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CHRISTO 1. CHRISTOV

The shallow shells, characterized by deflections of the order of unity, small defor-
mations and still smaller curvatures, have most thoroughly been studied in the liter-
ature, However, the momentum terms, due to which the shell differs essentially from
a membrane, are not negligible only for the short-wave-length deformations, when the
deflections are small, the deformations — of the order of unity and the curvatures — of
the order of the inverse of the small parameter. In order to treat consistently the case
of momentum supporting shells, the formulas for covariant differentiation in the shell
space are revisited. It is shown that the geometrical non-linearity contributes terms of
the same order of magnitude as the momentum stresses. For the flexural deformations
an equation of Boussinesq type is derived containing fourth-order dispersion and cubic
non-linearity.
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1. INTRODUCTION

Since the turning of the century and especially in the late forties the theory of
thin shells attracted much attention and many papers were devoted to its mechan-
ical and mathematical aspects. Yet, it is far from completion. It goes beyond the
framework of the present paper to give the historical account and the perspective
of the numerous shell theories. We generally accept the attitudes of the compre-
hensive review [9] and the monographs [6, 8, 10] in assessing the vast body of the
existing literature.

The theoretical approaches for modelling shells fall generally into two main
groups. To the first belong the theories in which the governing equations are
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derived as averaged properties of a very thin curved 2D elastic layer in the 3D
space. The second approach originates in [14, 5] and consists in direct application
of the mechanical laws to the 2D continuum representing the middle surface of the
shell. The Cosserat concept was applied in {7]. For the problems arising in the
asymptotic analysis of thin shells we refer the reader to the works of P. Ciarlet,
E. Sanchez-Palencia and co-workers (see the recent works [4, 11] and the literature
cited there). :

When deriving the shell equations from the 3D elasticity, the deflections are
assumed to be finite while the strains are small. This implies long wave length
of the deformations, resulting in even smaller curvatures. This is the so-called
“shallow shell” model. Strictly speaking, the shallow-shell approach is not generic
for shells but it is rather adequate for membranes, because the momentum stresses
that are supposed to make the difference between a shell and a membrane are
proportional to the curvature of the deflections. Hence, in a consistent small-
strains/smaller-curvatures approach, the moments are to be neglected to the first
order of thickness unless the stiffness coefficient is extremely large. However, large
values of the stiffness are very unlikely since the stiffness is proportional to bulk
Young modulus and the square of the thickness, the latter being very small. Hence,
the short length scale of the deformations is the case where the moment stresses
are really important.

The difference between shells and membranes becomes really important when
the strains are much larger than deflections, and curvatures — much larger than
strains. It is clear that such a structure must be geometrically highly non-linear.
We derive here a consistent first-order approximation in the shell thickness for the
said case. :

The assumptions of the present work are:

1. The thickness h of the shell is much smaller in comparison with the length
‘scale L of the flexural deformations of the middle surface, i.e. h <« L or
€ = h/L € 1. No restrictions on L are imposed, e.g., L <« Lp is also an
admissible case, where Lp is the length scale of the structure itself.

2. The thickness of the shell is constant within the adopted asymptotic order.
Hence the derivatives of the thickness scaled by the thickness itself should
not be large values, ie. |[h~!(Vh)|| & O(1). The latter means that the
length scale of changing the thickness is of order of magnitude larger than
the length-scale of the deformations.

3. The loads, e.g. the normal pressure and the tractions on the shell faces, are
compatible with the above assumptions, i.e. they possess the necessary asymp-
totic in order to secure 2D strain and stress states.

4. If the deformations created by the boundary conditions at the rim of the shell
structure (the contour-line of the middle surface) are not compatible with (1)
and (2), then only the portion of the shell is considered, which is far from the
rim, 1.e. the 3D effects of the said boundary conditions can be neglected.

5. For the sake of simplicity, no tractions are exerted on the shell faces.

It should also be mentioned that when the thickness of a shell is very small,
then the contributions from the physical non-linearity of the material are negligible
and geometry is the only source of non-linearity. For this reason, in the present
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work we consider only the linear constitutive relations for elastic continuum (the
so-called St-Venan-Kirchhoff materials [3]).

2. GEOMETRY OF THE SHELL SPACE

In this section we develop further the derivations of [12] and [6] incorporating
the dependence on the transverse co-ordinate in-the shell space. As it will turn
out, this is essential, because after averaging some of the terms, neglected in the
mentioned works, they become commensurable with those that had been left into
the considerations.

Consider an N-dimensional Euclidean space and a structure immersed in it,
defined as a thin layer of virtually constant thickness h (in the sense of require-
ment (1)). It is approximately equipartitioned (in the same sense) by the middle
hypersurface of dimension (N — 1).

Assume that the middle surface is parameterized by the curvilinear co-ordinates
%, a=1,...,N—1. The N-th co-ordinate £V is defined as the normal line to the
particular point of the middle surface. As far as the shell does not intersect itself,
the so defined set of curvilinear co-ordinates is not ambiguous. In addition, it is
orthogonal and, within the adopted asymptotic order, it coincides with the material
co-ordinates. When the shell thickness is not constant, then it is convenient to scale
the normal co-ordinate by it, in order to transform the mathematical problem into
one for which the shell faces are co-ordinate surfaces. Then the co-ordinate system
is not strictly orthogonal but only to the order O(e?), which is fully compatible
with the attempted here theory of approximation O(¢). We resort here to the case
of equidistant surfaces of the shell and the words “equipartitioned by the middle
surface” mean that the middle surface is drawn inside the shell, so that the condition
hio(€Y, ..., EN"1) = —hyp(€Y,...,EN"1), and hence h = h,p — hy,, always holds.

The curvilinear co-ordinates £*, @« = 1,..., N — 1, are in fact material (La-
grangian) co-ordinates. They are connected to the geometrical Cartesian co-or-
dinates (originated somewhere in the ND-space) through the following functional
dependences: . .

e =2'(€,...,&Y;t) for i=1,...,N, (2.1)

where t stands for the time. Here and henceforth the Greek indices range from 1
to N — 1 and serve to mark the variables in the shell. Italics are used for indices
when the space quantities are concerned.

Let us assume for definiteness that the initial state of the shell is physically
admissible (see, e.g., [13] for the definition). Then the initial state can be param-
eterized by the same transformation (2.1) but for the specific value of time ¢ = {.
Without loss of generality we set to = 0.

The middle surface is characterized by the first and second fundamental forms

( 1 £N. t) d.Ef i azi 31;‘ | b (51 ’ &N t) d_e_f i ani ani
gaﬂ&»---: » —‘-zlaéaafﬂ’ af 'EERE ) - i=la£aa£p-

In the last formula n’ denote the Cartesian co-ordinates of the normal to the middle
surface vector (say, n). The outward normal is defined arbitrarily. When the co-
ordinates are the lengths of the arcs, then the second fundamental form adopts the

specially simple form bag = Vo V(.
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The orts of the curvilinear co-ordinate system are expressed as follows

def Z afa ,

where e, are the orts of the Cartesian co-ordinate system. In order to avoid confu-
sion, we do not use throughout the present work the convention of summation with
respect to “dummy” indices when Cartesian co-ordinates are involved. In such a
case we put explicit sign £. For the sake of completeness we also add the relation

QNETI,

which is true by the definition of the normal co-ordinate. According to this defini-
tion the radius vector r of a point inside the N D-space enclosed in the shell can be
expressed as

r=7+sgy, (2.2)

where 7 is the radius-vector of the normal projection of the said point on the shell
middle surface. Here we introduce the notation

s=EVR(E, ... M) (2.3)

as a measure of the length alongside the normal co-ordinate.
From Egs. (2.2) and (2.3) one obtains for the fundamental tensor of the space
enclosed in the shell (see [12, 6])

or on or on ort on’ ort on’
Cop = (aea “ae") ' (aeﬂ “asﬂ) Z (asa T ) (aef’ “2927)
= gap(€l, .. ENTT) — 2sbap(€l,. .., ENTY) + s%cap(€l,. .. €N, (2.4)

Gnyv =1, Gen=0. (2.5)

Here cop = baabf, is the third fundamental form of the middle surface.

It is clear now that the fundamental tensor of the space filling the shell is defined
both by the fundamental tensor of the middle hyper-surface (the first fundamental
form) and by the tensor of curvature (the second fundamental form). For further
convenience we cite here the formulas for the contravariant components of the
fundamental tensor. Since our aim is a first order approximation with respett to
thickness, it fully suffices to retain here only the terms up to O(s?).

Within the adopted order of approximation o(s?) the contravariant components
of the fundamental tensor are given by

G = g®P(€!, ..., eN 1) 4 25b%P (€2, ... €N Y)

+3s2c*P(€1,... €N 1 o(s?), - (2.6)
GNN =1, G*N=0. (2.7)
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The proof of (2.7) is trivial and is a stralghtforward corollary of the definition
of the matrix of contravariant components as an inverse matrix of the matrix of
contravariant components. To prove (2.6), we simply multiply it by (2.4) to obtain

GapG*™ = gapg®” +25(bapg™” —9apb™") + 5% (capg™ —4bapb™ +3gapc™) +0(s°)

= 63 + 25(b} — b3) + 5°(c} — 4c} + 3¢}) + O(s®) = 63 + O(s%).

3. COVARIANT DIFFERENTIATION IN THE SHELL SPACE

This section uses extensively the results of [12] and [6], but it is not possible to
omit it because not all of the necessary formulas are presented there. In addition,
the terms proportional to s?, which are essential for our derivations, are absent
in the cited works. In order to make the present paper self-contained, on the one
hand, and to fulfill the gaps in the cited works, on the other, we compile here the
necessary formulas, deriving those that are not present in the literature.

The covariant derivatives of a vector and of a second-rank tensor are given by

0A"™ | _ gA™"

_ kn n mk
=&+ sa +TRAM + ThA (3.1)

An

m n nm
"kA ] A

The covariant Christofell symbol in N dimensions is given by

Tyr = (3GJ: + 0Gi _ aGij) , rk _ GHF‘J,

Ozt oxi oz’

The contravariant symbols are obtained from the covariant ones through the
procedure of “elevation” (“contraction”) of indices. It is easily shown now that a
Christofell symbol is trivially equal to zero if it contains the index N at least in
two positions, 1.e.

TanN=TNNa=Tnvn=0, TNy=T{y=TNy=0 for a=1,...,N-1.

Let us treat separately also the symbols containing the index N only in one
position, namely:

190G
Paﬂ,N = —FpN,a = "‘é‘ 6:5 = baﬂ — 8Cap -

Due to the specific properties of the fundamental tensor, namely, that GNJ = §V7,
one has
aﬂ = G Jraﬂ] —FaﬁN = baﬂ_scaﬁ

Respectively,

aGﬂx
Os

= —bg +scg—s 2¢% by .

oy = —G"‘“ = —(g%" + 256°* + 352¢™*)(bpx —~ 5¢px)
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‘Note that the last term is obtained after the following fairly obvious manipu-
lation is applied ¢%*bg, = 3c**bgx — 20" .

Finally, for the Christofell symbols which do not contain the index N, one
derives

2
Tova = [By,0)f —2s[f, 0l + (67,0, (3.2)
where L/ 5 5
' gdef L [0gBa | Ofya _ OYpy
[ﬂ?v 0’] =93 (627 + 9P e ) ,
b qE_fl Obga = Obyqa _ ab,,,,)
By, = 2 (69:" 2P T B ) (3.3)

cdef 1 (Ocpa | OCya a%)
[:37) a] S § (627 + amp 630

are the connections generated by the tensors gup, bag and cop, respectively. One
~ sees that due to the curvature of the middle surface the connections in the shell
space are more complicated making its restriction to the (N — 1)D-surface non-
Riemannian. Note that the first term of the connections, namely ¢[3v, «], is noth-
ing else but the Riemannian connection (N D-Christofell symbol) for the (N — 1)-
dimensional space of the middle surface.

The related contravariant Christofell symbol is expressed as usual

[fy = G* Tpy,e = (¢ + 256" + 352c**) ([By, x]° ~ 25[B7, £)" + Sz—zlﬁ% K]°) -
Then
Ty = {ﬁqr}u?s{g‘r}usz{[?v}c’
{5 }, =g Bl {2 }b = b [y, K] — (B, nl,

{5} = 9187, 81" — 497 (8, K1 + 3™ (B, n)".

Now we are equipped to derive the expressions for the N D-covariant derivatives
||; for the space inside the shell. By definition we have

A™ "i.—. %’2; + I‘;’,“A"‘. (3.4)

Let us also intfoduce the notation

4| = ?9?: {8} A, (3.5)

which will be called “restriction of the covariant derivative.” For s = 0 it is nothing

else but the covariant derivative in the (N — 1)D-space of the middle surface of the
shell.
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Since Eq. (3.5) is valid for the whole space inside the shell, it can only loosely
be called “restriction of the covariant derivative”. We shall return to this issue
later on. For the time being it is enough to be noted that the only variables (3.5)
that depend on the normal co-ordinate s are the components of the vector A¥.

Combining Egs. (3.5) and (3.4) and using the formulas for the Christofell sym-

bols, one derives the following expressions for the covariant derivative lL

+ (23{ TR A }) AY = (b — sch + s2cPrbag) AN .

It is a generalization of the respective formula of Neuber because of the depen-
dence on s of the components of the differentiated vector. Further on we have

oAN
FIG

#]= 2,

AN

va ™ cha)Au + (bua - sc,,a)A" y

o

because as far as the subspace of the middle surface is concerned, the component
AN behaves as a scalar, which means that

0AN
o€«

AV | =
=

In the same manner we obtain

= %As_ — (0~ scf + 5™ be)AY and AV | =

Following the same line of reasoning, we obtain the formulas for the covariant
differentiation of tensors:

+(2s[vy, @)t + s2[vy, o)) AV + (2s[vy, B)® + s*[vy, B]°) A
y

6AN

Aa

AP

= A%P
.y

— (b2 — 5c2 + 8% ¢ by ) AV — (b8 — 5cf + s2cFby ) AN

AaN

-

|+l + 5%y, a]?) AN
(b — 501y )A® — (b2 — 56% + s2c2 by JAVN |
AV | = AN | (sl B + 5y, A1) AN
+ (buy — 8Cuy ) AP — (85 — 58 + 52cP% by JANY

ANN l]1= ANN

+(byy — sc,,.,)AN” + (byy — seyy ) AN

~

In the end we consider AM? and AN, which are in fact components of a vector
as far as differentiation in the middle surface of the shell is concerned:

aN AaN (% o 2 ax vN
A " s — (b5 — s¢5 + 5°c%%b, ) A",
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Let us note again that our derivations are not rmtrlcted (as it is the case with
[12] and [6]) to the middle surface but are valid for the entire shell space.

4. GOVERNING EQUATIONS IN CAUCHY FORM

We prefer to derive in the beginning the averaged Cauchy form and only after
that to turn to constitutive relations, because even when considering stress balance,
the role of geometrical non-linearity is conspicuous. The Cauchy form of the balance
laws for a continuous media reads

[ped? = P¥ || -Fi]g; =0, i,j=1,...,N, (4.1)

where p, is the ND-density of the elastic medium filling the shell; g; are the

above defined orts of the curvilinear co-ordinate system; P*/ are the components
of stress tensor; a’ are the components of the acceleration vector and F7 — the
components of the N-dimensional body forces. Respectively, ” stands for the
covariant derivative in (N — 1)-dimensional space.

Upon substituting into Eq. (4.1) the above defined connection of || to the

(N = 1)D-covariant derivatives ] the Cauchy law (4.1) is recast into a system for

the “surface” (laminar) components and a scalar equation for the N-th component,
namely

o ‘Pﬂa - aPNa bﬂ cﬂ 2cﬂnb PNa
peot =P = e B sop 5T hae)F
b >
— 2(b% — sc% + 52c%%b, ) PNV 42 (23{ ﬂay} + sz{ﬂay } ) P"P 1 o(s%), (4.2)
apNN

+ (bﬂy - SCﬁy)Ppy

N _ pNI -
. P =
P B 0s

— (88 — sch+ s2cP~bp ) PN 4 (23{ 5, }b + 5% ﬁﬂ,, }) PN 4 FN 4 o(s?). (4.3)

We simplify the above system by taking into account the main assumptions of
the present derivations, namely that the shell is a thin layer A < 1 and that the
length-scale of the deformations in the middle surface is L > h, then we have the
small parameter € = h/L. Dimensionless variables are introduced as follows:

s = hs', a:—'L-ly baﬂzL_lb:rﬂs Cap =L-zcz,p’ F;; =#P'

i
{fubﬂ"‘{} {&Y={&),

2

t=—t' c= = a%=4é -cz-a"’, aN=6%a'N; (4.4)

here u is the shear elastic modulus and c is the speed of shear waves. Note the
special scaling for the time involving the square root of the parameter §, which will
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be identified later on. In a sense we consider motions of the shell that are of certain
characteristic time. Omitting the primes without fear of confusion, the governing
equations (4.2) and (4.3) read

aPNa

a _ pfa
6a® — P 5

1
== - (bg - secg + s2e2cP by ) PN

8
b
—9(b2 —sec® 4526275 b, . ) PNV 42 (236{ g b+ 3262{ ks }°) PP 10(e?), (4.5)

NN
sa™ — PPN |p= -;'6}; + (bgy — escp, ) PPY

s
- (bg - ssc'g +52e2cP b, ) PNV 4 (28.6 ﬁﬂu }b + 8282-{ ﬁ@y }c) PN +0(e?). (4.6)

It is too early to make here assumptions about the relative asymptotic order of
the different stress components. Yet one can compare the terms containing the same
stress component and to neglect those which are of higher asymptotic order. Since
we only consider here the flexural deformations, we can neglect the acceleration
terms in the equations for the laminar components of motion. Thus we obtain

«| _ 10PN
o 2 St | (4.7)
1 gPNN
salv — pPN |,3= = S5 + (bay — esc,) PP (4.8)

The essential component of derivation of any kind of shell theory is the intro-
duction of averaged across the shell variables, namely

ooP & / PePds, meP Y / sP*Pds, ¢ % / pNags.  (4.9)
Integrating the asymptotically reduced equation (4.7), we get
P = 0, (4.10)

where it is acknowledged that there are no tractions on the shell faces. The last
equation has an obvious solution

0% = Kkog®P , (4.11)

which, depending on the sign of ko, corresponds to the case of uniform compres-
sion/dilation of the middle surface of the shell. Such a stress state is possible
without motion in the middle surface. Henceforth we shall consider only the flex-
ural deformations and the most complicated stress state in the middle surface will
be given by Eq. (4.11).

Multiplying Eq. (4.7) by s, integrating and discarding the tractions on the
faces.we get

gm®P .= q°. (4.12)
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Let us assume now that on the shell faces different normal pressures act with
difference of order of O(¢). Then

1)NN l::O! fﬂVN ::Ev;’

s=—2 s:%

where ¢V, stands for the pressure difference. Here it becomes clear that one can
have effectively 2D stress and strain fields only when the normal pressure is of the
above adopted order in the small parameter.

Integrating Eq. (4.8) with respect to s, taking into account the boundary con-

ditions for PYV and using Eq. (4.12), yields

6 K 1
- /aN ds = m°*? ‘ﬂ‘a +—£—bgugﬂ" —~ cﬁumﬂ” + §Vg . (4.13)

Obtaining the last equation has been the primary objective of the present
paper, because it gives the opportunity to identify the geometrical non-linearity,
namely the terms of type cg,m?” containing the third fundamental form of the
middle surface. Now it becomes clear that the spatial derivatives of the moment
stresses are of the same order as the geometrical non-linearity. This is a new result
and it is obtained due to the more consistent treatment of the covariant derivatives
in the shell space in comparison with [12, 6].

5. CONSTITUTIVE RELATIONS. St-VENAN-KIRCHHOFF MATERIALS

We shall not dwell much on the constitutive relations for the shell. The main
assumption is that for the very thin shells under consideration the material non-
linearity is negligible and that the hypothesis of Kirchhoff-Love holds true. Ac-
cording to the latter, the laminar displacements u, in the shell space are related
to the (N — 1)D-displacements i, in the shell middle surface as follows: -

u® = 4% —esV(. (5.1)

Being consistent with the limiting case of flexural deformation, we neglect in
what follows the laminz. components u,g of the displacement vector. Respectively,
the transverse (flexura: displacement and the acceleration, due to the latter, are
given by

ot?

We consider an elastic material (called St-Venan-Kirchhoff material) whose
constitutive relations are linear regardless to the presence or absence of geometrical
‘non-linearity (see the thorough treatment of these materials in [2]). Without going
into much detail one can derive the following linear constitutive relations for the
averaged stresses and momenta in the middle surface:

m®? = —Db*P = —DVeVAC, (5.2)

2
WN=¢ = /aNds=€§—C.

where
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is the dimensionless stiffness coefficient, while D is the stiffness of shell. Alterna-

tively, under the same assumptions the constitutive relation for the moment stresses

can be postulated (see, [7]) and then the hypothesis of Kirchhoff-Love (5.1) is not

necessary. Furthermore, the overbar will be omitted without fear of confusion.
Introducing Eq. (5.2) into Cauchy equations we get

é 82(
e o0tz

where A =V, VY, AA =V, V¥ (V,.V*).

Now it is time to assess the length and time scales for which the momentum
stresses are important, i.e. when the shell is not essentially a membrane. These
scales are the ones for which the different coefficients in Eq. (5.3) are of the same
order. For the sake of brevity, let us consider the case V; = 0 when the normal load
1s absent. In fact, one can think that either the shell 1s a vast sheet, compressed
at its rims, or a sphere subjected to normal pressure. In the second case, part of
the membrane stress is balanced by V; and one can subtract V;g4 s from the term
kobap. As a result the normal pressure drops off from the equation and its sole role
is to create the uniform compression.

Thus the uniform membrane tension must be of order

l,c|—.D_hz.
0 _ﬂLS

= D[-AAC+ (vﬂvac)(vﬂvm(v“v’c)] +2ACHY,, (59

(5.4)

and the dimensionless time scale § = |kg|. Conversely, for a shell of given stiffness
and shear modulus Eq. (5.4) defines the length scale of the “shell-type” deforma-
tions when the uniform compression/dilation &y is selected. The governing equatlon
then reads

62(
ot

One sees that Eq (5.5) contains a very strong non-linearity — the cubic power
of the curvature of the deformation. In this way it looks very much like the Boussi-
nesq equation [1] being in fact a Boussinesq equation for the curvature A(, if the
middle surface is subjected to uniform dilation ko > 0. For the opposite case ko < 0,
when there is a uniform compression, it is more proper to be called anti-Boussinesq
equation.

= [~AAL + (VsVs0)(VPVLE)(VH V()] +sign(ko)A¢. - (5.5)

6. CONCLUSIONS

In the present paper a consistent asymptotic treatment of a 3D thin elastic
layer is attempted for the purposes of derivation of shell theory. The main small
parameter is the ratio between the thickness of the shell and the length scale of
* the deformation of the middle surface. No additional assumptlons such as “shal-
lowness” of the flexural deformation, are implied. For the “steeper” deflections the
geometrical non-linearity is ldentlﬁed and shown to be proportional to the cubic
power of the curvature of the middle surface. The equation for flexural deformations
turns out to be a Boussinesq-like equation.
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