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1. INTRODUCTION

The present paper is a continuation of [16] but could be read independently.
Both papers are devoted to vector orthogonal polynomials with Bochner’s property.

S. Bochner [7] has classified all systems of orthogonal polynomials Pn(x), n =
0, . . . , that are also eigenfunctions of a second order differential operator

L(x, ∂x) = A(x)∂2x +B(x)∂x + C(x) (1.1)
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with eigenvalues λn. Here the coefficients A,B,C of the differential equation do
not depend on the index n.

A similar problem was solved by O. Lancaster [19] and P. Lesky [21], although
earlier E. Hildebrandt [15] has found all needed components of the proof. For more
information see the excellent review article by W. Al-Salam [1].

The statement of Lancaster’s theorem is that all polynomial systems with such
properties are the discrete orthogonal polynomials of Hahn, Meixner, Charlier and
Kravchuk.1

In recent times there is much activity in generalizations and versions of the
classical result of Bochner as well as their discrete counterparts. The first one
was the generalization by H. L. Krall [18]. He classified all order 4 differential
operators which have a family of orthogonal polynomials as eigenfunctions. Later
many authors found new families of orthogonal polynomials that are eigenfunctions
of a differential operator (see, e.g. [12, 13]).

The classical discrete orthogonal polynomials are also a source from which new
orthogonal polynomials have been obtained. In particular A. Durán and M. de la
Iglesia [9] have obtained extensions of the classical polynomial systems of Hahn,
Meixner and Charlier.

An important role in some of these generalizations plays the ideology of the
bispectral problem which was initiated in [8]. Translating the Bochner and Krall
results (cf. [11]) into this language already gives a good basis to continue investi-
gations. We formulate it for the case of discrete orthogonal polynomials. Let us
introduce the function ψ(x, n) = Pn(x). Denote by D the shift operator acting
on functions of x as Df(x) = f(x + 1). Also let T be the shift operator in n,
i.e. Th(n) = h(n + 1). Recall that the orthogonality condition, due to a classi-
cal theorem by Favard-Shohat is equivalent to the well known 3-terms recurrence
relation

xPn = Pn+1 + γ0(n)Pn + γ1(n)Pn−1, (1.2)

where γj(n) are constants, depending on n. Here we use the polynomials normalized
by the condition that their highest order coefficient is 1.

If we write the right-hand side of the 3-term recurrence relation as a difference
operator Λ(n) acting on the variable n then the 3-term recurrence relation can be
written as

Λ(n)ψ(x, n) = xψ(x, n).

On the other hand we want ψ(x, n) to be an eigenfunction of a difference operator
L in x:

Lψ(x, n) = λ(n)ψ(x, n).

1Below when speaking about orthogonality we mean orthogonality with respect to a nonde-
generate functional, which does not need to be positive definite.
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Hence we can formulate the discrete version of Bochner-Krall problem as follows.

Find all systems of orthogonal polynomials Pn(x) (with respect to some func-
tional u) which are eigenvalues of a difference operator.

We also use some ideas relevant to the studies of bispectral operators. Before
explaining them and the main results of the present paper let us introduce one more
concept which is central for us. This is the notion of vector orthogonal polynomials
(VOP), introduced by J. van Iseghem [24]. Let {Pn(x)} be a family of monic
polynomials such that degPn = n. A theorem of P. Maroni [22] {Pn(x)} gives an
equivalent condition, which we use as definition.

Definition 1.1. We will say that the set of polynomials (Pn) are Vector Or-
thogonal polynomials (VOP) iff they satisfy a d+2-term recurrence relation, d ≥ 1,
of the form

xPn(x) = Pn+1 +
d

∑

j=0

γj(n)Pn−j(x) (1.3)

with constants (independent of x) γj(n), γd(n) 6= 0.

In the last 20-30 years there is much activity in the study of vector orthogonal
polynomials and the broader class of multiple orthogonal polynomials.

Applications of the VOP include the simultaneous Padé approximation prob-
lem [2] and random matrix theory [2, 6]. The VOP can be obtained from general
multiple orthogonal polynomials under some restrictions upon their parameters.

One problem that deserves attention is to find vector orthogonal analogs of
the classical orthogonal polynomials. Several authors [3, 14] have found multiple
orthogonal polynomials, that share a number of properties with the classical or-
thogonal polynomials - they have a raising operators, Rodrigues type formulas,
Pearson equations for the weights, etc. However one of the features of the classical
orthogonal polynomials - a differential or difference operator for which the poly-
nomials are eigenfunctions is missing. Sometimes this property is relaxed to the
property that the polynomials satisfy linear differential/difference equation, whose
coefficients may depend on the index of the polynomial, see [20].

In the present paper we are looking for polynomials Pn(x), n = 0, 1, . . . that are
eigenfunctions of a difference operator L(x,D) with eigenvalues depending on the
variable n (the index) and which at the same time are eigenfunctions of a difference
operator in n, i.e. finite-term recurrence relation with an eigenvalues, depending
only on the variable x. Hence we find families {Pn(x)}, n = 0, 1, . . . of discrete
VOP that possess Bochner’s property - they are simultaneously eigenfunctions of
two discrete operators:

L(x,D)Pn(x) = λ(n)Pn(x), Λ(n, T )Pn(x) = xPn(x).
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Our main results include an extension of Meixner polynomials. We construct
systems of vector orthogonal polynomials {Pn(x)} which are eigenfunctions of a
difference operator L(x,D). It is different from the family found in [10] and [5]
except for the first member. Our approach uses ideas of the bispectral theory from
[4] but does not use Darboux transformations, which is usually the case, see e.g.
[12, 13, 9]. We use methods introduced in [4]. Also a well known extension of
Charlier polynomials (see [5, 25]) is presented. The reason to repeat it is that our
construction is a new one in comparison to the techniques of [5, 25]. However, there
are some similarities with [25]. The authors also use automorphisms of algebras
and make a beautiful connection with representation theory. Our construction
is simpler and quite straightforward. The same method was recently applied to
extensions of Hermite and Laguerre polynomials as well as to a family that has no
classical analog [16].

The methods from the present paper and [16] can be applied to various versions
of vector orthogonal polynomials as well as to matrix, multivariate, etc. This will
be done elsewhere.

Acknowledgements. The author is deeply grateful to Boris Shapiro for showing
and discussing some examples of systems of VOP and in particular the examples
from [23]. They helped me to guess that the methods from [4] can be useful
for the study of vector orthogonal polynomials. The author is grateful to the
Mathematics Department of Stockholm University for the hospitality in April 2015.
The research is partially supported by Grant DN 02-/05 of the Bulgarian Fund
”Scientific research”.

Last but not least I am extremely grateful to Prof. T. Tanev, Prof. K. Kostadi-
nov, and Mrs. Z. Karova from the Bulgarian Ministry of Education and Science
and Prof. P. Dolashka, BAS who helped me in the difficult situation when I was
sacked by Sofia university in violations of the Bulgarian laws. This was a retaliation
for my attempt to reveal a large -scale corruption, that involves highest university
and science officials in Bulgaria.2

2. ELEMENTS OF BISPECTRAL THEORY

The following introductory material is mainly borrowed from [4]. Below we
present the difference-difference version of the general bispectral problem which is
suitable in the set-up of discrete orthogonal polynomial sequences.

For i = 1, 2, let Ωi be two subsets of C such that Ω1 is invariant under the
translation operator

D : x 7→ x+ 1, x ∈ Ω1

2See, e.g. EMS NEWSLETTER, http://www.ems-ph.org/journals/newsletter/pdf/2015-12-
98.pdf
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and its inverse D−1, while Ω2 is invariant under the translation operator

T : n 7→ n+ 1

and its inverse T−1.

A difference operator on Ω1 is a finite sum of the form
∑

k∈Z

ck(x)D
k,

where ck : Ω1 → C are some functions in x. In the same way we define difference
operators on Ω2 to be finite sums of the form

∑

k∈Z

sk(n)T
k,

where sk : Ω1 → C are functions in n.

By B1 we denote an algebra with unit, consisting of difference operators L(x,D)
in the variable x. By B2 we denote an algebra of difference operators Λ(n, T ).
Denote byM the space of functions on Ω1×Ω2. The spaceM is naturally equipped
with the structure of bimodule over the algebra of difference operators L(x,D) on
Ω1 and the difference operators Λ(n, T ) on Ω2.

Assume that there exists an algebra map b : B1 → B2 and an element ψ ∈ M
such that

Pψ = b(P )ψ, ∀P ∈ B1.

We call ψ ∈M a discrete-discrete bispectral function, i.e., if there exist differ-
ence operators L(x,D) and Λ(n, T ) on Ω1 and Ω2, and functions

θ(x) and λ(n),

such that

L(x,D)ψ(x, n) = λ(n)ψ(x, n),

Λ(n, T )ψ(x, n) = θ(x)ψ(x, n),
(2.1)

on Ω1 × Ω2. In fact, as we would be interested in VOP, we will consider only the
case when θ(x) ≡ x. We will assume that ψ(x, n) is a nonsplit function of x and n
in the sense that it satisfies the condition

(∗∗) there are no nonzero difference operators L(x, ∂x) and Λ(n, T ) that satisfy
one of the above conditions with f(n) ≡ 0 or θ(x) ≡ 0.

The assumption (∗∗) implies that the map b : B1 → B2, given by b(P (x, ∂x)) :=
S(n, T ) is a well defined algebra anti-isomorphism. Let us introduce the subalgebras
Ki i = 1, 2 of Bi to be the algebras of functions in x (respectively in n). The algebra

A1 := b−1(K2)
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consists of the bispectral operators corresponding to ψ(x, z) (i.e., difference opera-
tors in x having the properties (2.1)) and the algebra

A2 := b(K1)

consists of the bispectral operators corresponding to ψ(x, n), i.e. difference opera-
tors in n having the properties (2.1)).

For the goals of VOP we are interested in the case when, for any fixed n, the
function ψ(x, n) defining the map b is a polynomial in x.

Let R1 be the algebra spanned over C by the operator x̂ (multiplication by x),
D and D−1. Needless to say, the commutation relations in R1

[D,x] = D, [D−1, x] = −D−1, [D,D−1] = 0

play a crucial role.

In the same way we define another algebraR2, using the operators T , its inverse
T−1 and the operator n of multiplication by the variable n. Finally the moduleM
is a linear space of bivariate functions f(x, n), where x and n are discrete variables.
Next we define a subalgebra B1 ⊂ R1 as follows. Introduce the operators ∆ = D−1
and ∇ = D−1 − 1. B1 will be spanned by the generators ∆, L = −x∇, x̂. It would
also be convenient to introduce the element f = x̂− L.

[∆, L] = ∆, [L, f ] = f, [∆, f ] = 1. (2.2)

�

In what follows we use the notation of the falling factorial:

(x)k = x(x− 1) . . . (x− k + 1) for k ∈ N, and (x)0 = 1.

We notice that the notation (x)k is quite often used with a different meaning but
here we will use it only in the above sense. Let ψ(x, n) := Sn(x) := (x)n. Obviously

LS(x, n) = nS(x, n), (T + n)S(x, n) = xS(x, n).

In this way we can define the anti-automorphism b by











b(f) = T

b(L) = n

b(∆) = nT−1.

(2.3)

The image of B1 under the map b will be the algebra B2.

Next, following [4], we recall how to construct new bispectral operators from
already known ones. The method is quite general and does not depend on the
specific form of the operators. First, we remind the reader that for an operator
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L ∈ B it is said that adL acts locally nilpotently on B when for any element a ∈ B
there exists k ∈ N, such that

adkL(a) = 0.

We formulate the simple observation from [4], needed in the present paper, in
a form suitable for the discrete VOP.

Proposition 2.1. Let B1,B2 be unital algebras with the properties described
above. Let L ∈ B1 such that adL : B1 → B1 is a locally nilpotent operator and let
b : B1 → B2 be a bispectral involution. Suppose that, for any fixed n, eLψ(x, n) is a
polynomial in x of degree n. Define a new map b

′

: B1 → B2 via the new polynomial
function ψ′(x, n) := eadLψ(x, n). Then b

′

: B1 → B2 is a bispectral anti-involution.

3. CHARLIER TYPE VECTOR ORTHOGONAL POLYNOMIALS

Here the algebras Bi are the ones defined in the previous section. Let P (X)
be a polynomial of degree d ≥ 1 without a free term. We define the automorphism
σ : B1 → B1 by

σ = eadP (∆) .

Let us compute explicitly its action on the generators.

Lemma 3.1. The automorphism σ acts on the generators as











σ(f) = f + P ′(∆)

σ(L) = L+ P ′(∆)∆

σ(∆) = ∆.

Proof. Starting with the relation [∆, f ] = 1 we prove by induction that for
each m

[∆m, f ] = m∆m−1. (3.1)

Really for m = 1 it is obvious. Assuming (3.1) is verified for m = j − 1, we have
for j = m

[∆m, f ] = ∆mf − f∆m = ∆∆m−1f − f∆m

= ∆(f∆m−1 + (m− 1)∆m−1)− f∆m

= [∆, f ]∆m−1 + (m− 1)∆m−1) = m∆m−1.

Hence
eadP (∆)(f) = f + P ′(∆),
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as the rest of the terms vanish.

To prove the second formula we start with the identity [∆, L] = ∆. By induc-
tion we see that

[∆m, L] = m∆m.

This proves the second formula. The last formula is obvious. �

A direct consequences of the lemma is

Corollary 3.1. The image of x under the automorphism σ is:

σ(x) = x+ P ′(∆)(1 + ∆). (3.2)

Proof. We use x = f + L. Hence

σ(f + L) = f + P ′(∆) + L+ P ′(∆)∆ = x+ P ′(∆)(1 + ∆).

�

Let us define the anti-involution b1 = b(σ−1). Below we use that

σ−1 =
∞
∑

j=0

(−adP (∆))
j

j!
.

Also we define the difference operator

L1 = σ(L) = −x∇+ P ′(∆)∆. (3.3)

From Lemma 3.1 and Corollary 3.1 it follows almost immediately that

Lemma 3.2. The anti-involution b1 acts as











b1(x) = T + n+ P ′(nT−1)(1 + nT−1)

b1(L1) = n

b1(∆) = nT−1.

Proof. We have

b1(x) = b(σ−1(x)) = b(x+ P ′(∆)(1 + ∆) = T + n+ P ′(nT−1)(1 + nT−1).

Next,
b1(L1) = b(σ−1 ◦ σ(L)) = b(L) = n

Finally,
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b1(∆) = b(∆) = nT−1.

�

Let us define the ”wave function”

CP
n (x) = eP (∆))ψ(x, n) =

∞
∑

j=0

P (∆)j(x)n
j!

. (3.4)

Notice that the operator ∆ reduces the degrees of the polynomials. The same
is true for P (∆) (we recall that P (X) has no free term). This shows that the sum
(3.4) is finite and for this reason CP

n (x) is a polynomial.

Let us write explicitly P (∆) as

P (∆) =
d

∑

j=1

βj∆
j .

We will list the basic properties of the polynomials CP
n (x) in terms of the polynomial

P (∆) in the next theorem.

Theorem 3.1. The polynomials CP
n (x) have the following properties:

(i) They satisfy d+ 2-term recurrence relation

xCP
n (x) = CP

n+1(x) + n(1 + β1)C
P
n (x) +

d
∑

j=1

[(j + 1)βj+1 + jβj ](n)jC
P
n−j ,

where βd+1 = 0.

(ii) They are eigenfunctions of the difference operator L1 (3.3)

L1C
P
n (x) = nCP

n (x).

(iii) They have a lowering operator

∆CP
n (x) = nCP

n−1(x)

Proof. (i) From Lemma 3.1 we have that

xCP
n (x) =

{

T + n+ P ′(nT−1)(1 + nT−1)
}

CP
n .

Let us work out the expression E = P ′(nT−1)(1− nT−1)CP
n . We have

E =
d

∑

j=1

jβj(nT
−1)j−1CP

n +
d

∑

j=1

jβj(nT
−1)jCP

n

=
d

∑

j=0

[(j + 1)βj+1 + jβj ](nT
−1)jCP

n .

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 23–38. 31



Using that (nT−1)j = (n)jT
−j we obtain

E =

d
∑

j=1

[(j + 1)βj+1 + jβj ](n)jC
P
n−j + β1C

P
n .

(ii) From the definitions of L1 and CP
n (x) we obtain

L1C
P
n (x) = ePLe−P ePψ(x, n) = ePnψ(x, n) = nCP

n (x).

(iii) follows directly from Lemma 3.2. �

4. MEIXNER TYPE VECTOR ORTHOGONAL POLYNOMIALS

We use the notation of the previous section x̂, ∆, L = −x∇ to define an algebra
B1 of discrete operators. It will be spanned by the operators x̂, L, G = (L+ β)∆,
where β is a constant. Again it would be convenient to work with the element
f = x̂− L. They satisfy the following commutation relations











[L, f ] = f

[G, f ] = 2L+ β

[G,L] = G.

(4.1)

Also the wave function would be the same as in the previous section, namely
ψ(x, n) = (x)n. It has the properties:











Lψ(x, n) = nψ(x, n)

xψ(x, n) = ψ(x, n+ 1) + nψ(x, n)

Gψ(x, n) = (n− 1 + β)ψ(x, n− 1).

We sum up these properties in terms of the following anti-involution b.











b(L) = n

b(f) = T

b(G) = n(n− 1 + β)Tn−1.

The algebra B2 will be the image b(B1). This gives our initial bispectral problem.

Let P (X) be a polynomial of degree d ≥ 1 without a free term. We define the
automorphism σ : B1 → B1 by

σ = eadP (G) .

In the next lemma we compute it on the generators.
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Lemma 4.1. The automorphism σ acts on the generators as










σ(f) = f + (2L+ β)P ′(G) + P ′′(G)G+ P ′2(G)G

σ(L) = L+ P ′(G)G

σ(G) = G.

Proof. Let us start with the second formula. We have [G,L] = G. Then by
induction we find

[Gm, L] = mGm (4.2)

Hence

adP (G)L = P ′(G)G.

which proves the second formula. Next we prove by induction that for each m

[Gm, f ] = 2
m−1
∑

j=0

GjLGm−1−j +mβGm−1.

We use the above formula (4.2) in the form GjL = LGj + jGj to transform the
first sum into

m−1
∑

j=0

GjLGm−1−j = 2

m−1
∑

j=0

(L+ j)Gm−1

This shows that

[Gm, f ] = m(2L+ β)Gm−1 +m(m− 1)Gm−1,

which yields

adP (G)(f) = (2L+ β)P ′(G) + P ′′(G)G.

Now we easily compute ad2P (f):

ad2P (f) = [P (G), 2LP ′(G)] = 2P ′2(G)G.

From the expressions for adjP , j = 0, 1, 2 we obtain the first identity.

The last identity is obvious. �

We define the anti-involution b1 = b(σ−1). Our bispectral operator L1 will be
given by

L1 = σ(L) = −x∇+ P ′(G)G. (4.3)

The next lemma computes the action of b1 on the needed elements.
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Lemma 4.2. The anti-involution b1 acts as











b1(x) = T + n− [P ′(u)(2n+ β) + P ′′(u)u+ P ′(u)u− P ′2(u)u]|u=n(n−1+β)T−1

b1(L1) = n

b1(G) = n(n− 1 + β)T−1.

Proof. The last two identities are direct consequences of the definitions of L1

and G together with the formulas for b. The more involved first identity follow
from the last two and Lemma 4.1. Really, we have

b1(x) = b1(L) + b1(f) = b(L− P ′(G)G)+

+ b(f − [(2L+ β)P ′(G) + P ′′(G)G] + P ′2(G)G)

= b(f + L)− b([(2L+ β +G)P ′(G) + P ′′(G)G]− P ′2(G)G)).

after which we put the expressions for b(G), b(f) and b(L). �

We come to the definition of the VOP, i.e. the ”wave function”

MP
n (x) = eP (G))ψ(x, n) =

∞
∑

j=0

P (G)j(x)n
j!

. (4.4)

We assume that P (G) = αGm + . . . with α 6= 0.

Notice that the operator G reduces the degrees of the polynomials by one unit.
This shows that the sum (4.4) is finite (we recall that P (X) has no free term) and
for this reason MP

n (x) is a polynomial.

The basic properties of the polynomials MP
n (x) are listed in the following

theorem

Theorem 4.1. Let β /∈ N. Then the polynomials MP
n (x) have the following

properties:

(i) They satisfy the recurrence relation

xMP
n (x) = MP

n+1(x) + nMP
n (x)

− [P ′(u)(2n+ β + u) + P ′′(u)u− P ′2(u)u]u=n(n−1+β)T−1MP
n .

(ii) They are eigenfunctions of the difference operator L1 (4.3)

L1M
P
n (x) = nMP

n (x).

(iii) The operator G acts on them as lowering operator

GMP
n (x) = n(n− 1 + β)MP

n−1(x).
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Proof. The proof is similar to the proof Theorem 3.1 and follows easily from
Lemma 4.2 . Therefore it is omitted. �

Remark 4.1. Notice that the above polynomial system is well defined for all
values of β but it is not always VOP. For example, when β = −N, N ∈ N and
d = 1 we come to Kravchuk system of orthogonal polynomials, which contains only
finite number of members. Similar situation occurs when d > 1. This is discussed
in the next section.

5. EXAMPLES

Example 5.1. For the definitions and properties of orthogonal polynomials
we follow mainly [17].

Let P (∆) = −a∆. We find that

L1 = −a∆− x∇.

This is the difference operator which has Charlier polynomials as eigenfunctions.
The latter can be defined according to our scheme by

CP
n = e−a∆(x)n =

n
∑

j=0

(−a)j∆j(x)n
j!

=
∑ (−a)j(−n)j(x)n−j

j!
.

We see that these are the normed Charlier polynomials denoted in [17] by
pn(x). This example, together with the construction of Appell polynomials in [16],
motivates the name ”Charlier-Appell polynomials” for general P .

Example 5.2. In the second example we take the algebra from section 4. Let
us take P (G) = αG, G = (−x∇+ β)∆. Then

L1 = α(−x∇+ β)∆− x∇.

Let c be a constant, c 6= 0, 1. Put L̂ = (c− 1)L1. Take the constant α to be

α =
c

c− 1

and β to be different from a negative integer. We obtain exactly the Meixner
operator

L̂ = c(x+ β)∆ + x∇.

as given in [17]. It has eigenvalues (c− 1)n.

In case β = −N , N ∈ N we obtain Kravchuk polynomials K0, . . . ,KN , which
form a finite set of orthogonal polynomials.
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Example 5.3. Let us again use the settings from section 4. We present here
the simplest new example. Let us take P (G) = G2/2. Then the new polynomials

MP
n (x) =

∞
∑

j=0

(G2)j(x)n
j!

are eigenfunctions of the operator L1

L1M
P
n (x) = (−x∇+ (x∇∆+ β∆)2)MP

n (x) = −nMP
n (x)

The recurrence relation reads

xMP
n = MP

n+1 + nMP
n − n(n+ β − 1)(2n− 1 + β)MP

n−1

− (n)2(n+ β)2M
P
n−2 + (n)3(n+ β)3M

P
n−3.

Example 5.4. Kravchuk-like polynomials. In this example we investigate
the case when β = −N, N ∈ N. We take P (G) = G2/2. The recurrence relation is
as above.

We see that the polynomials satisfy 5-term recurrence relation. However the
coefficient at Mn−3 is zero for n = N , thus violating the condition of P. Maroni’s
theorem [22]. This shows that the vector orthogonality is valid only for the poly-
nomials Mn, n = 0, . . . , N . The situation with the general polynomial P (G) is
similar.
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[11] Grünbaum, F.A., Haine, L.: A theorem of Bochner, revisited. In: Algebraic As-

pects of Integrable Systems (I.M. Gel’fand and T. Fokas, eds.), Progress in Nonlinear
Differential Equations and Their Applications, 26, Volume in Honor of I. Dorfman,
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