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1. INTRODUCTION

In the present paper we consider four kinds of reducibilities among sets of
natural numbers: Turing reducibility (<7), enumeration reducibility (<), hyper-
arithmetical reducibility (<p) and hyperenumeration reducibility (<p.). The first
three of those reducibilities are well-known. The hyperenumeration reducibility has
been introduced by Sanchis in [5] and further studied in [6]. It is a kind of pos-
itive reducibility which relates to hyperarithmetical reducibility, as enumeration
reducibility relates to Turing reducibility.

Let 0 € {T, e, h,he}. By 0, we shall denote the class

{A|ACN& A<, 0).

So, 07 consists of all recursive sets, 0, — of all recursively enumerable sets, 0j
is equal to the class of all hyperarithmetical sets, and Op. consists of all II] sets.
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Two sets A and B are a minimal pair with respect to the o-reducibility if for
all sets X of natural numbers X <, A & X <, B= X €0,.

[t follows from the results of McEvoy and Cooper [3] that there exist sets of
natural numbers A and B such that the pair (A4, B) is minimal with respect to
Turing reducibility and in the same time with respect to enumeration reducibility.
Up to our knowledge, minimal pairs for the higher order reducibilities < and <ne
are not well studied and an analogue of the result of McEvoy and Cooper is not
known. :
The aim of the present paper is to present a uniform construction of minimal
pairs. In this way we shall obtain two sets A and B such that the pair (A, B) is
minimal with respect to each of the reducibilities <7, <., <j and <;.. Namely, we
are going to prove the following theorem:

1.1. Theorem. For every A C N, such that (N\ A)
B C N which is not I1} and such that if o € {T,e, h,he}, X
then X € 0,.

In particular, if we pick up a sufficiently complex set A, i.e. if A is not II}, then
we can find a set B such that for every o € {T' e, h, he} the o-degrees determined
* by the sets A and B form a minimal pair.

The proof of the theorem is based on a forcing technique introduced in [8] and
used there for the purposes of the abstract recursion theory.

The paper is organized as follows. In Section 2 we summarize the basic defini-
tions and results used in the sequel. In Section 3 we describe our forcing construc-
tion. The last Section 4 contains the proof of the theorem and some generalizations.

there exisis a

Se A!
<s A and X <, B,

2. PRELIMINARIES

Throughout the paper we shall assume fixed a standard Godel enumeration
Wo, ..., W, ... of the recursively enumerable sets. We shall assume also that an
effective coding of the finite sets of natural numbers is given. By D, we shall denote
the finite set having code v.

By capital letters A, B, X etc. we shall denote sets of natural numbers.

We shall use the following definition of enumeration reducibility given in [4].

2.1. Definition. Let A and B be sets of natural numbers. Then A is enu-
meration reducible to B (A <. B) if for some a € N and for all z € N

z€ A <= Jv((v,z) €W, & D, C B).

Turing reducibility can be described in terms of enumeration reducibility.
Given a set A, denote by A* the set A ® (N\ A). Then we have

Here @ is the usual join operation. So,
t€ADB <= In((z=2n&n€A)V(z=2n+1& n€ B)).

The notion of hyperenumeration reducibility is introduced in [5]. Let f, g
denote arbitrary total functions in N. By f(n) we shall denote (the code of) the

sequence (f(0),..., f(n —1)).
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2.2. Definition. Given sets A and B of natural numbers, say that A is
hyperenumeration reducible to B (A <j. B) if for some a € N and for all z € N

z € A < YfInIv({v,z, f(n)) € W, & D, C B).

From the definition it follows immediately that 4 is I} in B iff A <;. B* and
hence we can express hyperarithmetical reducibility in terms of hyperenumeration
reducibility:

ASh B <= At <he B*t.

A set A of natural numbers is called fotal if (N\ A) <, A or, equivalently, if
At <. A. The following obvious lemma shows that if two total sets form a minimal
pair with respect to enumeration reducibility and hyperenumeration reducibility,

then they form a minimal pair with respect to Turing reducibility and with respect
to hyperarithmetical reducibility.

2.3. Lemma. Let A and B be total sets of natural numbers. Then:

(VXX <, AL X<.B=2>X€0,)=2VX(X<r A& X <rB= X €07);

() VX(X <he AL X <pe B22XEO) 2 VX(X < A& X < B=>
X € 0y). .

~ We shall identify the partial predicates on N with the partial functions, taking
values in {0, 1}, assuming that 0 stands for true and 1 for false.

By 2y we shall denote the structure (N;G,X), where G is a total binary
predicate which is equal to the graph of the successor function, in other words,

0, fy=z+1,
Glz,y) = { 1 otherwise,

and X is a unary partial predicate on the natural numbers.

Enumeration of 2y is a total surjective mapping f of N onto N. Clearly,every
enumeration determines a unique structure B; = (N; G2s,£%7), where for all z,y

G®!(z,y) ~ G(f(z), f(y)) and T (z) = I(f()).
Given an enumeration f of Ay, denote by D(B;) the set of all Godel numbers
of the elements of the diagram of B;. In other words,

D(B;) = {(1,n,m,€) | G®/(n,m) ~ e} U{(2,n,€) | P! (n) ~ ¢}.

Notice that if the predicate ¥ is total, then D(B;) is a total set.
The main property of the structure 2y is that it is relatively stable. This means
that for every enumeration f of 2y the function f is partial recursive relatively

D(%By), i.e. graph(f) <. D(‘By). |

2.4. Proposition. Let f be an enumeration of Ax. Then f is partial recursive
in D(By).

Proof. Let us fix a natural number 0; such that f(0;) = 0. First we are going
to show that |

f(n) =0 < 3y (G2 (0s,y) & G®/(n,y)). |

Indeed, suppose that f(n) = 0. Take an y such that f(y) = 1. Then we have
G(f(of))f(y)) and G(f(n)’ f(y))$ and hence G/ (Ofsy) and G (na y)' Now
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suppose that for some y, G®/(0;,y) and G®/(n,y). Then f(y) = 1 and since
G(f(n),1), we get that f(n) = 0.
In the same way one can show for k > 0 that
f(n)=k <= 3z,...2p (G‘Bf(O_,,xl)& .. .&G‘B’(Zk-’bxk-—l)&G‘B"(l"k—l:"))-
So the graph of f is enumeration reducible to D(B;) and hence f is partial
recursive in D(By). =
2.5. Corollary. For every enumeration f of Uz, ¥ <. D(B;).
‘ 2.6. Definition. Let A CN, o € {T, e, h, he} and f be an enumeration of Usy.
Then A is o-admissible in f if f~1(A) <, D(By).

Now we are ready to describe the plan of the proof of Theorem 1.1. Let L be
a total recursive predicate, for example let ¥ = Az.0.

Given a total set A, denote by Q,, o € {e, he}, the class of all sets which are
o-reducible to A. In what follows we shall show that there exists an enumeration
f of Ay, having the following properties:

(1) f and hence D(B;) is not I1}; B
(2) If o € {e,he}, X € Q, and X is o-admissible in f, then X € 0,.

Denote the set D(8;) by B. Now suppose that ¢ € {e,he} and X <, A and
X <, B. Using the stability of 2y, we obtain from here that X is o-admissible in
f and hence, by (2), X € 0,.

From here by Lemma 2.3 we obtain for all o € {T, ¢, h, he}

X<, A& X<, B=>X¢€0,.

In the same way, using appropriate definitions of the predicate ¥, we shall
obtain also relativized versions of the theorem.

3. GENERIC ENUMERATIONS

Every finite mapping of N into N is called finite part. By A we shall denote
the set of all finite parts. Elements of A will be denoted by lowercase Greek
letters 6, 7, p, ... We shall use “C” to denote the usual inclusion relation on partial
functions. Clearly, “C” induces a partial ordering on A.

3.1. Definition. Let £ C A and f be an enumeration.of UAy. Then!
(1) E is dense if for every § € A there exists a 7 € E such that § C 7

(2) E is dense in the enumeration f if for every finite part 6 C f there exists a
T € E such that 6 C 1;

(3) f meets E if there exists a finite part é € E such that § C f.

Notice that a dense set E is automatically dense in every enumeration of Ay.
Let F be a countable family of subsets of A.

3.2. Definition. An enumeration f is F-genericif
(VE € J)(E is dense in f = f meets E).

104



Let D(X) = {(n,e) | E(n) >~ €}. Let o € {e,he}. Given a set A, say that
A<, Lif A<, D(X). For a function f let f <, T if graph(f) <, D(X). -

3.3. Proposition. Let 6 € A. There ezists an F-generic enumeration f of
Ay, which ertends § and such that f €. T.

Proof. A usual finite end-extension construction of the mapping f. Start with
6o = &. Consider three kinds of steps. On steps ¢ = 3r ensure that f is total and
surjective. On steps ¢ = 3r + 1 ensure the genericity. Finally, on steps ¢ = 3r + 2
consider the r-th he-reducible to ¥ partial function ¥, and ensure that f Z ¢,. m

Denote by &€ the class of all enumerations of y.

3.4. Definition. Let S CN x €. The set S is called complete relative to F if
for every n € N, § € A there exists a 7 D 6 such that if f is F-generic and 7 C f,
then the pair (n, f) belongs to S.

The next proposition is a generalized version of Proposition 3.7 [8]. The simple
proof presented here is based on a suggestion of V1. Soskov.

3.5. Proposition. Let S C N x £ be complete relative to F. Then there
ezists a countable family Fs of subsets of A such that if f is Fg-generic, then
¥n((n, f) € S).

Proof. Given a natural number n, let

E, = {7 |Vf(f is F-generic & 7 C f = (n, f) € S)}.

It follows from the completeness of S that the set E, is dense.

Denote by Fs the family {E, | n € N}UJF. Suppose that f is Fs-generic. Fix
‘an n € N. Since E, is dense, f meets it. Let 7 € E,, be such that r C f. Clearly,
f is'F-generic. Hence, by the definition of E,,, (n,f) €S. u

Let 0 € {e,he} and let PJ,...,P?,... be a sequence of unary predicate let-
ters. Assume that a satisfaction relation “f k£, PZ(z)” is defined, so that for every
enumeration f of Ag

A<o D(By) <= Ja(A={z| [ E.P;(2)})-
Suppose also that “§ |-, PZ(z)” is a forcing relation satisfying the following forcing
conditions:
(F1) § C 1 & é Iy P2(z) = 7 ks PI(2);

(F2) There exists a countable family F, of subsets of A such that for every ¥,-
generic enumeration f, f F, PZ(z) <= (36 C f)(6 ks P7(z))..

3.6. Definition. Let A C N. The set A has a o-normal form if for some
a €N, § € A and for all n ¢ dom(6), z €N, ,
t€A &< Ir(6Cr)(r(n) =z & Tk, Pg(n)). (3.1)
Given a set A, call P? an f-associate of A if for alln € N

f(n) €A <= fE, P{(n).

Assume that the recursive pairing function (-, -) is chosen, so that every natural
number is a code of an ordered pair.
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3.7. Proposition. Let Q = {Ao, Ai,...,Ar,...} be a countable family of
subsets of N. Let the subset S of N x £ be defined by

({(a,r),f) € S <= A, has a o-normal form or P? is not an f-associate of Ar.
Then S is complete relative to F,.

Proof. Let us fix a natural number m = (a,r) and a finite part §. Assume that
Ar has a o-normal form. Clearly, for every enumeration f the pair (m, f) belongs
to S.

Now suppose that A, does not have a o-normal form. Then there exist natural
numbers z and n € dom(6) for which the equivalence (3.1) fails. We have two
possibilities. First suppose that

g€ A& V(6 C1)(r(n) >z =1 KK, P/(n)).

Take a 7 such that § C 7 & 7(n) ~ z. Let f be an F,-generic enumeration which
extends 7. Clearly, f(n) = ¢ € A,. Assume that f &, PZ(n). Then, by (F2),
there exists a p C f such that p I, PJ(n). By (F1) we may assume that 7 C p. A
contradiction. So, P? is not an f-associate of A, and hence (m, f) € S.

Now suppose that

e g A, & 376 C 7)(7(n) >z & T I, PJ(n)).
Let f be F,-generic and 7 C f. Then, by (F2), f £, P/(n) but f(n) =z ¢ A,.
Hence (m,f)€S. = ‘
Combining the last proposition and Proposition 3.5, we get the following

3.8. Corollary. Let Q be a countable family of sets of natural numbers. There
exists a countable family F of subsets of A such that if f is F-generic, A € Q and
A 15 o-admissible in f, then A has a o-normal form.

4. PROOF OF THE THEOREM

We start by defining appropriate £, and |, relations for o € {e, he}. Con-
sider first o = e.

4.1. Definition. Uiven natural number a € N and enumeration f of g, let
fEPi(n) <= Jv((v,n) € W, & D, C D(*8y)).

From the definition above it follows immediately that for every enumeration f

and ACN
A <. D(B;) <= Fa(A={n]| f EP;(n)}). (4.1)

The definition of the forcing relation |, is a little bit more complicated. Let
6 be finite part. Given a natural number u, let é F.u if u = (1,n,m,¢) for some
n,m in dom(8) and G(8(n),é(m)) ~ € or u = (2,n,¢) for some n € dom(6) and
Z(6(n)) ~ €.

For a finite set D let § I+, D <= (Vu € D)(8 IFeu).

Finally, given a € N, let

8 IFePi(n) <= Fv({v,n) € W, & b IF.D,).
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It is obvious that the forcing conditions (F1) and (F2) hold for k. and |F,,
where the family F, is empty.

4.2. Proposition. Let A C N have an e-normal form. Then A <.X.

Proof. Let 6 and a be such that (3.1) holds for all n ¢ dom(6§) and z € N. Fix
an ng € dom(é). Then

r€A &= (6 C1)(r(no) 2z & 7 IF.Pi(n0)).

Assume that an effective coding of the finite parts is fixed. From the definition
of I., using the recursiveness of G, we obtain that the set {r | 7 [F.PS(no)} is
e-reducible to X. Therefore A<, . m

Now let us turn to the hyperenumeration case. Consider two sequences
Ro,...,Ra,...; Fo,...,Fg,...
of new binary predicate letters. Given an enumeration f, let
f EneRa(z,8) <= Fu((v,z,5) € W, & D, C D(By)).

Let s denote (codes of) arbitrary finite strings of natural numbers. If s =
(z1,...,25), then by s % z we shall denote the string (z;,..., zn, z). By () we shall
denote the empty string. '

Given a finite string s and a natural number z, define f Fp. Fs(z, s) by means
of the following inductive

4.3. Deﬁnition.
Iff ’:he Ra(x,S), t‘hen f t:hc Fa(z)s);
HV2(f Ere Fa(z,s*z)), then f Ep. Fo(z,s).

Suppose that f EF,(z,s). By |z,s| we shall denote the first ordinal at which
the pair (z, s) appears in the inductive definition. In other words,

‘."B S' - 0: lff Fhe Ra(z)s))
P L sup(lz,s* 2| +1: 2 € N) otherwise.

4.4. Lemma. Let A CN and f be an enumeration of Ay. Then
A <pe D(B;) < 3a(A={z| f Ene Falz,())}).
Proof. By definition A <;. D(By) if, and only if, for some a € N
r € A < VginIu({v,z,§(n)) € W, & D, C D(By)).
Hence A <p. D(B;) iff there exists a € N such that
r € A <= VYgIn(f ke Ra(z,3(n))).
We shall show that '

VgIn(f Fre Ra(z,3(n))) <= f Ene Falz,()). - (42)

Suppose that the left hand side of (4.2) holds. Towards a contradiction assume

that f Ep. Fa(z,()). Then there exists a sequence zg, z1, ..., Zn, . . . of natural num-
bers such that if s, = (z0,...,2n-1), then ‘

f #he Ra(z:sn) &' f #he Fa(sn * Zn,l'). (43)
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The construction of zg,21,...,2n,... is by induction on n. Since f g, F.(z,()),
f Ere Ra(z,()) and for some z, f . Fe(z,(z)). Set 2o = 2.

Suppose that 2, ..., z, are chosen, so that (4. 3) holds. Let sp41 = (z0,..., 2n)-
By (4.3) f Ene Ra(z, s,,+1) and for some z, f Ep, Fo(Z,5n41 * 2). Take 2,41 = 2.

Now let g(n) = z,. Clearly, Vn(f #p. Ra(z g(n))).

Given a finite string s = (2g,...,2,—1) and a function g, let

sCg = (Vk <n)(g(k) = z).

To prove (4.2) in the right to left direction, we shall show by means of transfinite
induction on |z, s| that

f Ene Fa(z,8) =>Vg 2 sIn(f ERs(z,3(n))) (4.4)

and use that every function extends the empty string ().

Indeed, if f Epe Ra(z,s), then (4.4) is obvious. Suppose that f ¥,;, Ra(z,s).
By induction (Vz)(Vg 2 s* z)3In(f Ex. Ra(z,d(n))). Suppose that g D s. Then for
some z, ¢ D s * z and hence In(f Ep. Ra(z,3(n))). m

Let f Ere PHe(z) <= f Ene Fa(z,()).

Our next task is to define an appropriate forcing relation 8 Iz, P¢(z). First
let
§ IFhe Ra(z,s) <= Jv((v,z,s) € W, & 6 I+ D).
Clearly, we have as for enumeration reducibility:
(R1) 8 IFne Ra(z,8) & 6 C 7= 7 Ikpe Ra(z,s);
(R2) For every enumeration f, f Epe Ra(z,5) <= 36 C f(6 Ibhe Ra(z,8)). -
Now we are ready to define 8 I-p. Fa(z,s) by means of the following mductlve

definition.

4.5. Definition.
If 6 IFpe Ra(z,s), then 6 Ikpe Fa(z,s);
IfVz € NVY7T D 63p D 7(p Ikhe Fa(z, s * 2)), then 8 Ikp, Fu(z,s).

We associate ordinals with the tuples (6, z, s) such that § Ik, Fa(z, s) as usual:

P i 6 kne Ra(z,s),
~ | sup(min(|p,z,s*%z|+1:pD 7): 72 6z €N) otherwise.

The next lemma follows 1mmed1ate]y from Definition 4.5.

4.6. Lemma. Let §, T be finite parts, 6 C 1 and 6 Irpe Fa(z,s), then
T lFhe Fa(z,s).
Let F; be the family of all subsets

Eszys:={p|plrhe Fa(z,5%2) & |p,z,8 % 2| < |6, 2,5} of A.

4.7. Lemma. Let f be an F,-generic enumeration, 6 C f and 6 Ikn Fu(z,s).
Then f Epe Fa(z, s).
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Proof.  Transfinite induction on |é,z,s|. Skipping the obvious case
[ Ehe Ra(z,s), assume f ;. Rs(z,s). Fix a z € N and consider the element

E={p|plthe Fa(z,s%2) & |p,z,5* 2] < [, 2,5}

of F1. We shall show that E is dense in f. Let p C f. Takea 7 C fsuch that y C 7
and 6 C . Since f ¥y, Ra(z,s), by (R2), é ¢y Ra(z,s) and hence, by Definition
4.5, there exists a p 2 7 which belongs to E.

From here, by genericity, there exists a p C f which belongs to E.

Now we have that |p,z,s* z| < |6,z,s]| and p by, Fa(z,s * z). Hence, by the
induction hypothesis, f EF,(z, s * z).

So we have proved that Vz(f EFs(z,s * 2)), and hence f kx, Fa(z,s). »

Denote by F, the family containing all sets {7 | 32Vp D 7(p Wn. Fa(z,s%*2))}.

4.8. Lemma. Let f be Fo-generic and f kEp. Fa(z,s). Then there exists a
& C f such that é |k Fa(z,s).

Proof. Transfinite induction on |z, s| Assume that Y6 C f(6 Wpe Fa(z,s)).
Then the set £ = {r | 32Vp D 7(p Wne Fa(z,5* 2))} i1s dense in f. By genericity,
there exist 7 C f and z € N, such that Vp D 7(p ¥ne Fa(z, s * 2)).

On the other hand, f Fp. Fa(z,s) and f Epre Ra(z,s). (Otherwise we could
find a 6 C f such that § |Fp. Ra(z,s).) Therefore f EFy(z,s * z), and hence, by
induction, there exists a p C f such that p I[FF,s(z, s * 2). By Lemma 4.6 we may
" assume that 7 C p. A contradiction. m

Define 6 Fre PM(z) <= 6 IFne Fa(z, ().
Let Fy. = F1 UF,. Combining the last three lemmas we obtain that k;, and
Ire satisfy the forcing conditions (F1) and (F2).

4.9. Proposition. Suppose that A has a he-normal form. Then A <p. L.
Proof. Let 6 and a be such that for all n g dom(6) and =z

€A & IrDr(n) >z & T ikpe Fa(n,())).

Consider the set P = {(7,n,s) | 7 Ity Fa(n,s)}. We are going to show that
P <pe X. For this purpose we shall give a game characterization of the forcing
“IFpe ”. Our game starts over a triple (7, n, s) and has two players — (V) and (3).
If 7 IFpe Ra(n,s), then the game stops and (3) wins. Otherwise the first player (V)
chooses a natural number 2z and a finite part ¢ O 7. Then the second player (3)
chooses a finite part ¥ D p. The game continues over (v,n,s* z). Now our claim is
that 7 |Fp. Fa(n,s) iff there exists a strategy for (3) for winning every game over
(r,n,s). To formulate this claim precisely, we shall represent the possible moves
of (V) by two total functions g; and g, where g;(7,n,s) will choose the natural
number z and g(7,n, s) will give the finite part u. We shall call the pair (g1, g2)
correct if VrVnVs(r C ga2(7, n, 5)).

4.10. Claim. 7 |k, Fa(n,s) iff for every correct pair (g1,g92) there ezists a

finite nonempty sequence (v, v1,...,vi) of finite parts such that if
z21 = g1(vo,n,8),22 = g1(v1,n 8% 21), ..., 2k = g1(Vk—1,n, 8% 21 % .. x 2p1),
then:
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a) T=vp;
b) (Vi < k)(g2(vi,n,sx 21 % ... %2;) Cvip);

¢) Vi lbhe Ra(n,s*zy % ... % 2z).

Proof. The proof of the left to right direction is by induction on |r,n,s|.
Suppose that 7 |Fp. Fa(n,s). Let (g1,92) be a correct pair of functions. If
7 lFhe Ra(n,s), then the sequence (7) satisfies the conditions a)-c). Suppose now
that 7 ¢y, Ra(n,s). Let z; = gy(7,n,s) and g = g2(7,n,s). By the correctness
of (g1,92), 7 € p. By the definition of ;. there exists a v; D pu such that
V1 lFhe Fa(n,s* 21) and |vy,n,s* 21| < |r,n,s|. By induction there exists a finite
non-empty sequence (v, ..., ) of finite parts, satisfying the conditions a)—c) with
respect to (v1,n,s * z;). Now it is trivial to show that the sequence (7, vy, ..., vk)
satisfies a)-c) with respect to (7, n,s).

Suppose now that 7 . Fa(n,s). We shall show that there exists a correct pair
(g1, g2) of functions for which there is no finite sequence of finite parts satisfying
a)-c). Given finite part § and string ¢, check if there exist z and p 2 & such that
(Vv D u)(v Whe Fa(n,t x z)). In case of a positive answer let g;(6,n,t) be one
of those z and g2(6,n,t) be one of those pu. If the answer is negative, then let
g1(6,n,t) = 0 and g2(6,n,t) = 6. Clearly, the pair (g1, g2) is correct.

Now assume that (v, ..., V) is a sequence of finite parts satisfying the condi-
tions a)-c). By a) we have vg = 7. Since vo Whe Fa(n,s), vo ¥re Ra(n,s), and

323 D Vv D p(v Wne Fa(n,s * 2)).
By the definition of g; and g2 and b) we get vy W, Fa(n,s * z1). So, proceeding
as above, we have that
V1 Whe Ra(n,s * z1), va Wne Ra(n,s% 21 %22), ..., Vg Wne Ra(n,s %21 % ... % 2;).
The last contradicts c). m

Using the Claim and the fact that the set {(7,n,s) | T lFpe Ra(n,s)} is enu-
meration reducible to £, we obtain immediately that P <;. £ and hence that
A she 2. =

Now we are ready to prove the main results.

4.11. Theorem. Let C and A be total sets. There exists a tolal set B such
that C <7 B, B 4hre C and for allo € {T,e,h,he} and all X CN

X<, A& X<, B=X<,C.

Proof. Let .
2(1’):{?’ lf:L'GC,

otherwise.
Since C is total, we have for all ¢ € {T,e,h,he} that C <, L and ¥ <, C, i. e.
C =, X
Let A be a total set. Denote by Q,, o € {e, he}, the family of all sets which are
o-reducible to A. By Corollary 3.8 there exist denumerable families Fg, of subsets
of A such that if f is Fg,-generic, X € Q, and X is o-admissible in f, then X has
a o-normal form. Let f be an enumeration of 2y which is not he-reducible to X
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and generic with respect to g, UJFg,.. Denote D(B¢) by B. Since the predicate
2 1s totally defined, the set B is total. By the stability of g, f <z B and hence
B¥€hr Land X< B.

By Lemma 2.3 it is sufficient to show for o € {e, he}

X<, A& X<eB=X<,C.

Now suppose that X <, A and X <, B. Since f is partial recursive in B,
S7Y(X) <o B. So X € Q, and X is o-admissible in f. From here it follows that X
has a o-normal form and hence by Proposition 4.2 and Proposition 4.9, respectively,
X <o . Therefore X <, C. =

Notice that since @ is total, Theorem 1.1 is a direct corollary of the above
theorem.

If we start by an arbitrary, not necessarily total set C, then we can prove a
similar result but only for the positive reducibilities <, and <,.

4.12. Theorem. Let C and A be subsets of N. There exists a subset B of N
such that C <. B, B £ C and if o € {e, he}, then for all X CN

X<o A& X <o B=X<,C.

Proof. Let us define the partial predicate ¥ by
— 0) ifz € C,
E(=) '_ undefined otherwise.
Now we have for o € {e, he} that ¥ =, C. From here the theorem follows by
an almost literal repeating of the arguments used in the proof of the previous
theorem. m

The method used in the proofs of the theorems above allows further general-
izations and applications. We may add countably' many satisfaction and forcing
relations to the so far considered k, and I+, , 0 € {¢, he}, relations. In this way,
considering the forcing for the X4 hierarchy from [1] and [2], we can prove the next
generalization of Theorem 4.11.

If @ is a constructive ordinal, X C N, then by X(%) we shall denote the a-th

jump of X, see [4].

4.13. Theorem. Let C and A be total sets. There ezists a total set B such
that C <p B, B £ne C and for all X C N:

(1) For every constructive ordinal o, X <7 A & X <p B(@) = X <p C(@);

(2) For every constructive ordinal a, if X is 1. e. in A®) gnd X isr. e. in B(®),
then X is r. e. in C(@);

B) XhA& X <h B2 X< Ch
(4) X <he A& X <pe B= X < C.

Other applications of the method will be presented in the forthcoming [7]
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