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We develop a combinatorial method for computing and reducing of the possibilities of
distance distributions of ternary orthogonal array (TOA) of given parameters (n,M, τ).

Using relations between distance distributions of arrays under consideration and their

relatives we prove certain constraints on the distance distributions of TOAs. This
allows us to collect rules for removing distance distributions as infeasible. The main

result is nonexistence of (17, 108, 34) TOA. Our approach allows substantial reduction

of the number of feasible distance distributions for known arrays. This could be helpful
for other investigations over the classification of the ternary orthogonal arrays.
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1. INTRODUCTION

Let H(n, 3) be the Hamming space of dimension n over the alphabet {0, 1, 2}.
The Hamming distance d(x, y) between two points x, y ∈ H(n, 3) is equal to the
number of coordinates where they differ.

Definition 1.1. An orthogonal array (OA) of strength τ and index λ in
H(n, 3) (also called ternary orthogonal array or TOA), consists of the rows of
an M×n matrix C with the property that every M×τ submatrix of C contains all
ordered τ -tuples of H(τ, 3), each one exactly λ = M/3τ times as rows. We denote
such orthogonal array as (n,M, τ) TOA.
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Let C ⊂ H(n, 3) be an (n,M, τ) TOA and c ∈ H(n, 3) is a fixed point of the
space.

Definition 1.2. The distance distribution of C with respect to the point c is
the (n+ 1)-tuple W = W (c) = (w0, w1, . . . , wn), where

wi = |{x ∈ C | d(x, c) = i}|, i = 0, . . . , n.

If w0 ≥ 1 then the point c is a word in the array C and such points we denote
as internal points. The case w0 = 0 denote an external point for the orthogonal
array C. For simplicity and differentiation the distance distributions of internal
and external points will be denoted as P = P (c) = (p0, p1, . . . , pn) and Q = Q(c) =
(q0, q1, . . . , qn), respectively.

Let n, M and τ ≤ n be fixed. The sets of all possibilities for distance dis-
tributions of a given (n,M, τ) TOA with respect to internal points and external
points are denoted by P (n,M, τ) and Q(n,M, τ), respectively. Their union is the
set W (n,M, τ) = P (n,M, τ) ∪Q(n,M, τ).

There is a method [6, 2] for computation of the sets P (n,M, τ), Q(n,M, τ)
and W (n,M, τ). This method is based on the fact that each orthogonal array is a
design in H(n, 3).

We consider the Hamming space H(n, 3) as polynomial metric space where
zonal orthogonal polynomials are the Krawtchouk polynomials. For fixed n and
q = 3, the (normalized) Krawtchouk polynomials are defined by

Q
(n)
i (t) :=

1

ri
K

(n,3)
i (z),

where z = n(1− t)/2, ri := 2i
(
n
i

)
, and

K
(n,3)
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(−1)j2i−j
(
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j

)(
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)
,

i = 0, 1, . . . , n, are the (usual) Krawtchouk polynomials [1, 14].

Definition 1.3. [10] A code C ⊂ H(n, 3) is a τ -design if and only if for every
real polynomial f(t) of degree at most τ and for every point c ∈ H(n, 3) the equality∑

x∈C
f(〈c, x〉) = f0|C|

holds, where f0 is the first coefficient in the expansion f(t) =
∑n
i=0 fiQ

(n)
i (t) and

〈c, x〉 = 1− 2d(c, x)/n.

Since every (n,M, τ) TOA is a τ -design, the following theorem holds.
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Theorem 1.4 ([6, 2]). Let C ⊂ H(n, 3) is an (n,M, τ) TOA and c ∈ H(n, q)
is a fixed point. The following propositions are valid

(a) If c ∈ C, for the distance distribution of C with respect of c the following
system holds:

n∑
i=0

pi

(
1− 2i

n

)k
= bk|C|, k = 0, 1, . . . , τ, (1.1)

(b) If c /∈ C, for the distance distribution of C with respect of c the following
system holds:

n∑
i=1

qi

(
1− 2i

n

)k
= bk|C|, k = 0, 1, . . . , τ, (1.2)

where bk = f0 is the first coefficient in the expansion of the polynomial tk by the
normalized Krawchouk polynomials.

Through this theorem all initially feasible distance distributions of TOA of
parameters (n,M, τ) can be computed effectively for relatively small n and τ .

Boyvalenkov and two of authors [4] have presented and implemented an algo-
rithm for investigation binary orthogonal arrays. In this paper we develop a similar
algorithm that reduces the possible elements of the set P (n,M, τ). This algorithm
uses some connections between a given TOA and its related TOAs. During the
implementation of the algorithm this set P (n,M, τ) is changed by ruling out some
distance distributions.

In Section 2 we prove several relations between distance distributions of arrays
under consideration and their relatives. This imposes significant constraints on the
targeted TOAs and allows us to collect rules for removing distance distributions
from the set P (n,M, τ). The algorithm and one nonexistence result are described
in Section 3.

2. RELATIONS BETWEEN DISTANCE DISTRIBUTIONS OF (N,M, τ) TOA
AND ITS DERIVED

Let n, M and 2 ≤ τ < n be fixed. Let C ⊂ H(n, 3) be an (n,M, τ) TOA
with sets of distance distributions P (n,M, τ), Q(n,M, τ) and W (n,M, τ) after
calculating the results of the systems (1.1) and (1.2). We proceed with the removing
a column from C. Using well-known properties of the orthogonal arrays [8] we
obtain another orthogonal array C ′ with the same strength and cardinality and
length n−1. Without loss of generality (see [8]) let P ∈ P (n,M, τ) be the distance
distribution of C with respect to c = 0 ∈ C. Then the point c′ = 0 ∈ C ′ and the
distance distribution of C ′ with respect to c′ we denote by P ′ ∈ P (n − 1,M, τ).
The scheme of this construction is shown in the Figure 1 bellow.
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Definition 2.1. For every i ∈ {0, 1, . . . , n} the submatrix which consists of
the rows of C with i nonzero coordinates is called an i-block.

It follows from the definition of distance distribution that the i-block is a wi×n
matrix. Next we denote by yi the number of the zeros in the intersection of the
fixed column of C and the rows of the i-block. The number of the nonzero elements
in this intersection is denoted by yi.

C ′ − (n− 1,M, τ), P ′︷ ︸︸ ︷
0
... C0 − (n− 1,M/3, τ − 1), Y
0
1
...
1 C0 − (n− 1, 2M/3, τ − 1), Y
2
...
2︸ ︷︷ ︸

C − (n,M, τ), P

C ′ − (n− 1,M, τ), P ′︷ ︸︸ ︷
0
... C0 − (n− 1,M/3, τ − 1), Y
0
1
... C1 − (n− 1,M/3, τ − 1), Z
1
2
... C2 − (n− 1,M/3, τ − 1), U
2︸ ︷︷ ︸

C − (n,M, τ), P

Figure 1

Theorem 2.2. The nonnegative integer numbers yi and yi, for i = 0, 1, . . . , n,
satisfy the following system of linear equations∣∣∣∣∣∣∣∣

yi + yi = pi, i = 1, 2, . . . , n− 1
yi + yi+1 = p′i, i = 0, 1, . . . , n− 1
y0 = p0, yn = pn
yi, yi ∈ Z, xi ≥ 0, yi ≥ 0, i = 0, 1, . . . , n

. (2.1)

Proof. From the definition of the numbers yi and yi directly we obtain the
equalities:

yi + yi = pi, i = 1, . . . , n− 1, yn = pn, y0 = p0.

Let us have a look at the i-th element p′i in the distance distribution P ′ of C ′

with respect to c′ = 0 ∈ C ′. It denotes the number of points in C ′ that have exactly
i nonzero coordinates. Such points can be obtained from C by removing the first
column in two possible ways. The first one is from a point which first coordinate
is zero and has i nonzero entries. The number of these words of C is exactly yi.
Second is from a point of C with i + 1 nonzero entries such that one of them is
in the first column. These are the points in the (i + 1)-block and their number is
yi+1. Therefore

yi + yi+1 = p′i
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for every i = 0, 1, . . . , n− 1. �

Remark 2.3. There is a generalization of Theorem 2.2, i.e. the assertion
is valid not only for internal points but also for every distance distribution W ∈
W (n,M, τ). However, for the purposes of the algorithm in the next section we can
limit to the distance distributions in P (n,M, τ).

Corollary 2.4. The distance distribution P ∈ P (n,M, τ) is not feasible if no
system (2.1) obtained when P ′ runs P (n− 1,M, τ) has a solution.

Corollary 2.4 rules out some distance distributions P but its main purpose is
to define feasible pairs (P, P ′) which we will investigate further.

If we order the elements in some column (for example the first column) of
(n,M, τ) TOA C and remove this column (as shown in the Figure 1) we obtain
three different (n − 1,M/3, τ − 1) TOAs. One of them is C0 – the TOA obtained
from C by ordering the zeros in the first column and taking the corresponding
points of C ′.

Theorem 2.5. The vector Y is the distance distribution of C0 with respect to
the internal point c′ = 0 ∈ C ′, i.e. Y = (y1, y2, . . . , yn−1) ∈ P (n− 1,M/3, τ − 1).

Proof. We know from the definition of i-block that yi is exactly the numbers
of points in C with distance i to the fixed point c = 0 ∈ C. Therefore, the number
of points in C0 with distance i to the point c′ = 0 ∈ C ′ is exactly yi. �

Corollary 2.6. If Y /∈ P (n−1,M/3, τ−1) then the pair (P, P ′) is not feasible.

Let us return to the construction in Figure 1. We denote by C1 and C2 the
orthogonal arrays corresponding to the sorted and removed elements one and two
in the first column of C, respectively. Another property of the orthogonal arrays
says that an union of C1 and C2, two ternary orthogonal arrays with parameters
(n − 1,M/3, τ − 1) and (n − 1,M/3, τ − 1) is also a TOA with parameters (n −
1, 2M/3, τ−1). This union will be denoted by C0. Note that there may be repeating
points in the considered orthogonal arrays.

Theorem 2.7. If y0 ≥ 1, then Y is the distance distribution of C0 with respect
to the fixed point c′ = 0, i.e. Y ∈ P (n− 1, 2M/3, τ − 1).

Proof. The nonzero entries of the first column of C are selected and removed
and this way the orthogonal array C0 is obtained. We have from the definition of
i-block that yi is exactly the numbers of points in C with distance i to the point
c = 0. Therefore, the numbers of points in C0 with distance i to the point c′ = 0
is exactly yi. The condition y0 ≥ 1 determines that we check if C0 contains the
point c′ = 0, i.e. c′ ∈ C0 is the internal point and Y ∈ P (n− 1, 2M/3, τ − 1). �
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Corollary 2.8. If y0 ≥ 1 and Y /∈ P (n−1, 2M/3, τ −1), then the pair (P, P ′)
is not feasible.

After applying Corollary 2.8 for fixed distance distribution P ∈ P (n,M, τ) we
continue with the remaining feasible pairs (P, P ′). Let

(y
(r)
0 = 0, y

(r)
1 , . . . , y(r)n ; y

(r)
0 , y

(r)
1 , . . . , y

(r)
n−1, y

(r)
n = 0), r = 1, . . . , s,

be all solutions of system (2.1) when P ′ runs the set P (n− 1,M, τ) such that the
corresponding pair (P, P ′) is not ruled out by Corollaries 2.6 and 2.8. Denote by
kr the numbers of columns corresponding to the r-th solution of the system (2.1)
for r = 1, . . . , s.

After the sieve from Corollaries 2.6 and 2.8, we formulate another necessary
condition for the existence of C.

Theorem 2.9. The system∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 +k2 + . . . +ks = n

k1y
(1)
1 +k2y

(2)
1 + . . . +ksy

(s)
1 = p1

k1y
(1)
2 +k2y

(2)
2 + . . . +ksy

(s)
2 = 2p2

...

k1y
(1)
n +k2y

(2)
n + . . . +ksy

(s)
n = npn

kj ∈ Z, kj ≥ 0, j = 1, . . . , s

(2.2)

with respect to k1, k2, . . . , ks has a solution, i.e. the ternary orthogonal array C of
parameters (n,M, τ) exists if the system (2.2) has a solution.

Proof. For every cutting of a column of C we solve the system (2.1) for every
possible P ′ ∈ P (n− 1,M, τ). Let i be fixed. In the i-block the numbers of nonzero
entries is exactly ipi. On the other hand we know that yi is the number of points
in i-block with entries 1 or 2 in the first column. So the count of nonzero entries
in i-block is equal to k1y

(1)
i + k2y

(2)
i + . . .+ ksy

(s)
i . Therefore for every i = 0, . . . , n

the equalities in the system (2.2) hold. �

3. OUR ALGORITHM AND ONE NONEXISTENCE RESULT

Based on the observations and conclusions in the previous section an algorithm
for reducing the feasible distance distributions in the set P (n,M, τ) for fixed n, M
and τ can be developed. If the result from the algorithm is an empty set we can
conclude that ternary orthogonal arrays with parameters (n,M, τ) do not exist.

By calculating the sets P (n−1, 2M/3, τ−1) we observe that these sets become
very large so the Theorem 2.7 and the Corollary 2.8 are not easy to be applied for
the computations. Even more, when τ > 3 the set P (n−1, 2M/3, τ−1) itself should
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be reduced through generation and reduction of the set P (n−2, 4M/9, τ−2) which
cardinality is even bigger. That is the reason why the algorithm is based only on
Theorems 2.2, 2.5 and 2.9 and their corollaries.

First, we generate with Theorem 1.4 the following rows of distance distribution
sets when the length varies from τ to n

P (τ,M, τ), P (τ + 1,M, τ), . . . , P (n,M, τ)

P (τ − 1,M/3, τ − 1), P (τ,M/3, τ − 1), . . . , P (n− 1,M/3, τ − 1)

. . .

For fixed j, j = τ, τ + 1, . . . , n, the algorithm is applied over the set P (j,M, τ) and
its derived as the algorithm ends either if j = n or if an empty set is obtained for
some j.

From the set P (j,M, τ) a distance distribution P is selected. For this fixed
distance distribution and for every distance distribution in P ′ ∈ P (j − 1,M, τ) the
system (2.1) is resolved. If for every P ′ this system does not have a solution, the
distance distribution P is ruled out from P (j,M, τ, 3), (see Corollary 2.4).

Otherwise, for the solution (Y, Y ) we check the condition in Theorem 2.5. If it
is not fulfilled the pair (P, P ′) is not feasible (see Corollary 2.6).

For every feasible (P, P ′) we collect the solution (Y, Y ). After all solutions are
collected when P ′ runs over P (j − 1,M, τ) the system (2.2) is solved. If there is
no solution, the distance distribution P is ruled out from the set P (j,M, τ), (see
Theorem 2.9).

This is the step for fixed j. After reducing the elements of P (j,M, τ) we
increase j by 1 and proceed with the next set of investigation of the distance
distributions P (j + 1,M, τ). We continue until j < n. If the set P (j,M, τ) is
empty for some j0 < n the algorithm ends with the conclusion that (j,M, τ) TOAs
do not exist for j = j0, j0 + 1, . . . , n.

For the sake of clarity a pseudocode of the algorithm is provided bellow.

In what follows, our investigation is focused on the set P (17, 108, 3), one of
the cases in [11] where the existence was marked as undecided. Moreover, for
n = 12, . . . , 17 there are no evidence whether orthogonal arrays with parameters
(n, 108, 3) exist. Several teams of authors ([5, 12, 13]) have investigated these among
many others cases, but the issue of the existence of a ternary orthogonal array with
parameters (17, 108, 3) has not been clarified so far.

We calculate all possible distance distributions for internal point, i.e. we gen-
erate the sets P (n, 108, 3) for n = 3, . . . , 17. Along with this we need the sets
P (n, 36, 2) for n = 2, . . . , 16. The Algorithm 1 is applied on these sets. First the
sets P (j, 36, 2) are reduced, starting from j = 2. After that the sets P (n, 108, 3)
are reduced. Then last reduced set is P (17, 108, 3). In the tables below the cardi-
nalities of all these sets are provided. In the first table the results for |P (n, 108, 3)|
are presented for n = 3, 4, . . . , 17. The entry A → B in the first table means that
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Algorithm 1 Algorithm over TOAs

1: procedure NDDA(P (n,M, τ), P (n− 1,M, τ), P (n− 1,M/3, τ − 1))
2: Input: n, M , τ , P (n,M, τ), P (n− 1,M, τ), P (n− 1,M/3, τ − 1)
3: filteredP← empty set
4: for P ∈ P (n,M, τ) do
5: allY ← empty set
6: for P ′ ∈ P (n− 1,M, τ) do
7: Y, Y ← solve system (2.1) for integer nonnegative solutions
8: if no integer solutions then
9: next;

10: if Y ∈ P (n− 1,M/3, τ − 1) then
11: add Y to allY
12: if allY is empty then
13: add P to filteredP
14: else
15: if system (2.2) has no integer nonnegative solutions then
16: add P to filteredP

17: Output: P (n,M, τ) \ filteredP

in the beginning there is A initially feasible distance distributions of (n, 108, 3)
TOA, i.e. the set P (n, 108, 3) has A elements, starting from n = 3 in the first row
and the first column and ending to n = 17 in the third row and the fifth column,
successively. The number B after the arrow (in corresponding entry) represents
the reduced value B of elements in the set P (n, 108, 3) in the end of the algo-
rithm, n = 3, 4, . . . , 17. Analogously, the results for |P (n, 36, 2)| are presented in
the second table for n = 2, 3, . . . , 16 and τ = 2.

|P (n, 108, 3)| : 1 → 1 4 → 4 18 → 16 48 → 43 113 → 89
271 → 208 440 → 368 701 → 540 1002 → 702 879 → 699
901 → 660 631 → 337 119 → 29 49 → 6 10 → 0

|P (n, 36, 2)| : 1 → 1 4 → 4 16 → 14 31 → 30 52 → 49
85 → 79 109 → 105 121 → 109 127 → 111 108 → 100
85 → 79 62 → 50 28 → 26 12 → 11 6 → 4

The zero in the last element 10 → 0 of the first table corresponds to the the
number of elements in the set P (17, 108, 3), i.e. our algorithm ends with the empty
set P (17, 108, 3) = Ø. Therefore, we obtain the following nonexistence result.

Theorem 3.1. There exist no ternary orthogonal array of parameters
(17, 108, 3).

124 Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 117–126.



All calculations in this paper were performed by programs in Maple. All results
(in particular all possible distance distributions in the beginning) can be seen at
[15]. All programs are available upon request.
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