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We study the problem on the smoothest interpolant with boundary conditions in the
Sobolev space W 3

2 [a, b]. Characterization and uniqueness of the best interpolant with

free knots of interpolation, satisfying boundary conditions, are proved. Based on our

proofs we present an algorithm for finding the unique oscillating spline interpolant.
Numerical results are given.
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1. INTRODUCTION

Let [a, b] be a closed finite subinterval of the real line, r be a natural number,
and 1 < p <∞. As usual, by W r

p [a, b] we denote the Sobolev space

W r
p [a, b] =

{
f : f (r−1) is abs. continuous in [a, b], f (r) ∈ Lp[a, b]

}
,

and by ‖ · ‖p the norm in Lp[a, b],

‖g‖p =

(∫ b

a

|g(t)|p dt

)1/p

, g ∈ Lp[a, b].
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Suppose that we are given real numbers y = (y0, y1, . . . , yN+1). We shall use
the notation x = (x0, x1, . . . , xN+1) for the elements of the set

XN :=
{

(x0, x1, . . . , xN+1) ∈ RN+2 : a = x0 < x1 < · · · < xN+1 = b
}
.

In 1988, Pinkus [12] considered the problem on existence, characterization, and
uniqueness of knots x∗ ∈ XN and a function f∗ ∈ W r

p [a, b] for which the following
quantity is attained:

inf
x∈XN

inf
f∈W r

p [a,b]

{
‖f (r)‖p : f(xi) = yi, i = 0, . . . , N + 1

}
. (1.1)

That is, we seek for the smoothest interpolant in W r
p [a, b] with free interpolation

knots in [a, b]. The paper of Pinkus [12] may be regarded as a further development
of de Boor’s study [6] on the “best” interpolant with fixed interpolation knots.

Henceforth we assume that the data y = (y0, y1, . . . , yN+1) satisfy the inequal-
ities

(yi − yi−1)(yi+1 − yi) < 0, i = 1, . . . , N. (1.2)

Note that conditions (1.2) are not essential restrictions. Indeed, if yi−1 < yi < yi+1

or yi−1 > yi > yi+1 for some i and f takes values yi−1, yi+1 at knots xi−1 < xi+1,
respectively, then by the continuity of the functions from W r

p [a, b], f takes the
intermediate value yi at some point xi ∈ (xi−1, xi+1). It means that if there exists
a solution to (1.1) in the case of oscillating data, we easily obtain a solution when
the data y do not oscillate by taking the maximal subsequence of values in y
satisfying (1.2). We also assume that

N + 2 > r, (1.3)

for otherwise a trivial solution to (1.1) is given by the Lagrange interpolation poly-
nomial of degree r − 1 with arbitrary knots from the set XN .

Taking into account the above remarks we henceforth assume that r, N , and
the data y satisfy (1.2) and (1.3).

We give below a brief account on the results on problem (1.1).

The case r = 1 is elementary (see [12]).

In 1984 Marin [10] completely solved (1.1) for r = p = 2. He first characterized
the solution (x∗, f∗) as follows:

f∗ is strictly monotone in [x∗i , x
∗
i+1], i = 0, . . . , N, (1.4)

and explicitly found the optimal knots x∗ and the interpolant f∗. The extremal
function is actually the unique interpolating natural cubic spline with knots x∗

satisfying (1.4).

For p ∈ (1,∞), Pinkus [12] proved the existence and characterization of the
solution to (1.1) for all r, but the uniqueness for p = 1 and r = 2 only. The following
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result is a keystone in the survey on the smoothest interpolation, where as usual
f [xi, . . . , xi+r] is the divided difference of the function f at knots xi, . . . , xi+r.

Theorem A (Pinkus [12]) Let 1 < p < ∞, y = (y0, y1, . . . , yN+1) be real
numbers satisfying (1.2) and (1.3), and let f∗ be a solution of (1.1). There exist
a = x∗0 < · · · < x∗N+1 = b, such that f∗(x∗i ) = yi, i = 0, . . . , N + 1. Furthermore,

(a)

f∗(r)(t) =

∣∣∣∣∣
N+1−r∑
i=0

ηiBi(t)

∣∣∣∣∣
q−1

sign

(
N+1−r∑
i=0

ηiBi(t)

)
,

where
1

p
+

1

q
= 1, Bi(t) is the B-spline of degree r− 1 with knots x∗i , . . . , x

∗
i+r, and

the coefficients {ηi}N+1−r
i=0 satisfy∫ b

a

Bi(t)f
∗(r)(t) dt = f [x∗i , . . . , x

∗
i+r], i = 0, . . . , N + 1− r;

(b) f∗ is strictly monotone in [x∗i , x
∗
i+1], i = 0, . . . , N .

The uniqueness of the smoothest interpolant in general was conjectured but it is
still an open problem. There are a few particular cases where it was proved, e.g., for
p = 2 and r = 2 by Marin [10], for p = 2 and r = 3 by Uluchev [20], for p ∈ (1,∞)
and r = 2 by Rademacher and Scherer [14] and independently by Uluchev [20].
Based on key results of Bojanov [1] concerning interpolation by perfect splines,
Pinkus [12] proved the uniqueness of the smoothest interpolant, which is actually
a perfect spline, for the case p =∞ and r ∈ N. In 1995, Naidenov [11] proposed an
algorithm for construction of the unique smoothest perfect spline. The case p = 1
was studied by Pinkus [12].

Various modifications of the problem have been studied by Bojanov [4], Draga-
nova in [7] for the periodic case and on interpolation in mean values in [8]. Mul-
tidimensional aspects of the problem (1.1) have been considered by Marin [10],
Rademacher and Scherer [14], Scherer and Smith [16], Scherer [15].

A short summary of the results on the topic was presented by Pinkus in [13].

Here we study a problem on the smoothest interpolant with free knots in the
space W 3

2 [a, b] with additional boundary conditions imposed on the interpolant.
The paper is organized as follows. We state our main results in Section 2. Sec-
tion 3 consists of preliminaries on Birkhoff interpolation and B-splines with Bitkhoff
type of knots. In Section 4 we study an extremal problem for interpolation at fixed
knots with functions from W 3

2 [a, b] satisfying boundary conditions. Then we give
characterization of the smoothest interpolant for our problem with free interpola-
tion knots. Applying a constructive approach used in [20] by the second author we
prove that there exists a unique fifth degree oscillating spline interpolant in Sec-
tion 5. A direct consequence is the uniqueness of the smoothest interpolant with
boundary conditions. In the final Section 6 we suggest a numerical algorithm for
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finding the oscillating spline interpolant. We conclude this section with results of
numerical experiment for a given data.

2. MAIN RESULTS

Suppose that [a, b] ⊂ R, r ∈ N, and y = (y0, . . . , yN+1) are arbitrary real
numbers. For a fixed x = (x0, . . . , xN+1) ∈ XN , we denote by F (x,y) the set of all
functions f ∈W 3

2 [a, b], such that

f(xi) = yi, i = 0, . . . , N + 1, (2.1)

f ′(x0) = 0, f ′′′(x0) = 0, f ′(xN+1) = 0, f ′′′(xN+1) = 0. (2.2)

In addition to the usual interpolation conditions we impose boundary conditions for
the first and third derivative of the function at the endpoints a = x0 and b = xN+1.
At first glance it seems that conditions (2.2) are very restrictive. Note that in
the case of smoothest interpolation in W 3

2 [a, b] satisfying (2.1) only, the extremal
function is a natural fifth degree spline whose third and fourth derivatives a priori
vanish at the endpoints of the interval [a, b], see [20]. Henceforth, Sm(x1, . . . , xN )
will stand for the space of spline functions of degree m with knots x1, . . . , xN .

Here we study the problem

inf
x∈XN

inf
f∈F (x,y)

‖f ′′′‖2. (2.3)

The following result answers some questions concerning (2.3), including a char-
acterization of the smoothest interpolant.

Theorem 1. Let y = (y0, . . . , yN+1), N > 1, be real numbers satisfying con-
ditions (1.2) and let f∗ be a solution to problem (2.3). Then, there exist knots
x∗ = (x∗0, . . . , x

∗
N+1) ∈ XN such that f∗ ∈ F (x∗,y). Furthermore,

(a) f∗ ∈ S5(x∗1, . . . , x
∗
N );

(b) f∗ is strictly monotone in [x∗i , x
∗
i+1], for all i = 0, . . . , N .

Therefore, the smoothest interpolant with free knots is strictly monotone in
each interval between two consecutive knots, thus its first derivative must vanish
at the interior knots.

In Section 5 we show that there exists a unique fifth degree spline interpolant
with knots in XN satisfying the above characterization conditions for the smoothest
interpolant to the problem (2.3). More precisely, we prove:

Theorem 2. Let N > 1 and the real numbers y = (y0, y1, . . . , yN+1) oscillate
in the sense that (yi− yi−1)(yi+1− yi) < 0, i = 1, . . . , N . Then, there exists unique
spline s∗ ∈ S5(x∗1, . . . , x

∗
N ) and knots x∗ = (x∗0, . . . , x

∗
N+1) ∈ XN , such that

s∗(x∗i ) = yi, i = 0, . . . , N + 1,

s∗′(x∗i ) = 0, i = 0, . . . , N + 1,

s∗′′′(x∗0) = 0, s∗′′′(x∗N+1) = 0.

(2.4)
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A direct consequence of Theorem 1 and Theorem 2 is the next statement.

Theorem 3. Let N > 1 and y = (y0, . . . , yN+1) be real numbers satisfying
inequalities (1.2). If (f∗,x∗), x∗ = (x∗0, . . . , x

∗
N+1) ∈ XN is a solution to problem

(2.3), then f∗ is the unique spline interpolant from the set S5(x∗1, . . . , x
∗
N )∩F (x∗,y)

strictly oscillating at the knots x∗.

3. PRELIMINARIES ON BIRKHOFF INTERPOLATION

We need some basic definitions and results concerning Birkhoff interpola-
tion and B-splines with Birkhoff type of knots, see for details [3, 5, 9]. Let
t = (t1, . . . , tm), t1 < · · · < tm,

E =

 e10 . . . e1,r−1
. . . . . . . . .
em0 . . . em,r−1


be an incidence matrix (E consists of 0’s and 1’s only), and |E| be the total number
of 1-entries in E. By πr we denote the set of algebraic polynomials with real
coefficients of degree at most r.

The incidence matrix E satisfies Strong Pólya condition, if
∑
j≤k

∑
i eij > k+1

for all k = 0, . . . , r − 2.

A sequence of 1-entries eij , . . . , ei,j+`−1 in i-th row of the matrix E is said to
be supported odd block if ` is an odd number and there exist i1, i2, j1, j2, such that

ei1j1 = ei2j2 = 1, i1 < i < i2, j1 < j, j2 < j.

The matrix E is conservative if it does not contain supported odd blocks of
1’s. The pair (t, E) is s-regular, if E is conservative and satisfies Strong Pólya
condition.

Based on Birkhoff interpolation by polynomials, B-splines with Birkhoff type of
knots were introduced preserving most important properties of the usual B-splines
with simple (or multiple) knots (see [3]). Namely, for points t = (t1, . . . , tm),
t1 < · · · < tm, and an s-regular incidence matrix E with |E| = r + 1, the B-spline
of degree r − 1 with Birkhoff knots (t, E) is defined by

B
(
(t, E); t

)
=

1

(r − 1)!
D
[
(t, E); (· − t)r−1+

]
,

where D[(t, E); f ] is the divided difference of the function f at (t, E), i.e. the
coefficient of tr in the polynomial p(t) ∈ πr which interpolates f at (t, E) in the
sense

p(j)(ti) = f (j)(ti), eij = 1.
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Given r,N ∈ N and a pair (t, E), t1 < · · · < tm, E = {eij}m r−1
i=1,j=0, |E| = r+N ,

we define a (r+ 1)-partition of (t, E) as a sequence of pairs {(ti, Ei)}Ni=1, obtained
in the following way. Let us order the elements of E in the manner

e10, . . . , e1,r−1, e20, . . . , e2,r−1, . . . , em0, . . . , em,r−1

and enumerate the 1’s in the latter sequence from 1 to r+N . Let ep, ep+1, . . . , eq be
the rows of E containing r + 1 consecutive 1’s starting with the i-th one. Suppose
that the number of 1’s of this (r + 1)-sample in the row ep is µ and the number of
1’s in the sample in the row eq is ν. We denote by ti the set of knots tp < · · · < tq
and by Ei the matrix composed from ep, . . . , eq in which all 1’s in the first (resp.,
last) row of Ei except the first µ (resp., ν) ones are replaced by 0’s.

It is said that the (r+1)-partition {(ti, Ei)}Ni=1 of (t, E) is s-regular if all pairs
(ti, Ei), i = 1, . . . , N are s-regular.

In our study we need conditions for solvability of the Birkhoff interpolation
problem by splines. The following general necessary and sufficient condition is due
to Borislav Bojanov.

Theorem B (Bojanov [3], [5, Theorem 4.20]) Let x = (x0, . . . , xm+1),

a = x0 < · · · < xm+1 = b, E =
{
eij
}m+1 r−1
i=0, j=0

and integers {νi}ni=1 be given such

that N = ν1 + · · · + νn, 1 ≤ νi ≤ r, i = 1, . . . , n, and |E| = N + r. Assume

that (x, E) has an s-regular (r+ 1)-partition
{

(xi, Ei)
}N
i=1

. Then the interpolation
problem

s(j)(xi) = fij , eij = 1

by splines s of degree r− 1 with knots ξ1, . . . , ξn of multiplicities ν1, . . . , νn, respec-
tively, has a unique solution for each given data {fij} if and only if

B
(
(xi, Ei); θi

)
6= 0, i = 1, . . . , N,

where (θ1, . . . , θN ) =
(
(ξ1, ν1), . . . , (ξn, νn)

)
.

4. PROOF OF THE CHARACTERIZATION THEOREM

Using the notations from Section 2, let y = (y0, . . . , yN+1) be arbitrary real
numbers, x = (x0, . . . , xN+1) ∈ XN and F (x,y) be the set of all functions f ∈
W 3

2 [a, b] satisfying (2.1) and (2.2).

Lemma 1. There exists a unique spline function s ∈ S5(x1, . . . , xN ) satisfying
the interpolation conditions (2.1) and (2.2).

Proof. The assertion follows immediately from Theorem B setting r = 6,
m = N , ν1 = · · · = νn = 1, n = N , θi = ξi = xi, i = 1, . . . , N . Indeed, the
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(N + 2)× r incidence matrix

E =


1 1 0 1 0 0
1 0 0 0 0 0
. . . . . . . . . . . . . . . . . .
1 0 0 0 0 0
1 1 0 1 0 0

 , |E| = N + 6,

of the Birkhoff interpolation problem (2.1)–(2.2) has an s-regular (r + 1)-partition{
(ti, Ei)

}N
i=1

. Obviously, θi = xi ∈ suppB
(
(ti, Ei); t

)
, i = 1, . . . , N . Then The-

orem B yields that there exists a unique spline s of degree r − 1 = 5 with knots
(ξ1 . . . , ξN ) = (x1 . . . , xN ) satisfying (2.1) and (2.2), i.e. s ∈ S5(x1, . . . , xN ). �

Remark 1. Note that the spline s in Lemma 1 is a function from the class
F (x,y).

The following is a modified version of the classical Holladay’s theorem.

Lemma 2. Let s be the unique spline in the space S5(x1, . . . , xN ) satisfying
the interpolation conditions (2.1) and (2.2). Then, for each function f ∈ F (x,y),

‖s′′′‖2 ≤ ‖f ′′′‖2.

The equality holds if and only if f = s in [a, b].

Proof. We follow the standard line taking into account that both f and s satisfy
the interpolation conditions (2.1) and (2.2), x0 = a, xN+1 = b, and sV (t)

∣∣
(xi,xi+1)

=

ci = const., i = 0, . . . , N :

∫ b

a

s′′′(t)
(
f ′′′(t)− s′′′(t)

)
dt =

∫ b

a

s′′′(t) d
(
f ′′(t)− s′′(t)

)
= s′′′(t)

(
f ′′(t)− s′′(t)

)∣∣∣b
a
−
∫ b

a

sIV (t)
(
f ′′(t)− s′′(t)

)
dt

= −
∫ b

a

sIV (t) d
(
f ′(t)− s′(t)

)
= −sIV (t)

(
f ′(t)− s′(t)

)∣∣∣b
a

+

∫ b

a

sV (t)
(
f ′(t)− s′(t)

)
dt

=

∫ b

a

sV (t) d
(
f(t)− s(t)

)
=

N∑
i=0

xi+1∫
xi

sV (t) d
(
f(t)− s(t)

)

=

N∑
i=0

xi+1∫
xi

ci d
(
f(t)− s(t)

)
=

N∑
i=0

ci
(
f(t)− s(t)

)∣∣∣xi+1

xi

= 0.
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Then ∫ b

a

(
s′′′(t)

)2
dt ≤

∫ b

a

[(
f ′′′(t)− s′′′(t)

)2
+
(
s′′′(t)

)2]
dt

=

∫ b

a

[(
f ′′′(t)− s′′′(t)

)
+ s′′′(t)

]2
dt

=

∫ b

a

(
f ′′′(t)

)2
dt,

i.e.
‖s′′′‖2 ≤ ‖f ′′′‖2,

where the equality holds if and only if f ′′′(t)− s′′′(t) = 0 in [a, b]. The last identity
yields f − s ∈ π2. Since f, s ∈ F (x,y), the quadratic polynomial f − s vanishes
at the endpoins of [a, b] and at least in one interior knot, hence f − s = 0 in [a, b].
The proof of the lemma is complete. �

Remark 2. Lemma 2 claims that the only function for which

inf
f∈F (x,y)

‖f ′′′‖2

is attained is the unique spline interpolant s from Lemma 1.

Remark 3. A general result on the existence, characterization and uniqueness
of a function f ∈ W r

p [a, b] satisfying Birkhoff type interpolation conditions with

minimal Lp norm of f (r) for fixed knots was proved by Bojanov [2]. However our
case does not fall in the scope of Theorem 1 in [2].

Lemma 3. Let s ∈ S5(x1, . . . , xN ) be the unique spline satisfying (2.1) and
(2.2). If the data y = (y0, . . . , yN+1) satisfies condition (1.2) and N > 1, then

(a) s′′′ has exactly N + 2 simple zeros in [a, b];

(b) s′ has exactly N simple zeros in (a, b).

Proof. (a) Since the data oscillates, s has at least N local extrema in (a, b).
Then, the derivative s′ has at least N zeros in (a, b). The interpolation conditions
(2.2) give two additional zeros at the endpoints of the interval [a, b] which means
that s′ has totally at least N + 2 non-coinciding zeros in [a, b]. Applying Rolle’s
theorem for s′, it follows that the second derivative s′′ has at least N + 1 non-
coinciding zeros in (a, b), which give N zeros of s′′′ in (a, b). Because of (2.2), s′′′

has two more zeros at the endpoints of [a, b]. Therefore, s′′′ has at least N+2 zeros
in [a, b].

Observe that s′′′ is a spline function from the space S2(x1, . . . , xN ). A well-
known result (see [17, Theorem 4.53]) says that any spline from S2(x1, . . . , xN ) has
no more than N + 2 zeros counting multiplicities, i.e. s′′′ has at most N + 2 zeros
in [a, b].
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So, we conclude that s′′′ has exactly N + 2 simple zeros in [a, b].

(b) From the proof of (a) it follows that s′ has exactly N simple zeros in (a, b).
Otherwise Rolle’s theorem would give more than N + 2 zeros for s′′′ in [a, b], a
contradiction. �

Proof of Theorem 1. (a) Let f∗ solve the extremal problem (2.3). Therefore
there exist x∗ ∈ XN , such that f∗ ∈ F (x∗,y). Since f∗ solves (2.3), then f∗ must
solve the extremal problem for fixed knots at x∗, namely

inf
f∈F (x∗,y)

‖f ′′′‖2.

By Lemma 1 and Lemma 2 it follows that f∗ is the unique spline in S5(x∗1, . . . , x
∗
N ),

satisfying the interpolation conditions (2.1) and (2.2).

(b) From Lemma 3, we obtain that f∗′ has exactly N simple zeros in (a, b)
which are the extremal points of f∗ as well. Denote by a < η1 < · · · < ηN < b all
the extremal points of f∗ in (a, b) and set η0 = a, ηN+1 = b. It is clear that the
function f∗ is strictly monotone in each interval [ηi, ηi+1], i = 0, . . . , N . We remark
that due to the oscillation of the data y we have ηi ∈ (x∗i−1, x

∗
i+1), i = 1, . . . , N .

We will show that ηi = x∗i for all i = 0, . . . , N + 1. Let us assume to the
contrary that ηj 6= x∗j for some j. We set zi = f∗(ηi), i = 0, . . . , N +1 and consider
the extremal problem

inf
f∈F (η,z)

‖f ′′′‖2

for fixed interpolation knots η = (η0, . . . , ηN+1) ∈ XN and z = (z0, . . . , zN+1).

From Lemma 2 it follows that there exists a unique function f̂ ∈ F (η, z)
for which the infimum is attained. Since by Lemma 2, f̂ ∈ S5(η1, . . . , ηN ) and
f∗ ∈ S5(x∗1, . . . , x

∗
N ), and by assumption η 6= x∗, then it follows that f̂ 6= f∗.

Note that f∗ ∈ F (η, z) but the extremal interpolant in F (η, z) is the function f̂ .
Therefore

‖f̂ ′′′‖2 < ‖f∗′′′‖2.

Now, observe that |zi| = |f∗(ηi)| ≥ |yi|, i = 1, . . . , N . Then for the continious
function f̂ there exist points a = ζ0 < ζ1 < · · · < ζN < ζN+1 = b such that
f̂(ζi) = yi, i = 0, . . . , N+1. This means that f̂ ∈ F (ζ,y), ζ = (ζ0, . . . , ζN+1) ∈ XN ,
and ‖f̂ ′′′‖2 < ‖f∗′′′‖2 which contradicts the minimality property of the function f∗

for the extremal problem (2.3).

Thus, we proved that the extremal points of f∗ coincide with interpolation
knots, i.e. ηi = x∗i for all i = 0, . . . , N + 1. Therefore, f∗ is strictly monotone in
[x∗i , x

∗
i+1], i = 1, . . . , N . �
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5. PROOF OF THEOREM 2

Let xi < xi+1 and arbitrary real numbers yi, yi+1, s′′i , s′′i+1 be given. We set
∆i = xi+1−xi, ∆yi = yi+1−yi and denote by Pi(t) ∈ π5 the polynomial satisfying

Pi(xi) = yi, P ′i (xi) = 0, P ′′i (xi) = s′′i ,

Pi(xi+1) = yi+1, P ′i (xi+1) = 0, P ′′i (xi+1) = s′′i+1.
(5.1)

We can find explicitly the polynomial Pi solving Hermite iterpolation problem (5.1).
Standard calculations show that the following relations hold true:

P ′′′i−1(xi) =
6

∆3
i−1

(
10∆yi−1 −

1

2
∆2
i−1s

′′
i−1 +

3

2
∆2
i−1s

′′
i

)
,

P ′′′i (xi) =
6

∆3
i

(
10∆yi −

3

2
∆2
i s
′′
i +

1

2
∆2
i s
′′
i+1

)
,

P IV

i−1(xi) =
24

∆4
i−1

(
15∆yi−1 −∆2

i−1s
′′
i−1 +

3

2
∆2
i−1s

′′
i

)
,

P IV

i (xi) =
24

∆4
i

(
− 15∆yi +

3

2
∆2
i s
′′
i −∆2

i s
′′
i+1

)
.

(5.2)

We seek for a spline s ∈ S5(x1, . . . , xN ) with

s ∈ C4[a, b], Pi = s
∣∣
(xi,xi+1)

∈ π5, i = 0, . . . , N, (5.3)

satisfying the interpolation conditions (2.4).

Let us set

s′′i = s′′(xi), i = 0, . . . , N + 1,

∆i = xi+1 − xi, ∆yi = yi+1 − yi, i = 0, . . . , N,

αi =
∆i

∆i−1
, δi−1 =

∆yi
∆yi−1

, i = 1, . . . , N,

βi =
∆2
i s
′′
i

2∆yi
, γi =

∆2
i s
′′
i+1

2∆yi
, i = 0, . . . , N.

(5.4)

The boundary conditions for s′′′(t) at the endpoints and the continuity condi-
tions for s′′′(t) and sIV (t) at the knots {xi}Ni=1 can be written for the polynomial
pieces Pi as follows:

P ′′′0 (x0) = 0, P ′′′i−1(xi) = P ′′′i (xi), i = 1, . . . , N, P ′′′N (xN+1) = 0,

P IV

i−1(xi) = P IV

i (xi), i = 1, . . . , N,
(5.5)

From (5.2)–(5.4) we obtain for P ′′′0 (x0) = 0 in (5.5):

10− 3β0 + γ0 = 0,
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i.e.
γ0 = 3β0 − 10. (5.6)

Using (5.2)–(5.4) we have for the continuity conditions (5.5) at x1:

(20− 2β0 + 6γ0)α3
1 = (20− 6β1 + 2γ1)δ0,

(60− 8β0 + 12γ0)α4
1 = (−60 + 12β1 − 8γ1)δ0.

(5.7)

Now, taking into account (5.6) we rewrite (5.7) in the form

(8β0 − 20)α3
1 = (10− 3β1 + γ1)δ0,

(7β0 − 15)α4
1 = (−15 + 3β1 − 2γ1)δ0,

(5.8)

Note that β1δ0 = γ0 α
2
1 from (5.4). Then by elimination of γ1 in (5.8) we get

(7β0 − 15)α4
1 + (16β0 − 40)α3

1 + (9β0 − 30)α2
1 − 5δ0 = 0. (5.9)

On the other hand, from equalities (5.8) it follows that

15− 2β1 + 3γ1 =
−1

12δ0

[
28(7β0 − 15)α4

1 + 10(16β0 − 40)α3
1 + 40δ0

]
,

20− 2β1 + 6γ1 =
−1

3δ0

[
16(7β0 − 15)α4

1 + 7(16β0 − 40)α3
1 + 40δ0

]
,

3γ1 =
−3

8δ0

[
8(7β0 − 15)α4

1 + 4(16β0 − 40)α3
1 + 40δ0

]
.

(5.10)

Similarly, for i = 2, . . . , N we obtain from (5.2)–(5.5):

(10− βi−1 + 3γi−1)α3
i = (10− 3βi + γi)δi−1,

(15− 2βi−1 + 3γi−1)α4
i = (−15 + 3βi − 2γi)δi−1.

(5.11)

Since δi−1βi = γi−1α
2
i by (5.4), equalities (5.11) give

(15− 2βi−1 + 3γi−1)α4
i + (20− 2βi−1 + 6γi−1)α3

i + 3γi−1α
2
i − 5δi−1 = 0, (5.12)

and

15− 2βi + 3γi

=
−1

12δi−1

[
28(15− 2βi−1 + 3γi−1)α4

i + 10(20− 2βi−1 + 6γi−1)α3
i + 40δi−1

]
,

20− 2βi + 6γi

=
−1

3δi−1

[
16(15− 2βi−1 + 3γi−1)α4

i + 7(20− 2βi−1 + 6γi−1)α3
i + 40δi−1

]
,

3γi =
−3

8δi−1

[
8(15− 2βi−1 + 3γi−1)α4

i + 4(20− 2βi−1 + 6γi−1)α3
i + 40δi−1

]
.

(5.13)
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Finally, from (5.2), (5.4), and (5.13) we obtain

s′′′(xN+1) = P ′′′N (xN+1) =
3∆yN
∆3
N

(
20− 2βN + 6γN

)
=
−∆yN

∆3
N δN−1

[
16(15− 2βN−1 + 3γN−1)α4

N

+ 7(20− 2βN−1 + 6γN−1)α3
N + 40δN−1

]
.

(5.14)

Remark 4. We will make use of the equalities (5.10) and (5.13) as recurrence
relations for the coefficients in the algebraic equations (5.9) and (5.12), and for the
quantity (5.14).

Now we consider useful monotonicity properties of polynomial zeros under
recurrence relations of the polynomial coefficients. The following two lemmas can
be found in [20]; proofs in full details are given in the PhD Thesis of the second
author [19].

By the classical Descartes’ rule a polynomial a0x
n + a1x

n−1 + · · ·+ an has no
more positive zeros counting multiplicities than the number of strict sign changes
in the sequence a0, . . . , an. In particular, if there is exactly one strict sign change
in the sequence of coefficients then the polynomial has exactly one simple positive
zero.

Lemma 4 (Uluchev [20, Lemma 3.3.1]). Suppose that the coefficients a0(τ),
a1(τ), a2(τ), a4 of the function

Q(τ, z) = a0(τ)z4 + a1(τ)z3 + a2(τ)z2 + a4

satisfy the conditions:

(i) a4 = const., a4 > 0;

(ii) ai(τ) ∈ C1
[t,T ], i = 0, 1, 2, t < T ;

(iii) a0(t) ≤ 0, a1(t) < 0, a2(t) < 0;

(iv) a′i(τ) > 0, i = 0, 1, 2, τ ∈ (t, T );

(v) there exist {τi}2i=0, t ≤ τ0 < τ1 < τ2 < T with ai(τi) = 0, i = 0, 1, 2.

Then, there exist unique points t1 and t2, such that t < t1 < t2 < T , and the
equation with respect to z,

Q(τ, z) = 0,

(a) has exactly one positive simple root z(τ) if τ ∈ [t, t1] is fixed;

(b) has exactly two positive simple roots z(τ) < ẑ(τ) if τ ∈ (t1, t2) is fixed;

(c) has exactly one positive root z(τ) = ẑ(τ) of multiplicity two if τ = t2;
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(d) has no positive root if τ ∈ (t2, T ] is fixed;

(e) z(τ) ∈ C1
(t,t2)

and z′(τ) > 0 for τ ∈ (t, t2).

Remark 5. More precisely, in Lemma 4, t1 = τ0 and the larger positive zero
ẑ(τ) of Q(τ, z) comes from +∞ as τ runs to the right of t1. For τ ∈ (t1, t2), z(τ)
increases, ẑ(τ) decreases, and both positive zeros of Q(τ, z) coincide for τ = t2.

Let us set

Q(τ, z) = a0(τ)z4 + a1(τ)z3 + a2(τ)z2 + a4,

b0(τ, z) = A0

(
28a0(τ)z4 + 10a1(τ)z3 − 8a4), A0 = const., A0 > 0,

b1(τ, z) = A1

(
16a0(τ)z4 + 7a1(τ)z3 − 8a4), A1 = const., A1 > 0,

b2(τ, z) = A2

(
8a0(τ)z4 + 4a1(τ)z3 − 8a4), A2 = const., A2 > 0,

b4 = const., b4 > 0.

(5.15)

Lemma 5 (Uluchev [20, Lemma 3.3.2]). Suppose that the coefficients a0(τ),
a1(τ), a2(τ), a4 of function

Q(τ, z) = a0(τ)z4 + a1(τ)z3 + a2(τ)z2 + a4

satisfy the conditions:

(i) a4 = const., a4 > 0;

(ii) ai(τ) ∈ C1
[τ0,τ2]

;

(iii) ai(τi) = 0, i = 0, 1, 2, τ0 < τ1 < τ2;

(iv) a′i(τ) > 0, i = 0, 1, 2, τ ∈ (τ0, τ2).

Now, Lemma 4 applies and let t1, t2, z(τ), ẑ(τ), ξ(τ) be as in Lemma 4. Then,
for b0, b1, b2, b4 defined in (5.15),

(a) the algebraic equation with respect to z,

b0(τ, ẑ(τ))z4 + b1(τ, ẑ(τ))z3 + b2(τ, ẑ(τ))z2 + b4 = 0,

has no positive root if τ ∈ (t1, t2) is fixed;

(b) there exist unique points {θi}2i=0 such that t1 < θ0 < θ1 < θ2 = t2 and

bi(τ, z(τ)) < 0, τ ∈ (t1, θi), i = 0, 1, 2,

bi(θi, z(θi)) = 0, i = 0, 1, 2;

(c) the functions bj(τ) = bj(τ, z(τ)), j = 0, 1, 2, and b4 satisfy conditions (i)–(iv)
of Lemma 4 for the interval [θ0, θ2].

Ann. Sofia Univ., Fac. Math and Inf., 106, 2019, 153–174. 165



Proof of Theorem 2. Let us set

τ = 7β0 − 15,

a0,1(τ) = τ, a1,1(τ) =
16

7

(
τ − 5

2

)
, a2,1(τ) =

9

7

(
τ − 25

3

)
, a4,1 = −5δ0,

a0,i(τ) =
−1

12δi−2

(
28a0,i−1(τ)α4

i−1 + 10a1,i−1(τ)α3
i−1 − 8a4,i−1(τ)

)
, i = 2, . . . , N,

a1,i(τ) =
−1

3δi−2

(
16a0,i−1(τ)α4

i−1 + 7a1,i−1(τ)α3
i−1 − 8a4,i−1(τ)

)
, i = 2, . . . , N,

a2,i(τ) =
−3

8δi−2

(
8a0,i−1(τ)α4

i−1 + 4a1,i−1(τ)α3
i−1 − 8a4,i−1(τ)

)
, i = 2, . . . , N,

a4,i = −5δi−1, i = 2, . . . , N.
(5.16)

Using the recurrence relations (5.10) and (5.13) in view of the notations (5.16), we
rewrite equations (5.9), (5.12) in the form

a0,i(τ)α4
i + a1,i(τ)α3

i + a2,i(τ)α2
i + a4,i = 0, i = 1, . . . , N, (5.17)

and we seek for a solution τ, α1, . . . , αN of the nonlinear system (5.17) such that

αi > 0, i = 1, . . . , N. (5.18)

In addition, by the interpolation conditions (2.4) the spline s ∈ S5(x1, . . . , xN )
defined in (5.3) has to satisfy (5.14), which in view of notations (5.16) takes the
form

s′′′(xN+1) =
−∆yN

∆3
N δN−1

(
16a0,N (τ)α4

N + 7a1,N (τ)α3
N + 40δN−1

)
= 0. (5.19)

Observe that δi−1 < 0, i = 1, . . . , N and then

−1

12δi−1
> 0,

−1

3δi−1
> 0,

−3

8δi−1
> 0, i = 1, . . . , N.

We briefly sketch the idea of our proof. Let us denote the i-th equation of
the system (5.17) by (5.17.i). We will bound τ for which the system (5.17) has a
solution, satisfying (5.18), to a finite interval J . Moreover, for each fixed τ ∈ J we
can uniquely determine αi > 0 satisfying (5.17.i), i = 1, . . . , N − 1, and (5.17.N)
would have positive roots αN (τ) < α̂N (τ). We will show that the function

σ̂(τ) = 16a0,N (τ)α̂4
N (τ) + 7a1,N (τ)α̂3

N (τ) + 40δN−1

does not vanish in J , i.e. (5.19) cannot be satisfied if we choose the larger positive
zero of (5.17.N). Using the smaller positive zero αN (τ) of (5.17.N) we will prove
that

σ(τ) = 16a0,N (τ)α4
N (τ) + 7a1,N (τ)α3

N (τ) + 40δN−1 (5.20)
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is monotone and has a unique zero in J . Hence, we will obtain a procedure and
numerical algorithm for solving the system (5.17)–(5.19).

First, for any solution of (5.17)–(5.19), the relation τ ∈ [0, 253 ] must hold.
Otherwise we have two cases.

If τ < 0, then aj,1(τ) < 0, j = 0, 1, 2 and a4,1 > 0. Hence equation (5.17.1) has
only one positive root α1(τ). Recurrence formulae (5.16) yield that aj,k(τ) < 0,
j = 0, 1, 2 and a4,k > 0, hence (5.17.k) has a unique positive root αk(τ) for all
k = 2, . . . , N . Then σ(τ) < 0 which means that s′′′(xN+1) 6= 0, i.e. (5.19) is not
satisfied.

In case of τ > 25
3 , we have aj,1(τ) > 0, j = 0, 1, 2 and a4,1 > 0. Then (5.17.1)

has no positive root, hence the system (5.17) has no solution satisfying (5.18).

Let us set τ
(1)
0 = 0, τ

(1)
1 = 5

2 and τ
(1)
2 = 25

3 . Since τ
(1)
0 < τ

(1)
1 < τ

(1)
2 , the

coefficients aj,1(τ), j = 0, 1, 2 and a4,1 satisfy conditions (i)–(iv) of Lemma 5.

Suppose that for a fixed k ∈ {1, . . . , N − 1} we have proved that any so-

lution τ, α1, . . . , αN of (5.17)–(5.19) is such that τ ∈
[
τ
(k)
0 , τ

(k)
2

]
and the coeffi-

cients aj,k(τ), j = 0, 1, 2 and a4,k satisfy conditions (i)–(iv) of Lemma 5 for all

τ ∈
[
τ
(k)
0 , τ

(k)
2

]
. By Lemma 4 there exist points t

(k)
1 and t

(k)
2 such that τ

(k)
0 = t

(k)
1 <

t
(k)
2 < τ

(k)
2 and the equation (5.17.k) has:

• exactly one simple positive root αk(τ) if τ ≤ t(k)1 ;

• exactly two positive roots αk(τ) < α̂k(τ) if τ ∈
(
t
(k)
1 , t

(k)
2

)
;

• exactly one positive root of multiplicity two αk(τ) = α̂k(τ) if τ = t
(k)
2 ;

• no positive root if τ ∈
(
t
(k)
2 , τ

(k)
2

)
.

Assume that there exist a solution τ, α1, . . . , αN of (5.17)–(5.19), such that

αk = α̂k(τ) for some τ ∈
(
t
(k)
1 , t

(k)
2

)
. That is, αk is the larger positive zero α̂k(τ) of

(5.17.k). From Lemma 5 (a) it follows that (5.17.k + 1) has no positive root with
respect to αk+1, hence (5.17) has no solution satisfying (5.18).

Therefore for any solution τ, α1, . . . , αN of (5.17)–(5.19) with τ ∈
(
t
(k)
1 , t

(k)
2

)
,

there holds αk = αk(τ) which is the smaller positive zero of (5.17.k). Applica-

tion of Lemma 5 (b) gives that there exist unique points τ
(k+1)
j , j = 0, 1, 2, with

t
(k)
1 < τ

(k+1)
0 < τ

(k+1)
1 < τ

(k+1)
2 < t

(k)
2 and aj,k+1(τ

(k+1)
j ) = 0, j = 0, 1, 2. Now

Lemma 5 (c) yields that the coefficients aj,k+1(τ), j = 0, 1, 2 and a4,k+1 satisfy

conditions (i)–(iv) of Lemma 4 for τ ∈
[
τ
(k+1)
0 , τ

(k+1)
2

]
.

Similar arguments as for k = 1 above show that for any solution τ, α1, . . . , αN
of (5.17)–(5.19) there holds τ ∈

[
τ
(k+1)
0 , τ

(k+1)
2

]
. The arguments are the same as

for k = 1 above.

For τ ∈
[
t
(k)
1 , τ

(k+1)
0

]
we have aj,k+1(τ) < 0, j = 0, 1, 2 and a4,k+1 > 0. Then

equation (5.17.k + 1) has only one positive root αk+1 = αk+1(τ). Recurrence
formulae (5.16) yield that aj,`(τ) < 0, j = 0, 1, 2 and a4,` > 0, hence (5.17.`) has a
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unique positive root α`(τ) for all ` = k+ 1, . . . , N . But then σ(τ) < 0 which means
that s′′′(xN+1) 6= 0, i.e. (5.19) is not satisfied.

In the case τ ∈
(
τ
(k+1)
2 , t

(k)
2

]
we have aj,k+1(τ) > 0, j = 0, 1, 2 and a4,k+1 > 0.

Then (5.17.k+ 1) has no positive root and the system (5.17) has no solution satis-
fying (5.18).

By Lemma 4 there exist unique points t
(N)
1 and t

(N)
2 such that τ

(N)
0 = t

(N)
1 <

t
(N)
2 < τ

(N)
2 and the equation (5.17.N) has:

• exactly one simple positive root αN (τ) if τ ≤ t(N)
1 ;

• exactly two positive roots αN (τ) < α̂N (τ) if τ ∈
(
t
(N)
1 , t

(N)
2

)
;

• exactly one positive root of multiplicity two αN (τ) = α̂N (τ) if τ = t
(N)
2 ;

• no positive root if τ ∈
(
t
(N)
2 , τ

(N)
2

)
.

So, we obtain a sequence of nested intervals[
t
(N)
1 , t

(N)
2

]
⊂
[
t
(N−1)
1 , t

(N−1)
2

]
⊂ · · · ⊂

[
t
(1)
1 , t

(1)
2

]
⊂
[
0, 253

]
,

and for any solution τ, α1, . . . , αN of (5.17)–(5.19) there holds τ ∈
[
t
(N)
1 , t

(N)
2

]
.

Now we study functions σ̂(τ) and σ(τ), τ ∈
[
t
(N)
1 , t

(N)
2

]
. Observe that in view

of notations (5.15),

σ̂(τ) = b1(τ, α̂N (τ)) with A1 = 1.

Also, the proof of Lemma 5 (a) relies on the inequalities bj(τ, ẑ(τ)) > 0, τ ∈ (t1, t2)

for each j = 0, 1, 2 (see [20, Eq. (3.3.6)]). If for some τ ∈ (t
(N)
1 , t

(N)
2 ) there is a

solution α1, . . . , αN of (5.17)–(5.18) with αN = α̂N (τ), being the larger positive
zero of the equation (5.17.N), then σ̂(τ) > 0. Hence, s′′′(xN+1) 6= 0 and condition
(5.19) is not satisfied.

It follows that for any solution τ, α1, . . . , αN of (5.17)–(5.19) there holds αk =
αk(τ), being the smaller positive zero of the equation (5.17.k) for all k = 1, . . . , N ,

and τ ∈ (t
(N)
1 , t

(N)
2 ). By the notations in (5.15) we have

σ(τ) = b1(τ, αN (τ)) with A1 = 1.

According to Lemma 5 (c) the function σ(τ) satisfies condition (iv) of Lemma 4,

i.e. σ′(τ) > 0, τ ∈ (t
(N)
1 , t

(N)
2 ). Then σ(τ) is strictly monotone for τ ∈ (t

(N)
1 , t

(N)
2 ).

By Lemma 5 (b) there exists a unique point τ∗ ∈ (t
(N)
1 , t

(N)
2 ) such that σ(τ∗) = 0,

which implies s′′′(xN+1) = 0, i.e. (5.19).

So, we have proved that there exists a unique spline function s∗ and knots
x∗ = (x∗1, . . . , x

∗
N ) ∈ XN , such that s∗ ∈ S5(x∗1, . . . , x

∗
N ) ∩ F (x∗,y) and s∗ satisfies

the characterization of the smoothest interpolant to the problem (2.3) given in
Theorem 1. This completes the proof of the theorem. �
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6. NUMERICAL ALGORITHM AND RESULTS

Here we discuss computational aspects of finding the unique oscillating spline
interpolant from Theorem 2. We follow the procedure described in the proof of
Theorem 2.

Let us fix τ as a point from an equidistant mesh for
[
0, 253

]
. If the first equation

(5.17.1) of the system (5.17) has not two simple positive roots we skip this value
of τ and go to the next point of the mesh. If we do not succeed for that mesh, we
decrease the mesh step and repeat. Thus, we find interval J1 such that for each
τ ∈ J1, (5.17.1) has two simple positive roots and we set α1 to be the smaller of
them. We represent the coefficients of the next algebraic equation (5.17.2) by α1.
If for a fixed τ from an equidistant mesh of J1 the equation (5.17.2) of the system
(5.17) has not two simple positive roots we skip this value of τ and go to the
next point of the mesh in J1. If we do not succeed for that mesh we decrease the
mesh step and repeat. In this way we find interval J2 ⊂ J1 such that for each
τ ∈ J2, (5.17.2) has two simple positive roots and we set α2 to be the smaller of
them. Repeating this process for each i = 1, . . . , N we find an interval Ji such that
for τ ∈ Ji all the equations (5.17.1)–(5.17.i) have two positive roots. Moreover,
JN ⊂ JN−1 ⊂ · · · ⊂ J1 ⊂

[
0, 253

]
. Here intervals Ji are related to the intervals[

t
(i)
1 , t

(i)
2

]
, i = 1, . . . , N in the proof of Theorem 2.

Observe that (5.19)–(5.20) yield that s′′′(xN+1) = s′′′(τ, xN+1) = 0 if σ(τ) = 0.
But the function σ(τ) defined in (5.20) is a monotone function of τ ∈ JN and it
changes sign in JN . Then we find approximately τ∗ by an equidistant mesh of the
interval JN , for which σ(τ) is minimal by absolute value.

Then we solve (5.17) and find α∗i = αi(τ
∗), i = 1, . . . , N .

In the next step we find ∆i, i = 0, . . . , N using the formulae

∆0 =
b− a

1 +
∑N
i=1

∏i
j=1 α

∗
j

, ∆i+1 = α∗i∆i, i = 0, . . . , N. (6.1)

Hence, the optimal knots for the extremal problem (2.3) are

x∗0 = a, x∗i+1 = x∗i + ∆i, i = 0, . . . , N − 1, x∗N+1 = b. (6.2)

From (5.6), (5.10), (5.13), and (5.16) we find recurrently βi, i = 0, . . . , N and
γi, i = 0, . . . , N . Now, applying (5.4) we find

s′′(xi) = s′′i =
2βi∆yi

∆2
i

, i = 0, . . . , N, s′′(xN+1) = s′′N+1 =
2γN∆yN

∆2
N

. (6.3)

Next, we find the polynomial pieces Pi ∈ π5 for [x∗i , x
∗
i+1] by solving the Her-

mite interpolation problem (5.1), i = 0, . . . , N . So, based on (5.3) we get the
oscillating spline interpolant s∗(t) satisfying (2.4).
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Algorithm 1 Finding the Oscillating Spline Interpolant

Input: Data y = (y0, y1, . . . , yN+1) with (1.2) and (1.3)

Step 1. Find τ∗ such that the system (5.17) has a solution satisfying (5.18)
and s′′′(xN+1) ≈ 0

Step 2. For τ∗ obtained in Step 1 find {αi}Ni=1 solving (5.17) with (5.18)

Step 3. For τ∗ as in Step 1 find the knots x∗ = (x∗0, x
∗
1, . . . , x

∗
N+1)

from (6.1)–(6.2)

Step 4. For τ∗ obtained in Step 1 find the quantities {s′′i }
N+1
i=0 from (6.3)

Step 5. Construct the polynomial pieces Pi ∈ π5 in [x∗i , x
∗
i+1] by solving (5.1),

i = 0, . . . , N

Step 6. Construct the oscillating spline interpolant s∗(t) based on (5.3)

Output: The knots x∗ of s∗(t),
polynomial pieces {Pi}Ni=0 of the spline interpolant s∗(t),
graphs of s∗(t) and its derivatives

We summarize in an algorithm the basic steps we pass to find the fifth degree
oscillating spline interpolant with boundary conditions.

With the assistance of Mathematica (by Wolfram Research Inc.) computer
algebra system, we implement the above algorithm to a numerical example.

Example. We show results of numerical experiments for the data

N = 9, y = (1, −2, 3, −1, 5, 2, 4, 0, 1, −3, 2),

satisfying conditions (1.2) and (1.3).

According to the algorithm described in the previous section, Ji = [`i, ri] is an
interval such that for τ ∈ Ji all the equations (5.17.1)–(5.17.i) have two positive
roots, i = 1, . . . , 9. Moreover, J9 ⊂ J8 ⊂ · · · ⊂ J1 ⊂

[
0, 253

]
. These nested intervals

are given in Table 1.

Ji `i ri
J1 0.1 2.2
J2 2.012 2.177
J3 2.17 2.17495
J4 2.1746 2.174867
J5 2.174856 2.174864
J6 2.1748639 2.174864
J7 2.174864057 2.174864071
J8 2.1748640706 2.17486407086
J9 2.174864070844 2.1748640708585

Table 1: Nested intervals J9 ⊂ J8 ⊂ · · · ⊂ J1 ⊂
[
0, 253

]
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Our numerical results confirm monotonicity of the function σ(τ) for τ ∈ JN .
Table 2 shows values of the function σ(τ) from (5.20), evaluated at equidistant
points τ in a small interval J ⊂ J9, where σ(τ) ≈ 0 and σ(τ) changes sign.

τ σ(τ)
2.17486407085837258 -0.00327161
2.17486407085837259 -0.00256242
2.1748640708583726 -0.00202345
2.17486407085837261 -0.00132029
2.17486407085837262 -0.00065045
2.17486407085837263 0.00001273
2.17486407085837264 0.00062011
2.17486407085837265 0.00132710
2.17486407085837266 0.00203236
2.17486407085837267 0.00274238

Table 2: σ(τ) for τ ∈ J = [2.17486407085837258, 2.17486407085837267]

Now, we choose τ∗ = 2.17486407085837263 for which σ(τ) = 0.00001273 is
minimal in absolute value in Table 2, whence s′′′(xN+1) ≈ 0. Solving the system
(5.17) with (5.18) for τ = τ∗ we obtain the ratios αi = ∆i/∆i−1, i = 1, . . . , 9.
Hence, using (6.1) and (6.2) we find the interpolation knots {x∗i }10i=0, being also
knots of the oscillating spline interpolant, for the interval [a, b] = [0, 1]. The knots
are listed in Table 3.

x∗0 0
x∗1 0.093572609937859
x∗2 0.207960413155138
x∗3 0.310783910315965
x∗4 0.43351596313152
x∗5 0.52765838534873
x∗6 0.60829886372617
x∗7 0.71795857706244
x∗8 0.77954122488487
x∗9 0.88685751448236
x∗10 1

Table 3: Interpolation and spline knots (x∗0, x
∗
1, . . . , x

∗
10) for [0, 1]

Plot of the oscillating spline interpolant s∗(t) satisfying (2.4), its first deriva-
tive, and its third derivative are shown in Figure 1, Figure 2, and Figure 3, respec-
tively.
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Figure 1: The smoothest interpolant s∗(t)
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Figure 2: First derivative of the smoothest interpolant, s∗′(t)
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Figure 3: Third derivative of the smoothest interpolant, s∗′′′(t)
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