivalent
to n/2− 2 < k < n/2.

If n is even, then k = n/2− 1 and
(
n
k

)
=
(

n
k+2

)
. In this case (3.11) will follow

from
12

n2
≥
(

n

n/2− 1

)−1
.

This is verified directly for n = 4; otherwise, it follows from

12

n2
≥
(
n

2

)−1
=

2

n(n− 1)
, (3.13)

which is trivial.

Finally, if n is odd, then k = (n− 3)/2 or k = (n− 1)/2. These two cases are
symmetric and it suffices to consider k = (n− 3)/2. Then

(
n
k

)
<
(

n
k+2

)
. Therefore

(3.11) will follow from

12

n2
≥
(

n

(n− 3)/2

)−1
.

This is checked directly for n = 5; otherwise, it follows from (3.13). �

We proceed to the proof of Theorem 1.10.

Proof of Theorem 1.10. Direct computations and (2.9) yield for n ≥ 3 and
k = 0, . . . , n− 2 the relation

Φn

(
k + 2

n

)
− 2Φn

(
k + 1

n

)
+ Φn

(
k

n

)
=

(
n

k

)−1
+

(
n

k + 2

)−1
. (3.14)

Therefore, by virtue of (3.8) and (3.9), the function Φn(x) satisfies the conditions
in Propositions 3.1-3.3; hence the assertions of the theorem follow. �

Proposition 3.4. The function Φn(x), defined in Theorem 1.10, is convex on
[0, 1] and satisfies the estimates

− 4

n
≤ Φn(x) ≤ 16

n
, x ∈

[
1

n
, 1− 1

n

]
. (3.15)
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Proof. As we assumed in the statement of Theorem 1.10, n ≥ 3. The function
Φn(x) is twice continuously differentiable on [0, 1], as

Φ′n(x) = n(n+ 1)

∫ 1

0

(
t2 + (1− t)2

)
× t2(1− t)n−2 − t3(1− t)n−3 + tnx(1− t)n(1−x)(ln t− ln(1− t))

(1− 2t)2
dt

and

Φ′′n(x) = n2(n+ 1)

∫ 1

0

(
t2 + (1− t)2

)
tnx(1− t)n(1−x)

(
ln t− ln(1− t)

1− 2t

)2

dt.

We have that Φ′′n(x) > 0 on [0, 1]; hence Φn(x) is convex on [0, 1].

Further, since Φn(x) is convex, then

Φn(x) ≤ max

{
Φn

(
1

n

)
,Φn

(
1− 1

n

)}
, x ∈

[
1

n
, 1− 1

n

]
. (3.16)

Straightforward computations and (2.9) show that

Φn

(
1

n

)
=

(
n

1

)−1
+

(
n

3

)−1
≤ 4

n
. (3.17)

The definition of Φn(x) readily yields that Φn(2/n) = Φn(3/n) = 0. This,
combined with (3.16) and (3.17), implies (3.15) for n = 3, 4.

To estimate Φn(1− 1/n) for n ≥ 5 we sum relations (3.14) on k = 2, . . . , j and
then on j = 2, . . . , n − 3. As we take into account Φn(2/n) = Φn(3/n) = 0, we
arrive at

Φn

(
n− 1

n

)
=

n−3∑
k=2

(n− k − 2)

(
n

k

)−1
+

n−3∑
k=2

(n− k − 2)

(
n

k + 2

)−1
. (3.18)

Next, we estimate the right-hand-side of (3.18):

n−3∑
k=2

(n− k − 2)

(
n

k

)−1
≤

n−2∑
k=2

(n− k + 1)
k! (n− k)!

n!

= (n+ 1)

n−2∑
k=2

(
n+ 1

k

)−1
≤ (n+ 1)

(
n+ 1

2

)−1
+ (n+ 1)(n− 4)

(
n+ 1

3

)−1
≤ 8

n
.
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Similarly, we get
n−3∑
k=2

(n− k − 2)

(
n

k + 2

)−1
≤ 8

n
.

By virtue of the last two estimates, the fact that Φn(2/n) = Φn(3/n) = 0 and
(3.18), we arrive at

Φn

(
n− 1

n

)
≤ 16

n
.

This along with (3.16) and (3.17) imply the upper estimate in (3.15) for n ≥ 5.

In order to verify the lower estimate, we use that Φn(x) is convex and Φn(2/n) =
Φn(3/n) = 0 to deduce that Φn(x) attains its global minimum on the interval
(2/n, 3/n). Since Φn(x) is convex, its graph on the interval [2/n, 3/n] lies above
the secant line through the points (1/n,Φn(1/n)) and (2/n,Φn(2/n)). Thus we
arrive at

Φn(x) ≥ Φn

(
1

n

)
(2− nx) ≥ −Φn

(
1

n

)
, x ∈

[
2

n
,

3

n

]
.

Hence, taking into account (3.17), we get the left inequality in (3.15). �

4. EXAMPLES

We will give several examples to illustrate some of the results obtained above.

We begin with an example, which shows that the operator B̃n does not preserve
monotonicity for all n. It can be shown that if f is monotone increasing, then so is
B̃n(f) for n ≤ 5. Here is a counterexample for n = 6.

Example 4.1. Let

f(0) = 0; f

(
1

6

)
=

50

60
; f

(
2

6

)
=

56

60
; f

(
3

6

)
=

57

60
;

f

(
4

6

)
=

58

60
; f

(
5

6

)
=

59

60
; f(1) = 1.

Then

B̃n(f)(x) = 5x(1−x)5+14x2(1−x)4+19x3(1−x)3+14x4(1−x)2+5x5(1−x)+x6.

Its derivative is

(B̃n(f))′(x) = 5(1− x)5 + 3x(1− x)4 + x2(1− x)3 − x3(1− x)2 − 3x4(1− x) + x5

and (B̃n(f))′(7/10) = −73/2000.

It seems that it is quite difficult to construct a monotone function f , for which
B̃n(f) or B̂n(f) are not monotone, by means of elementary functions.

98 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 79–100.



In the next example we consider the sufficient condition stated in Theorem 1.7.

Example 4.2. The function f(x) = (x + 1)5 satisfies the assumptions in
Theorem 1.7. Thus the polynomials B̃n(f) are monotone increasing for all n.
Figure 1 contains the plot of f(x) and B̃n(f) for n = 5 and n = 10.

Finally, let us demonstrate that B̃n preserves asymptotically convexity.

Example 4.3. Consider the concave function f(x) =
√
x. Figure 2 shows the

plots of f(x) and B̃n(f) for n = 5 and n = 10. We can see that the graphs of B̃5(f)
and B̃10(f) have an inflection point. It moves to 1 as n increases. This example
shows that generally B̃n, and similarly B̂n, does not preserve convexity.

Figure 1. B̃n and monotonicity Figure 2. B̃n and convexity

The computations and the plots were made with wmMaxima 16.04.2.
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