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1. INTRODUCTION AND STATEMENT OF THE RESULTS

The definite integral

I[f ] :=

1∫
0

f(x) dx

is evaluated approximately by a quadrature formula, which is a linear functional of
the form

Q[f ] =

n∑
i=0

ai f(xi), 0 ≤ x0 < x1 < · · · < xn ≤ 1 . (1.1)

Two reasonable though rather demanding requirements for a quadrature formula
(1.1) are : 1) to have the smallest possible maximal error for integrands f belonging
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to a given class of functions and 2) to provide the exact value of the integral for inte-
grands from a linear space of the highest possible dimension. Quadrature formulae
satisfying these two requirements are called optimal and Gauss type quadratures,
respectively. Regardless which of these criteria is applied for the design of a quadra-
ture formula, typically its nodes and weights are evaluated numerically, thus they
are only approximately known. For this reason often in practice a preference is
given to quadrature formulae having other useful properties, e.g. quadrature for-
mulae whose knots and weights are explicitly known, or which allow easy error
estimation. For instance, using quadrature formulae with equispaced nodes, we
save half of the integrand evaluations when doubling the number of nodes; using
quadrature formulae of (almost) Chebyshev type (i.e., with almost all weights equal
to each other) we reduce the error induced by rounding. In automated routines for
numerical integration, definite quadrature formulae are widely used for derivation
of criteria for termination of calculations (the so-called stopping rules), see e.g. [5].

This paper is a continuation of our previous study on definite quadrature for-
mulae of low order which use equidistant nodes and are of almost Chebyshev type.
Before formulating our results, let us recall some definitions.

Quadrature formula (1.1) is said to have algebraic degree of precision m (in
short, ADP (Q) = m), if its remainder

R[Q; f ] := I[f ]−Q[f ]

vanishes whenever f ∈ πm, and R[Q; f ] 6= 0 when f is a polynomial of degree m+1.
Here and henceforth, πk stands for the set of real algebraic polynomials of degree
at most k.

Definition 1. Quadrature formula (1.1) is said to be definite of order r, r ∈ N,
if there exists a real non-zero constant cr(Q) such that its remainder functional
admits the representation

R[Q; f ] = I[f ]−Q[f ] = cr(Q) f (r)(ξ)

for every real-valued function f ∈ Cr[0, 1], with some ξ ∈ [0, 1] depending on f .

Furthermore, Q is called positive definite (resp., negative definite) of order r,
if cr(Q) > 0 (cr(Q) < 0).

Definition 2. A real-valued function f ∈ Cr[0, 1] is called r−positive (resp.,
r−negative) if f (r)(x) ≥ 0 (resp. f (r)(x) ≤ 0 ) for every x ∈ [0, 1].

A definite quadrature formula of order r provides one-sided approximation
to I[f ] whenever f is r−positive or r−negative. If {Q+, Q−} is a pair of a
positive and a negative definite quadrature formula of order r and f is an r-
positive function, then Q+[f ] ≤ I[f ] ≤ Q−[f ]. Most of quadrature formulae used
in practice (e.g., quadrature formulae of Gauss, Radau, Lobatto, Newton-Cotes)
are definite of certain order.
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In [1] we constructed several sequences of asymptotically optimal definite quad-
rature formulae of order four with all but a few boundary nodes being equidistant.
For some pairs of these definite quadrature formulae we derived a posteriori error
estimates. In [2, 3] definite quadrature formulae of order three based on the nodes of
compound trapesium and midpoint quadratures were constructed and a posteriori
error estimates derived. It turns out that definite quadrature formulae of odd order
offer some additional advantages, see Proposition 1 below.

Definition 3. Quadrature formula (1.1) is called:

• symmetrical, if

ak = an−k , k = 0, . . . , n , (1.2)

xk = 1− xn−k , k = 0, . . . , n ; (1.3)

• nodes-symmetrical, if only condition (1.3) is satisfied;

• The quadrature formula

Q̃[f ] = Q̃[Q; f ] :=

n∑
k=0

ak f(xn−k) (1.4)

is called reflected quadrature formula to (1.1).

Proposition 1 ([2]). (i) If Q is a positive definite quadrature formula of
order r (r – odd), then its reflected quadrature formula Q̃ is negative definite
of order r and vice versa. Moreover, cr(Q̃) = −cr(Q).

(ii) If quadrature formula Q in (1.1) is nodes-symmetrical and definite of order
r (r – odd), and f is an r-positive or r-negative function, then, with Q∗

standing for either Q or Q̃ we have∣∣R[Q∗; f ]
∣∣ ≤ B[Q; f ] :=

∣∣Q̃[f ]−Q[f ]
∣∣

=
∣∣∣ bn2 c∑
k=0

(
ak − an−k

)(
f(xn−k)− f(xk)

)∣∣∣. (1.5)

(iii) Under the same assumptions for Q and f as in (ii), for Q̂ = (Q + Q̃)/2 we
have ∣∣R[Q̂; f ]

∣∣ ≤ 1

2
B[Q; f ] .

Proposition 1(i) implies that definite quadrature formulae of odd order are
never symmetrical. Let us point out that the error estimate (1.5) becomes especially
simple when almost all coefficients of Q are equal to each other.
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For n ∈ N and a function f defined on the interval [0, 1] , we denote

xi = xi,n =
i

n
, fi = f(xi,n) , i = 0 . . . , n .

Recall that the finite differences ∆kfi are defined recursively by

∆1fi = ∆fi := fi+1 − fi and ∆k+1fi = ∆
(
∆kfi

)
, k ≥ 1 .

Set

c :=
3 +
√

30

21600

√
1− 2

√
2

15
, c ≈ 0.000203818 .

Our main result reads as follows:

Theorem 1. (i) For every n ≥ 11 , the quadrature formula

Qn[f ] =
1

n

n−1∑
k=0

Ak fk +
c

n

(
∆4f0 −∆4fn−5

)
,

where Ak = 1 for 5 ≤ k ≤ n− 6 and

A0 =
95

288
, A1 =

317

240
, A2 =

23

30
, A3 =

793

720
, A4 =

157

160
,

An−5 =
383

288
, An−4 =−481

720
, An−3 =

22

5
, An−2 =−1823

720
, An−1 =

4277

1440
,

is positive definite of order 5 with the error constant

c5(Qn) =
c

n5
+

5(19− 288c)

288n6
. (1.6)

(ii) If f is a 5-positive or 5-negative function, then∣∣R[Qn; f ]
∣∣ ≤ 1

n

∣∣∣( 95

288
− c
)(

∆5f0 + ∆5fn−5
)

+ 2c
(
∆4fn−4 −∆4f0

)∣∣∣ .
As an immediate consequence of Theorem 1 and Proposition 1 we have:

Corollary 1. The reflected to Qn from Theorem 1 quadrature formula Q̃n
is negative definite of order 5 with the error constant c5(Q̃n) = −c5(Qn).

If f is a 5-positive or 5-negative function and Q̂n =
1

2

(
Qn + Q̃n

)
, then

∣∣R[Q̃n; f ]
∣∣ ≤ 1

n

∣∣∣( 95

288
− c
)(

∆5f0 + ∆5fn−5
)

+ 2c
(
∆4fn−4 −∆4f0

)∣∣∣ .
∣∣R[Q̂n; f ]

∣∣ ≤ 1

2n

∣∣∣( 95

288
− c
)(

∆5f0 + ∆5fn−5
)

+ 2c
(
∆4fn−4 −∆4f0

)∣∣∣ .
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Remark 1. It is worth noting that while the implied by (1.6) error estimate

|R[Qn; f ]| ≤ c5(Qn)‖f (5)‖C[0,1]

requires knowledge of the magnitude of the C[0, 1]–norm of the integrand’s deriva-
tive, the error bounds in Theorem 1(ii) and Corollary 1 in terms of finite diferences
are easy to evaluate and may serve as a simple criteria for the number of nodes
n needed to guarantee the evaluation of I[f ] with a prescribed tolerance. (Note
however that these error bounds apply only for 5-positive or 5-negative integrands.)
Let us also mention that, according to Corollary 1, the symmetrical (and hence not
definite) quadrature formula Q̂n has smaller error bound than the definite quadra-
ture formulae Qn and Q̃n .

The rest of the paper is organised as follows. Section 2 contains some prelimi-
naries. In Section 2.1 we give some known facts about the Peano kernel representa-
tion of linear functionals, and prove a simple necessary condition for a quadrature
formula to be positive definite. Some facts about Bernoulli polynomials and num-
bers and the Euler-MacLaurin summation formula are given in Section 2.2. In
Sections 3 we present some formulae for numerical differentiation to be used for re-
placement of the derivatives occurring in the Euler-MacLaurin formula. The proof
of Theorem 1 and Corollary 1 is given in Section 4.

2. PRELIMINARIES

2.1. PEANO KERNEL REPRESENTATION OF LINEAR FUNCTIONALS

For r ∈ N, the Sobolev class of functions W r
1 = W r

1 [0, 1] is defined by

W r
1 [0, 1] := {f ∈ Cr−1[0, 1] : f (r−1) loc. abs. continuous,

∫ 1

0

|f (r)(t)| dt <∞}

and contains, in particular, the class Cr[0, 1].

If L is a linear functional defined in W r
1 [0, 1] which vanishes on πr−1, then, by

a classical result of Peano [11], L is represented in the form

L[f ] =

∫ 1

0

Kr(t)f
(r)(t) dt ,

where Kr(t) = Kr(L; t) is given by

Kr(t) = L
[ (· − t)r−1+

(r − 1)!

]
, t ∈ [0, 1] , u+(t) = max{t, 0} , t ∈ R .
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When L is the remainder R[Q; ·] of a quadrature formula Q with ADP (Q) ≥
r− 1, with some notational and language abuse, Kr(t) = Kr(Q; t) is referred to as
the r-th Peano kernel of Q. For Q as in (1.1), explicit representations for Kr(Q; t),
t ∈ [0, 1], are

Kr(Q; t) =
(1− t)r

r!
− 1

(r − 1)!

n∑
i=0

ai(xi − t)r−1+ , (2.1)

and

Kr(Q; t) = (−1)r
[ tr
r!
− 1

(r − 1)!

n∑
i=0

ai(t− xi)r−1+

]
. (2.2)

Thus, for f ∈ Cr[0, 1] and a quadrature formula Q with ADP (Q) = r − 1 ,

R[Q; f ] =

1∫
0

Kr(Q; t) f (r)(t) dt .

It is clear now that Q is a positive (negative) definite quadrature formula of order
r if and only if ADP (Q) = r − 1 and Kr(Q; t) ≥ 0 (resp. Kr(Q; t) ≤ 0 ) for all
t ∈ [0, 1], and if this is the case, then

cr(Q) =

∫ 1

0

Kr(Q; t) dt .

From (2.1) and (2.2) one easily derives the following necessary condition for
positive (negative) definiteness of a quadrature formula.

Lemma 1. Let

Q[f ] =

n∑
k=0

ak f(xk) , 0 = x0 < x1 < · · · < xn = 1,

be a quadrature formula for I[f ] =
∫ 1

0
f(x) dx. A necessary condition for Q to be

positive (resp., negative) definite of order r is

(−1)r a0 ≤ 0 and an ≤ 0 (resp., (−1)r a0 ≥ 0 and an ≥ 0) .

Proof. If Q is positive or negative definite of order r, then ADP (Q) = r − 1,
and therefore Kr(Q; t) ≥ 0 (resp., Kr(Q; t) ≤ 0) for every t ∈ (0, 1). From (2.1)
and (2.2) we find that for sufficiently small ε > 0

sign Kr(Q;xn − ε) = −sign an , sign Kr(Q;x0 + ε) = (−1)r+1sign a0 ,

whence the conclusion follows. �
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2.2. BERNOULLI POLYNOMIALS AND EULER-MACLAURIN SUMMATION FORMULA

Assuming f is smooth enough, the remainder of the n-th compound trapezium
quadrature formula

QTrn [f ] =
1

2n

(
f0 + fn

)
+

1

n

n−1∑
k=1

fk

(with fi = f(xi) and xi = i/n, i = 0, . . . , n ) admits an expansion of the form

R[QTrn ; f ] = −
[ s2 ]∑
ν=1

B2ν(0)

n2ν
[
f (2ν−1)(1)−f (2ν−1)(0)

]
+

(−1)s

ns

1∫
0

B̃s(nx)f (s)(x)dx .

This is the so-called Euler-Maclaurin summation formula (see, e.g., [4, Satz 98]).
Here, {Bν} are the Bernoulli polynomials, which are defined recursively by

B0(x) = 1, B′ν(x) = Bν−1(x),

∫ 1

0

Bν(t) dt = 0 , ν ∈ N,

and B̃ν is the one-periodic extension of Bν , i.e., B̃ν(x) = Bν({x}), where {x} is
the fractional part of x ∈ R.

In the case s = 5 the Euler–Maclaurin summation formula reads as

I[f ] =QTrn [f ]− 1

12n2
[
f ′(1)− f ′(0)

]
+

1

720n4
[
f ′′′(1)− f ′′′(0)

]
− 1

n5

1∫
0

B̃5(nx)f (5)(x) dx ,
(2.3)

with the explicit form of B5

B5(x) =
x5

120
− x4

48
+
x3

72
− x

720
.

Let us note that for x ∈ R

−c ≤ B̃5(x) ≤ c , where c :=
3 +
√

30

21600

√
1− 2

√
2

15
≈ 0.000203818 .

Rewriting (2.3) in the form

I[f ] =QTrn [f ]− 1

12n2
[
f ′(1)− f ′(0)

]
+

1

720n4
[
f ′′′(1)− f ′′′(0)

]
− c

n5
[
f (4)(1)− f (4)(0)

]
+

1

n5

1∫
0

(
c− B̃5(nx)

)
f (5)(x) dx ,
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we observe that the quadrature formula

Q∗n[f ] =QTrn [f ]− 1

12n2
[
f ′(xn)− f ′(x0)

]
+

1

720n4
[
f ′′′(xn)− f ′′′(x0)

]
− c

n5
[
f (4)(xn)− f (4)(x0)

] (2.4)

is positive definite of order 5, since

K5(Q∗n; t) = n−5
(
c− B̃5(nt)

)
≥ 0, t ∈ R . (2.5)

However, Q∗n is not of desired form, as it involves evaluations of both the integrand
and of its derivatives. In order to obtain a quadrature formula using only integrand’s
evaluation, we need some formulae for numerical differentiation.

3. FORMULAE FOR NUMERICAL DIFFERENTIATION

The following formulae for numerical differentiation will be used to replace the
derivatives occurring in quadrature formula Q∗n (recall that xi = i/n and fi = f(xi)
for i = 0, . . . , n):

f ′(x0) ≈ D1[f ] :=
n

12

[
− 25 f0 + 48 f1 − 36 f2 + 16 f3 − 3 f4

]
,

f ′′′(x0) ≈ D3[f ] :=
n3

2

[
− 5 f0 + 18 f1 − 24 f2 + 14 f3 − 3 f4

]
,

f (4)(x0) ≈ D4[f ] := n4
[
f0 − 4 f1 + 6 f2 − 4 f3 + f4

]
= n4∆4f0 ,

f ′(xn) ≈ D̃1[f ] :=
n

12

[
25 fn − 48 fn−1 + 36 fn−2 − 16 fn−3 + 3 fn−4

]
,

f ′′′(xn) ≈ D̃3[f ] :=
n3

2

[
5 fn − 18 fn−1 + 24 fn−2 − 14 fn−3 + 3 fn−4

]
,

f (4)(xn) ≈ D̃4[f ] := n4
[
fn − 4 fn−1 + 6 fn−2 − 4 fn−3 + fn−4

]
= n4∆4fn−4 .

These formulae are sharp for f ∈ π4, i.e., the linear functionals

Lj [f ] := f (j)(x0)−Dj [f ] , L̃j [f ] := f (j)(xn)− D̃j [f ] , j = 1, 3, 4

vanish on π4. According to Peano’s theorem, for f ∈ C5[0, 1] they admit integral
representations, in particular,

Lj [f ] :=

∫ 1

0

K5(Lj ; t)f
(5)(t) dt , K5(Lj ; t) = Lj

[ (· − t)4+
4!

]
, j = 1, 3, 4 . (3.1)
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Proposition 2. The Peano kernels K5(Lj ; ·), j = 1, 3, 4, vanish identically
on the interval [x4, xn]. Moreover,∫ 1

0

K5(L1; t) dt =
1

5n4
, (3.2)∫ 1

0

K5(L3; t) dt =
7

4n2
, (3.3)∫ 1

0

K5(L4; t) dt = − 2

n
. (3.4)

Proof. The first claim follows from (3.1): for t ≥ x4 and x ≤ x4 we have, by
definition, (x− t)4+ ≡ 0, hence K5(Lj ; t) = Lj [(· − t)4+]/4! ≡ 0 for t ∈ [x4, xn].

Equality (3.2) is verified as follows:∫ 1

0

K5(L1; t) dt=− n

288

∫ 1

0

[
48(x1−t)4+−36(x2−t)4++16(x3−t)4+−3(x4−t)4+

]
dt

=
n

1440

[
48(x1−t)5

∣∣∣x1

0
−36(x2−t)5

∣∣∣x2

0
+16(x3−t)5

∣∣∣x3

0
−3(x4−t)5

∣∣∣x4

0

]
=

1

5n4
.

Equalities (3.3) and (3.4) are verified in the same way. �

In order to deduce an analogous statement for the linear functionals L̃j , we
need a more convenient formula for their Peano kernels. Since

(x− t)4+ + (t− x)4+ = (x− t)4 for every x, t ∈ R ,

and L̃j vanish on π4, it follows that L̃j [(· − t)4+] = −L̃j [(t− ·)4+], hence

L̃j [f ] :=

∫ 1

0

K5(L̃j ; t)f
(5)(t) dt , K5(L̃j ; t) = −L̃j

[ (t− ·)4+
4!

]
, j = 1, 3, 4 . (3.5)

By using (3.5), we establish in the same manner the following:

Proposition 3. The Peano kernels K5(L̃j ; ·), j = 1, 3, 4, vanish identically
on the interval [x0, xn−4]. Moreover,∫ 1

0

K5(L̃1; t) dt =
1

5n4
,∫ 1

0

K5(L̃3; t) dt =
7

4n2
,∫ 1

0

K5(L̃4; t) dt =
2

n
.
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4. PROOF OF THEOREM 1

Replacement of the derivatives in (2.4) with the formulae for numerical differ-
entiation from Section 3 yields

Q∗n[f ] =QTrn [f ] +
D1[f ]

12n2
− D3[f ]

720n4
+ c

D4[f ]

n5
− D̃1[f ]

12n2
+
D̃3[f ]

720n4
− c D̃4[f ]

n5

+
1

12n2
(
L1[f ]−L̃1[f ]

)
− 1

720n4
(
L3[f ]−L̃3[f ]

)
+
c

n5
(
L4[f ]−L̃4[f ]

)
=:Q̂n[f ] + L[f ] ,

(4.1)

where the linear functional L is given by

L =
1

12n2
(
L1 − L̃1

)
− 1

720n4
(
L3 − L̃3

)
+

c

n5
(
L4 − L̃4

)
(4.2)

and Q̂n is the quadrature formula

Q̂n[f ] =
1

n

n∑
k=0

ak fk +
c

n

(
∆4f0 −∆4fn−4

)
(4.3)

with coefficients

a0 = an =
95

288
, a1 = an−1 =

317

240
, a2 = an−2 =

23

30
,

a3 = an−3 =
793

720
, a4 = an−4 =

157

160
, ak = 1, 5 ≤ k ≤ n− 5 .

(4.4)

0.2 0.4 0.6 0.8 1.0

-1.×10-8

-5.×10-9

5.×10-9

1.×10-8

Figure 1. The graph of K5(Q̂n; t), n = 15.

Clearly, ADP (Q̂n) ≥ 4. Unfortunately, Q̂n is not positive definite of order 5,
as K5(Q̂n; t) is negative in a neighborhood of xn = 1, see Figure 1. In fact, Q̂n
fails to satisfy the criteria for positive definiteness of Lemma 1, as the coefficient of
fn = f(xn) in Q̂n is

κ =
1

n

( 95

288
− c
)
> 0 .
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In order to fulfill the necessary condition for positive definiteness of Lemma 1,
we modify Q̂n so that the coefficient of f(xn) equals zero:

Qn[f ] = Q̂n[f ]− κL5[f ] , (4.5)

L5[f ] = −fn−5 + 5 fn−4 − 10 fn−3 + 10 fn−2 − 5 fn−1 + fn . (4.6)

Since the finite difference functional L5[f ] = ∆5fn−5 vanishes on π4, the newly
built quadrature formula Qn uses the equispaced nodes and ADP (Qn) = 4. As-
suming n ≥ 11 and using (4.3), (4.4), (4.5) and (4.6), we find that

Qn[f ] =
1

n

n−1∑
k=0

Ak fk +
c

n

(
∆4f0 −∆4fn−5

)
,

where Ak = 1 for 5 ≤ k ≤ n− 6 and

A0 =
95

288
, A1 =

317

240
, A2 =

23

30
, A3 =

793

720
, A4 =

157

160
,

An−5 =
383

288
, An−4 =−481

720
, An−3 =

22

5
, An−2 =−1823

720
, An−1 =

4277

1440
.

Hence, Qn is the quadrature formula from Theorem 1.

We need to show that Qn is positive definite of order 5, i.e. that K5(Qn; t) ≥ 0
for t ∈ (0, 1). To this end, we observe that, by virtue of (4.1) and (4.2),

Qn = Q∗n − L− κL5

with L and L5 given by (4.2) and (4.6), respectively. Consequently,

K5(Qn; t) = K5(Q∗n; t) +K5(L; t) + κK5(L5; t) . (4.7)

According to (2.5), K5(Q∗n; t) ≥ 0 for t ∈ (0, 1). From (4.2) and Propositions 2
and 3 we infer that

K5(L; t) ≡ 0 for t ∈ [x4, xn−4] . (4.8)

A similar conclusion is true for K5(L5; t), as it is a B-spline of degree 4 with knots
xi, n− 5 ≤ i ≤ n, and therefore

K5(L5; t) ≡ 0 for t ∈ [x0, xn−5] . (4.9)

It follows from (4.7), (2.5), (4.8) and (4.9) that K5(Qn; t) ≡ K5(Q∗n; t) ≥ 0 on the
interval [x4, xn−5], therefore we only need to verify that K5(Qn; t) ≥ 0 in the cases
t ∈ (x0, x4) and t ∈ (xn−5, xn).

Case 1: t ∈ (x0, x4) . By the change of variable t = u/n, u ∈ (0, 4), we obtain

K5(Qn; t) = − 1

4!n5
ϕ1(u) , u ∈ (0, 4) ,
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where the function ϕ1 does not depend on n, namely,

ϕ1(u) =
u5

5
−(A0+c)u4−(A1−4c)(u−1)4+−(A2+6c)(u−2)4+−(A3−4c)(u−3)4+ .

The graph of ϕ1 , depicted in Figure 2(a), shows that ϕ1(u) < 0 in the interval
(0, 4) (ϕ1 has a local maximum at u = 3.76475, equal to −0.000059). Therefore,
K5(Qn; t) > 0 for t ∈ (x0, x4) .

1 2 3 4

-0.25

-0.20

-0.15

-0.10

-0.05

(a) The graph of ϕ1(u) , 0 ≤ u ≤ 4.

1 2 3 4 5

1

2

3

4

(b) The graph of ϕ2(u) , 0 ≤ u ≤ 5.

Figure 2

Case 2: t ∈ (xn−5, xn) . By the change of variable t = 1− u/n we obtain

K5(Qn; t) =
1

4!n5
ϕ2(u) , u ∈ (0, 5) ,

where

ϕ2(u) =
u5

5
−B1(u− 1)4+ −B2(u− 2)4+ −B3(u− 3)4+ −B4(u− 4)4+ ,

with Bi = An−i + (−1)i
(

4
i−1
)
c, i = 1, . . . , 5. Again, ϕ2 does not depend on n and

is positive for u ∈ (0, 5), as shown in Figure 2(b). Consequently, K5(Qn; t) > 0 for
t ∈ (xn−5, xn) , and the proof that Qn is a positive definite quadrature formula of
order 5 is completed.

Having established the positive definiteness of Qn , we proceed with evaluating
its error constant c5(Qn) = I[K5(Qn; ·)]. From (4.7) we have

c5(Qn) =

∫ 1

0

K5(Q∗n; t) dt+

∫ 1

0

K5(L; t) dt+ κ

∫ 1

0

K5(L5; t) dt . (4.10)

We evaluate the three integrals on the right-hand side of (4.10). For the first one,
we find from (2.5)∫ 1

0

K5(Q∗n; t) dt =
1

n5

∫ 1

0

(
c− B̃5(nt)

)
dt =

c

n5
.
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According to (4.2),

K5(L; t) =
1

12n2
(
K5(L1; t)−K5(L̃1; t)

)
− 1

720n4
(
K5(L3; t)−K5(L̃3; t)

)
+

c

n5
(
K5(L4; t)−K5(L̃4; t)

)
and using Propositions 2 and 3, we obtain∫ 1

0

K5(L; t) dt = − 4c

n6
.

Recall that L5[f ] = ∆5fn−5, and from Peano’s representation theorem,

K5(L5; t) =
1

4!

[
(xn − t)4+ − 5(xn−1 − t)4+ + 10(xn−2 − t)4+
− 10(xn−3 − t)4+ + 5(xn−4 − t)4+ − (xn−5 − t)4+

]
.

Hence,∫ 1

0

K5(L5; t) dt =
1

5!n5
[
n5−5(n−1)5+10(n−2)5−10(n−3)5+5(n−4)5−(n−5)5

]
=

1

n5
.

Substituting the found values of the three integrals in (4.10), we obtain

c5(Qn) =
c

n5
− 4c

n6
+

1

n6

( 95

288
− c
)

=
c

n5
+

5(19− 288c)

288n6
,

which was to be proved. This accomplishes the proof of Theorem 1(i).

For the proof of Theorem 1(ii) we apply Proposition 1(ii). We set An = 0,
hence Qn becomes a nodes-symmetrical quadrature formula. Now, according to
(1.5),

B(Qn; f) =
∣∣Q̃n[f ]−Qn[f ]

∣∣ =
∣∣Qn[f̃ ]−Qn[f ]

∣∣ , where f̃(t) = f(1− t) .

In view of (4.3) and (4.5),

Qn[f ] =
1

n

n∑
k=0

ak fk +
c

n

(
∆4f0 −∆4fn−4

)
− κ∆5fn−5 .

Making use of relations ∆4f̃0 = ∆4fn−4, ∆4f̃n−4 = ∆4f0, ∆5f̃n−5 = −∆5f0 and
ak = an−k, k = 0, . . . , n (see (4.2)), we obtain

Qn[f̃ ] =
1

n

n∑
k=0

ak fk +
c

n

(
∆4fn−4 −∆4f0

)
+ κ∆5f0 .
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Hence,

B(Qn; f) =
∣∣Qn[f̃ ]−Qn[f ]

∣∣ =
∣∣∣κ (∆5f0 + ∆5fn−5

)
+

2c

n

(
∆4fn−4 −∆4f0

)∣∣∣
=

1

n

∣∣∣( 95

288
− c
)(

∆5f0 + ∆5fn−5
)

+ 2c
(
∆4fn−4 −∆4f0

)∣∣∣ .
Claim (ii) of Theorem 1 now follows from Proposition 1(ii). The proof of Theorem 1
is completed. Corollary 1 is a consequence of Theorem 1 and Proposition 1.

Remark 2. The magnitude of the Peano kernel K5(Qn; t) in the interval
[x4, xn−5] is much smaller compared to its magnitude near the endpoints of (0, 1),
see Figure 3. A further perturbation of Qn of the form Q′n[f ] = Qn[f ]+κ1 ∆5f0 is
possible, with κ1 > 0 small enough so that 0 ≤ K5(Q′n; t) < K5(Qn; t) in (x0, x5).
Eventually, this leads to a quadrature formula Q′n which is positive definite of order
5 and has a slightly smaller error constant, c5(Q′n) < c5(Qn). The improvement
however is negligible, so we decided not to perform this step.

0.2 0.4 0.6 0.8 1.0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

5.×10-8

6.×10-8

(a) Graph of K5(Qn; t), t ∈ [0, 1].

0.2 0.3 0.4 0.5 0.6 0.7 0.8
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3.×10-9
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(b) Graph of K5(Qn; t), t ∈ [x3, xn−4].

Figure 3: Graphs of K5(Qn; t), n = 20.
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