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ESTIMATES FOR THE BEST CONSTANT
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We prove two-sided estimates for the best (i.e., the smallest possible) constant ¢ ()
in the Markov inequality
IPnllwe < cn(@)llpnllwe s Pn € Pn-

Here, Pp, stands for the set of algebraic polynomials of degree < n, wq(z) := x*e™ 7%,
a > —1, is the Laguerre weight function, and || - ||w, is the associated La-norm,

1llwa = (/Ow (@) Pwa () d:c)m .

Our approach is based on the fact that 052(a) equals the smallest zero of a polynomial
Qn, orthogonal with respect to a measure supported on the positive axis and defined by
an explicit three-term recurrence relation. We employ computer algebra to evaluate the
seven lowest degree coefficients of @, and to obtain thereby bounds for ¢y (a). This
work is a continuation of a recent paper [5], where estimates for ¢, (a) were proven on
the basis of the four lowest degree coefficients of Q.

Keywords: Markov type inequalities, Laguerre polynomials, three-term recurrence relation,
Newton identities, computer algebra.

2000 Math. Subject Classification: 41A17.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Throughout this paper P, will stand for the set of algebraic polynomials of
degree at most n, assumed, without loss of generality, with real coefficients. Let
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We () 1= ¥ e™*, where @ > —1, be the Laguerre weight function, and || - ||, be

the associated Lo-norm,

. = ([ 15@)Puao) dw>l/2 |

We study the best constant ¢, («) in the Markov inequality in this norm

1P llwe < en(@)lpnllw, P € Pa, (1.1)

namely the constant

/
cn(a) :== sup Hp"”w“.
Pn€Pn 120w,

Before formulating our results, let us give a brief account on the results known
so far.

It is only the case a = 0 where the best Markov constant is known, namely,
Turdn [9] proved that

BN
4n + 2) '
Dorfler [2] showed that ¢, () = O(n) for every fixed o > —1 by proving the
estimates

cn(0) = <2 sin

9 n? (202 4+ 5a+6)n a+6

@2 e s T e D@03  dardary Y
2 n(n+1)

cpla) < datl) (1.3)

see [3] for a more accessible source. In the same paper, [3], Dorfler proved for the

asymptotic constant
c(a) = lim cnla) (1.4)

n—oo n

that 1
(@) = ———, (1.5)
Ja—-1)/2,1
where j,1 is the first positive zero of the Bessel function J,(z) .

Nikolov and Shadrin obtained in [5] the following result:

Theorem A ([5, Theorem 1]). For all « > —1 and n € N, n > 3, the
best constant cy(a) in the Markov inequality (1.1) admits the estimates

204+ ) (=) _ o, (n+1)(n + 22
(a+1)(a+5) < ol <(a+1)[(a+3)(a+5)] v

where for the left-hand inequality it is additionally assumed that n > (o +1)/6.

(1.6)
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Theorem A implies some inequalities for the asymptotic Markov constant ¢(a)
and, through (1.5), inequalities for j, 1, the first positive zero of the Bessel func-
tion J, (see [5, Corollaries 1,3]). It was also shown in [5, Theorem 2] that
c(a) = O(a™1'), which indicates that the upper estimate for c¢,(a) in Theorem A,
though rather good for moderate «, is not optimal.

In a recent paper [7] Nikolov and Shadrin proved an upper bound for ¢, («)
which is of the correct order with respect to both n and « as they tend to infinity.

Theorem B ([7, Theorem 1.1]). For all n € N, n >3, the best constant
cn(@) in the Markov inequality (1.1) satisfies the inequality

. dn(n + 2 + Hefd)

(o o + 10a + 8

, a>2. (1.7

As a consequence of Theorem B and Doérfler’s lower bound (1.2) for ¢, («)
Nikolov and Shadrin showed that

n(n+a+3)

)= o @)

n>3 a>2.
Corollary C ([7, Corollary 1.1]). For all o > 2 and n > 3 the best
constant c,(a) in the Markov inequality (1.1) satisfies

2n(n+ o+ 3) 9

ot Dats S @@s

dn(n+ o+ 3)

(a+1)(a+8)’ (18)

In addition, Nikolov and Shadrin found the limit value of (o + 1)c2(a) as
a — —1, and proved asymptotic inequalities for ac?(a) as a — oco.

Corollary D ([7, Corollary 1.2]). The best constant c,(«) in the Markov
inequality (1.1) satisfies:

1
(i) lim (a4 1)c2(a) = U0HD.
a——1 2
.. 2n . 2
(i) 3 < alLIr;oac,L(a) <3n.

A combination of Theorems A and B implies bounds for ¢(a) defined in (1.4):

Corollary E ([7, Corollary 1.3]). The asymptotic Markov constant ¢(«)
satisfies

—l<a<a*,

1
2 2 a+1)/(a+3)(a+5)
(a+1)(a+5)<c(a)< ( +‘z et s)at?) o> o

a2 4+10a 4+ 8’
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where o ~ 43.4 .

The ratio of the upper and the lower bound for c¢(«) in Corollary E is less
than +/2 for all a > —1.

In this paper we investigate the best Markov constant c,(a) following the
approach from [5]. It is known (see Proposition 1 below) that c;?(a) is equal
to the smallest zero of a polynomial @, which is orthogonal with respect to a
measure supported on Ry . Since {Qn}nen are defined by an explicit three-term
recurrence relation, one can evaluate (at least theoretically) as many coefficients
of @, as necessary. With the assistance of Wolfram’s Mathematica we find the
seven lowest degree coefficients of the polynomial @, , and thereby the six highest
degree coefficients of R,, , the monic polynomial reciprocal to @,,. Then we apply
a simple technique for estimating the largest zero z, of R, on the basis of its k
highest degree coefficients, 3 < k < 6, thus obtaining lower and upper bounds for

c2(a). Our main result in this paper is:

Theorem 1. For 3 < k <6 and for all n > k, the best constant c,(a) in
the Markov inequality (1.1) admits the estimates

gn’k(a) <ep(a) <épi(a), a>-—1, (1.9)

where

2 n(n + 3(a+1))

Cnala) = (a4 1)(a+5)’ (1.10)
n n 2(a+1)
Cpala) = (D + )1/3, (1.11)
(a+ )[(a+3)(a+5)}
) (5 + 17) n(n + 3eH)
&l = S D13+ | (1.12)
22 () (5a+ 17)/4(n + 1) (n + 2eH) (1.13)
A (a+1)(a+3)12[2a+5)a+7)]"" '
) 2(7a + 31)n(n + 2L
Cns(e) (a+1)(a+9)(ba+17) ’ (1.14)
1/5 4(a 1)
,3’5(a _ (706+31) / (’I’L+ 1)(TL+ + ) o (115)
(o + )(a+3)2/5[(a+5)(a+7)(a+9)]
3 2 2(a+1)
2 o) = (210® + 29902 + 1391 + 2073)n(n + 22 (1.16)

(a+1)(a+3)(a+5)(a+11)(7Ta+31)

(2103 + 29902 + 1391a + 2073) /*(n + 1) (n + 22FD)
enole) = = ()
(a4 1)(a+3)12(a + 5)/3[(a + 7)(a + 9)(a + 11)]
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Remark 1. For 3 < k < 6, the pair (gnvk(a),én,k(a)) of bounds for ¢, (a)
is deduced with the use of the k highest degree coefficients of the polynomial R,
(and (1.11) is also proved in [5]). Generally, the bounds for ¢,(a) obtained with
larger k are better, though some exceptions are observed for small n and «.

Clearly, inequalities (1.9) imply bounds for the asymptotic Markov constant
c(a). Here, it is not difficult to prove that the larger k, the better the implied
lower and upper bounds for c¢(«), hence the best bounds for c(«) are obtained
from (1.9) with k =6.

Thus, Theorem 1 yields an improvement of the estimates for the asymptotic
Markov constant ¢(«) in Corollary E.

Corollary 1. The asymptotic Markov constant c(a) = lim n~!

Jim cn (@) satis-

fies the inequalities
c(a) < e(a) <¢(a),

where
2(a) = 210® 4 299a” + 1391a 4 2073
= " (a+ 1) (a+3)(a+5)(a+11)(Ta + 31)
and
(210% + 29902 + 1391a + 2073) /° oz
y asa,
e2(a) == { (a+1)(a+3)V2(a+5)3[(a+7)(a+9)(a+11)]"*
4 *
a2 4+10a+ 8’ @z

with o* ~ 172.

It is worth noticing that the ratio of the upper and the lower bound for c¢(«)
in Corollary 1 does no exceed % ~ 1.1547 for all o > —1.

Theorem 1, in particular inequality (1.16), implies an improvement of the lower
bound in Corollary D(ii).

Corollary 2. The best constant c,(«) in the Markov inequality (1.1) satisfies:

bn < lim aci(a) <3n.
o—r 00

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries. In Section 2.1 we characterize the squared best Markov constant as
the largest zero of an n-th degree monic polynomial R, with positive roots, and
propose a recursive procedure for the evaluation of its coefficients (Proposition 2).
Two-sided estimates for the largest zero of polynomials with only positive roots
in terms of few of their coefficients are proposed in Sect. 2.2 (Proposition 2.3).
The assisted by Wolfram’s Mathematica proof of our results is given in Section 3.
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In Section 4 we give some final remarks and conclusions, and formulate two con-
jectures concerning the asymptotic behavior of the best Markov constant and the
coefficients of the characteristic polynomial R, .

2. PRELIMINARIES

2.1. AN ORTHOGONAL POLYNOMIAL RELATED TO ¢, ()

It is well-known that the squared best constant in a Markov-type inequality
in Lo-norm is equal to the largest eigenvalue of a related positive definite n x n
matrix A, , thus the problem of finding the best Markov constant is equivalent to
evaluating the largest eigenvalue of A,. Perhaps, a less known fact is that for a
wide class of La-norms, the inverse matrix A, ! is tri-diagonal, see [1, Sect. 2].
In the particular case of the La-norm induced by the Laguerre weight function w,
this connection is given by the following proposition:

Proposition 1 ([3, p. 85]). The quantity c,%(a) is equal to the smallest
zero of the polynomial Qn(x) = Qn(x, ), which is defined recursively by

Qn+1($) - (.Z' - dn)Qn(x) - )‘iQn—l(x)7 n Z 0;
Q-1(z) =0, Qo(z):=1;

(0%
do:=1 dp =2+ —— >1;
0 —|—O[, n +n+17 n=1;

Ao > 0 arbitrary, )\i::1+g, n>1.
n

By Favard’s theorem, for any a > —1, {Q,(z,a)}>2, form a system of monic
orthogonal polynomials. Since @, is the characteristic polynomial of the inverse
of a positive definite matrix (which is also positive definite), it follows that all the
zeros of @, are positive (and distinct). Consequently, {@,}>2, are orthogonal
with respect to a measure supported on R .

By Proposition 1, we have

Quir@) = (¢ =2- —2)Qu(@) = (14 ) Quar(@). m=1, (1)

Qo(z)=1, Qi(z)=z—a—-1. (2.2)
If we write @, in the form
Qn(z) =2" —apn_1n P e D ao.n ,
then
aon = <n j; a> , n €Ng, (2.3)
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with the convention that the right-hand side is equal to 1 for n = 0. The proof is
by induction with respect to n. For n =0, 1, (2.3) follows from (2.2). Assuming
(2.3) is true for all m < n, we verify it for m =n + 1 by putting =0 in (2.1)
and using the induction hypothesis:

s = (2 ) (1) (1 D (111

_ Ly (n 14 a> |

n

_ Now, instead of {Q,};2, we consider the sequence of orthogonal polynomials
{Qn}22, normalized so that Q,(0) =1, n € Ny, i.e.,

n—+a«

() = 0" M), net.

n
It follows from (2.1) and (2.2) that {Qn}nen, are determined by
a N\ x a ~ ~
= - - > .
(14 57) @) = (2+ ) Qu(@) = Qua(@), =1, (24)

n+1
Qo(z) =1, Qi(z)=1- °

a+1"

(2.5)

Writing @n in the form
én(x) =1- Al,n T+ A2,n - + (*1)nAn,n "
and rewriting (2.4) as

_ n+1
Cn+a+l

n+1 ~

Qny1(%) = Qn(a) (@n(@) = Quor(@) + = #Qulx), neEN,

we deduce the following recurrence relation for the evaluation of the coefficients

{A'L,m} :

n+1 n+1
A; — Ay =————(As — Ajp — A, >k>1
7,n+1 i,Mn n—i—oz—i—l( ,Mm i,n 1)+n+a+1 1—1n n = 9 (2 6)
. 1 '
with Ag, =1 and A;; = arl

Since, by Proposition 1, ¢,%(a) is equal to the smallest zero of~@n , it follows
that ¢2(a) equals the largest zero of the reciprocal polynomial of Q, ,

Ru(z) = 2" Qn(1/x). (2.7)

The above observations allow us to reformulate Proposition 1 in the following
equivalent form:
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Proposition 2. The squared best Markov constant c2(c) is equal to the largest
zero of the polynomial

Ru(z)=a" — A1 0" P+ Ag 2™ 2 — o (1) Ay - (2.8)
The coefficients of R, are evaluated recursively by the following procedure:
L4 A1,1 = %_H ;
o Set Agym =1, m=0,...,n;
e Fori=1 ton:

1. Find the sequence {D; .} _;,_1 as solution of the recurrence equation

Dimy1 = #Z—lkl Djm + #Z—lkl Aicim (2.9)
with the initial condition D;; 1 =0;
2. FEvaluate .
Ain = Dim. (2.10)
m=i

2.2. POLYNOMIALS WITH POSITIVE ROOTS: BOUNDS FOR THE LARGEST ZERO

Let P be a monic polynomial of degree n with zeros {z;}%,,

n
P(z) = H(m —x)=a" = b " f by — 4 (1),

i=1

The coefficients b, = b.(P), » = 1,...,n, are given by the elementary sym-

metric functions of {x;}™
b, = sp = s.(P) = Z Xiy iy *** Ti, s r=1,...,n.
1<i1 <ip<-<ip<n

It is well known that the elementary symmetric functions {s,} and the Newton
functions (sums of powers of x;)

pT:pT(P):Zar:f7 r=1,2,3,...,

are connected by the Newton identities:

r—1
pr+ Z(_l)ipr—i si+(—1)'rs, =0, if 1<r<n, (2.11)
=1
n
prt D> (—1)'pr_isi =0, if > (2.12)
=1

62 Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 55-75.



For a proof, see e.g. [10] or [4].

Our interest in the Newton functions is motivated by the fact that they provide
tight bounds for the largest zero of a polynomial whose roots are all positive. For
any such polynomial P, we set

pr(P)
pe—1(P)’

with the convention that po(P) := deg(P).

0u(P) = u(P) = [pe(P)]Y*,  keN,

Proposition 3. Let P(z) =2 —bya" '+ bya" 2 — - 4+ (=1)" b1z +
(=1)"b,, be a polynomial with positive zeros x1 < x9 < -+ < xy, .
Then the largest zero x,, of P satisfies the inequalities

fk(P) §$n<uk(P), keN. (2.13)

Moreover, the sequence {{;(P)}%2, 1is monotonically increasing while the sequence
{ur(P)}32, is monotonically decreasing, and

lim £, (P) = lim ug(P) =z, . (2.14)
k—oo k—oo
Proof. For i =1,...,n—1, we set a; := £, then 0 < a; < 1. Now both

inequalities (2.13) and the limit relatlons (2. 14) readlly follow from the representa-
tions
ab+-+ak_ +1

0, (P) = Tn,  up(P)=(a¥4+---+ak | +1
k(P) k_1+ T K(P) = (a 1 +1)

l/k

The monotonicity of the sequence {¢;(P)};2, follows easily from Cauchy-
Bouniakowsky’s inequality. Indeed, we have

N k1) (3 gk
(S5 - (S5 2 (S t) (55,
whence p?(P) < pr—1(P) pr+1(P), and consequently

pi(P) < Pry1(P)
pr—1(P) = pr(P)

To prove monotonicity of the sequence {ux(P)}32, , we recall that 0 < a; <1
and therefore af“ < af . We have

0,(P) = = (41 (P).

( k+l+ +ak+1+1)1/(k+1)<( k+1+ +ak+1+1)1/k§ (a T +an 1+1)1/k

which yields
upt1(P) < up(P).
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3. COMPUTER ALGEBRA ASSISTED PROOF OF THE RESULTS

Here we give the algorithms, the source code and the results of the computer
algebra assisted proof of estimates (1.10)-(1.17) in Theorem 1. While the case
k =3 and to a certain extent k£ =4 could be studied by hand, it seems impossible
to provide similar calculations for larger k. We implement the idea from [5] for
estimating ¢, («) using k = 3 highest degree coefficients of the polynomial R, (z)
and with the assistance of Wolfram’s Mathematica v. 10 software we investigate
the cases k = 4,5,6, as well. Software based on the algorithms described below
failed with calculations for k& > 6.

Henceforth, we write the polynomial R,, from (2.7) and (2.8) in the form
Ro(x) = 2™ —bya™ '+ boa™ 2 4 4 (= 1), .

3.1. LOWER BOUNDS FOR ¢, («)

We apply Proposition 3 to estimate the largest zero x, = c2(a) of the poly-
nomial R, (z) from below,

Tn Z gk(Rn) = ]%7

and then with the help of computer algebra obtain a further estimation of the form

k=3,4,5,6,

lp(Rp) > en(n+o(a+ 1)),

with the optimal (i.e., the largest possible) constants ¢ = c¢(k) and o = o(k).

Algorithm 1  Estimating ¢, («) from below

Input: k€ {3,4,5,6} — the number of the highest degree coefficients of R, (x)

Step 1. Express the power sums pi_1(R,) and pi(R,) in terms of {b;}F_,

Step 2. Find coefficients {b;}¥_, in terms of n and a using Proposition 2

Step 3. Find a proper value o for parameter s in py — cn(n+ s(a + 1))pg—1,
where ¢ is the coefficient of n? in the quotient py/pr_1

Step 4. Represent the numerator of f =pr —cn(n+o(a+1))pg—1 in powers
of n and (a+1)

Step 5. Estimate from below the expression f to prove that f >0

Step 1: Let {z;}?, be all the zeros of the polynomial R, (x) from (2.7). In

order to express a power sum p, =y .z}, 1 <r <n, by {b;}/_;, we apply the
direct formula

by 1 0 o 0
2by b 1 -0
pr = |3b3 Do bp - 0
’f‘br bT,1 br72 bl
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which easily follows from the Newton identities (2.11).
Below is the code of the programme and the results for k=1,...,6:

k =6;
Do[py = Det[Table[Which[j == 1,ib;, 1 <j<1i, by, j==i+1 1 j>i+1 0], {i, «}, {j, «}]];
Print[Subscript['p’, «], =", TraditionalForm[p,]], {x, k}]

p1=b

p2=bi-2by

p3=b:f—3h2 /)] +3 b3

pqib[f—4b2b%+4b3 b1+2b%—4b4
p5=b?—5h2h%+5b3b%+5b%b1—5/)4/)1—5b2h3+5b5

pgib?—6b2b1‘+6b3 b%+9b%b%—6b4b%—12bzb3 b]+6b5b1—2b%+3b§+6b2b4—6b6

Step 2: We find coefficients {b;}%_, of the polynomial R, (z) using Proposi-
tion 2. The source and the results for £k =1,...,6 follow below:

k=6;
fblk_,n_]:=
If[« == 1, Sum[FullSimplify[RSolveValue[{ru[q + 1] = (ru[q] +1) (q+1)/(q+1+ @), ru[1] = 1/ (¢ + D}, ru[q], ql], {q, 1, n}],
Sum([Simplify[RSolveValue[{rv[q +1] == (rv[q] + fb[k -1, q]) (q+1)/(q+1+ @), rv[1] == 0}, tv[q], q]], {q, 1, n}]]
Do[If[k == 1, b, = fb[k, n],
by = Factor[Part[FactorTermsList[ Numerator[fb[, n]], @], 2]] *
Collect[Part[FactorTermsList[Numerator[fb[, n]], @], 3], n, FullSimplify]/ Denominator{fb[, n]]];
Print[Subscript['b’, «], =", TraditionalForm[b,]], {«, 1, k}]

nn+1)

]=2(a/+1)
(n=Dnm+1)GBn(@+2)+2 (@+6))
)=

24 (a+1)(@+2) (@+3)
(n=2)(n=1)n(n+1)(5(@+2) (@+4) n? + (e (5 @+ 86) +200) n+ 12 (a +20))

) 240 (@+ 1) (@+2) (@+3) (@+4) (@+5)

by=((n—3) (n=2) (n— D) n (n+1) (105 (@ +2) (@ +4) (@ +6) * + 3 (a (7 @ (5 @ +204) + 9316) + 15 120) n?
+(131040 -2 @ (7@ (5 @ +44) - 17244)) n— 8 (a (7 @ (@ +28) +2244) - 15 120))) /
(40320 (@ +1) (@+2) (@ +3) (@ +4) (@ +5) (@ +6) (@ +7))
bs=((n=4) (n=3) (n=2) (n= D) n(n+1) (21 (@+2) (@ +4) (@ +6) (e +8) n*
+2 (a (@ (7 a (@+108)+9956) +42928) + 56 448) n® + (a (o (17988 — 7 a (7 @ +212)) + 248 496) + 572 544) n?
+(1241856 -2 @ (e (@ (21 @+ 1096) +26 468) — 34 832)) n — 240 (a (o (@ + 38) + 1528) — 4032))) /
80640 (@+ 1) (@+2) (@+3)(@+4) (@+5) (@+6) (a+7) (@+8) (@+9))
be=((n—5) (n=4) (n-3) (1=2) (n—Dn(n+1)
(3465 (@ +2) (@+4) (@ +6) (@+8) (+10) n* +360 (13 @ (11 @ (@ (7 a + 164) + 1348) + 49 936) + 739 200) r*
+9 (@ (131884640 — 11 a (a (35 a (5 ar+278) — 10 644) — 1 805 704)) + 229 152 000) >
-8 (a(11a (@ a@28a+2685)+620812)+2759292) - 220067 280) — 964 656 000) n>
+44 (@ (@ (@ (5 @ (35 @+ 1014) — 37 756) — 20 283 336) — 53 575 200) + 315 705 600) n
+96 ( (11 o (@ (5 @ (@ +66) + 7714) + 237 564) — 62 191 440) + 99 792 000))) /
(159667200 (@ +1) (@ +2) (@+3) (@+4) (@+5) (@ +6) (@+7) (@+8) (@+9) (@+10) (@ +11))

Step 3: The quotient py/pr—1 is a quadratic polynomial in n, and we denote
by ¢ its leading coefficient.

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 55-75. 65



The goal of this step is to find a proper value (say o) for parameter s in the
expression
fs=pk—cn(n+s(a+1))pe-1,
such that f, > 0 for all admissible @ and n. For a fixed k quantity fs; depends

on o, n and s. It is a polynomial of degree 2k — 1 in n and a rational function
in «. Let us write the numerator of fs in the form

2k—1 d
S hig(s)(a+ 1) IR
i=1 j=0

The highest order coefficients in 3~ y1; (s)(a + 1)4=7 are linear functions in s of
the form A; — B;s, with A; > 0 and B; > 0. We denote their zeros by s; for each
i and set ¢ = min; s;. Since we seek estimates valid for all @ > —1, our choice of
o guarantee that for a sufficiently large the inequality 3, p; ;(s)(a + 147 >0
holds true.

The code is as follows:

r = PolynomialQuotient[py, pk-1, n;

¢ = Factor[Coefficient[r, n, 2]];

fs =pk—cn@m+s(@+1) pr-i;

numfs = Numerator[Together[Apart[fs, a]]]

Do[gs = Factor[Coefficient[numfs, n, i]];
num = Normal[Series[ gs, {e, -1, Exponent[gs, a]}];
sols = Solve[Coefficient[num, @, Exponent[gs, @]] == 0, s, Reals];
ss[i] = s /. Flatten[sols], {i, 2k -1, 1, —1}]

o = Min[Table[ss[i], {i, 2, 2k - 1}]];

Table 1 gives results for the optimal values of ¢ and o for k = 3,4,5,6.

Table 1: The optimal values of ¢ and ¢ in the lower bounds for ¢ ().

k c o
3 2 3
@t Dia+s) s

A Sa+ 17 8
2+ 1)(a+3)(a+7) 25
. 2(7a+ 31) 25
(a+1)(a+9)(ba+ 17) 84

21a3 + 29902 + 1391a + 2073 2
(a+1)(a+3)(a+5)(a+ 11)(7a + 31) 7

Step 4: We set

f=pr—cnn+ola+1))pr_1 = 8015)7(1;3)
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with ¢ and o determined in Step 3. Here, ¢(n,«a) is a bivariate polynomial in n
and «, and () is a polynomial in «. More precisely, ¢(n,a) has degree 2k —1
in n, and degree d in « which our programme calculates for each fixed k.

Note that ¥(a) > 0 for @ > —1 since it is a product of powers of a + j,
j > 1 and multipliers Ao+ B, 0 < A < B. Therefore, sign f =signe.

We expand ¢(n,a) in the form

n2k—1 T (o + 1)(1
2k— d n2k—2 (a + 1)(1—1
S 5D SITTREITE A Ll IV R
i=1 j=0 : :
n 1

2k—1,d . .
where M = (ui’j)i:17j20 and all entries p; ; are integer numbers.

The source for computation of the matrix M is listed below.

f=pk—cnm+o (@+1) pr-i;

¢ = Numerator[Together[Apart[f, a]]];

¥ = Denominator[Together[Apart[f, ¢]]];

Do[g = Factor[Coefficient[¢, n, i]]; dag[i] = Exponent[g, o], {i, 2k—-1,1, —1}]

d = Max[Table[dag][i], {i, I, 2k-1}]] +1;

u = ConstantArray[0, {2k -1, d}];

Do[g = Factor[Coefficient[y, n, i]];
Table[u[[2 k-1, d—j]] = SeriesCoefficient[Series[g, {@, —1, dag[il}], jl, {j, 0, dag[il}],
{i,2k-1,1, -1}];

If pi; >0 forall 4,j, then p(n,a) >0 and f >0 forall @« > —1 and n > k.
In a case some of coefficients p; ; < 0 we apply the next step of the algorithm.

The results for k = 3,4,5,6 are given together with the estimates from Step 5.

Step 5: If there are coefficients p; ; < 0 we need additional arguments to verify
that f >0 for all @ > —1 and n > k. We bring into use a new (2k—1) x (d+1)
matrix A which elements we put initially X;; := p;;, for ¢ =1,...,2k —1 and
j=0,...,d.

The procedure described below checks recursively all coefficients A;; and
makes the corresponding estimations. We need not introduce a new matrix af-
ter each iteration, but only replace a pair of elements in a column of A with new
entries in such a manner that the value of the function

n2k—1 T (a_|_ 1)d
n2k—2 (a + 1)d—1
A .

2k—1 d
D(A) = Z D Nijla+ 1) =
i=1 j=0

n 1

decreases. At the end of the procedure we get a matrix A satisfying 0 < A <M
(in the sense that 0 < \; ; < p; ; for all 4,5 ) and therefore

0<P(A) <OM) = ¢(n,a).
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Suppose that \; ; < 0 for some pair of indices 7,j. Then we set

i
hi=min{i —n:A,; >0, 1<n<i—1} and §:=-_-"2 (§<0).

Li—h
If \pj +62>0, for n >k we have
2%k—h 2k—i Nij . 2k—h 2k—h n?kh
(Anj + ™" +0n 71:()‘h7j+ki7—dh)n = AT Ao
<\ 2Ry, 4n2k7h — o\, 2Ry 2k
< Apgn T AR T A + A gnT

Otherwise, if Ay ;40 <0, for n >k we have
Oanfh + (Ah,jkiih =+ )\i,j)anii _ Ah,jn2k7iki7h + Ai,jnzkii
< )\hd-n%*ini*h +>\i,jn2k7i
S Ah,ankih + )\i’ankfi )
So, replacing only two elements in A |
Ahj = Anj + [0] and A;;:=0, ifA,;4+62>0,
)\i,j = >\h,j kb 4 )\7;7]' and )‘h,j =0, otherwise ,
we obtain that
Ao+ 1)d+1—jn2k—h + Ao+ 1)d+1—jn2k—i

decreases for the new values of A, ; and A;;, and hence ®(A) also decreases.

Applying recursively the above iteration process for i = 2k — 1,2k —2,...,1
and j = 0,1,...,d we finally obtain a matrix A satisfying 0 < A < M. Then
p(n,a) >0, f >0 and therefore

Pk
Pk—1

P () >

n

>cn(n+o(a+1))

for the optimal ¢ and o evaluated in Step 3. For k£ = 3,4,5,6 we obtain estimates
(1.10), (1.12), (1.14), and (1.16), respectively.

The following source implements the procedure described in Step 5.

A=
For[i=2k-1i>1i——,
Forlj = 1,j < d, j++, HA[[i, jl] = 0, Continue[]];

h = i First[FirstPosition[Positive[A[[i—1;; 1;; =1, jI]], True]];

0 = Al j1I/ &G -h));

H[A[Th, j11+6 = 0, A[[h, 11 = Al[h, 11 + Floor[d]; A[[3, j1I = 0,

ALl §11 = Allh, j11« k™G =h) +A[[ j10; Alth, 1= 0,1 =i+1]]]

Print['A =", MatrixForm[A]]
Print['M = ', MatrixForm[u]]
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Next, we give matrices M from Step 4 and A from Step 5 obtained with
Mathematica.

Case k=3:

This partial case needs a special attention as we have to assume strict inequality
n >k, ie., n >4, to obtain estimate (1.10). This causes a minor modification in
Step 5 of Algorithm 1, namely, replacement of k=" with (k + 1)"~". Namely, we
determine 0 := \; ;/(k+1)""" and set

Ahj = Anj + [0] and A;;:=0, ifAp;4+02>0,

o _ i—h . e :
Xiji=Apj(k+1)""+ X ; and Ap;:=0, otherwise.
Matrices M and A in this case are
0 4 —4 225 360 0 19 —4 225 360
0 0 39 510 720 0 —60 390 510 720
A=| 15 155 205 1185 360 M=| 15 155 205 1185 360
15 270 495 900 0 15 270 495 900 0
0 36 684 0 0 0 3 684 0 0

Although there is a negative element of A, from 4(a +1)? —4(a + 1) +225 > 0
for all @ > —1 we conclude that 4(a+1)% —4(a+1)? +225(a+ 1) +360 > 0 and
consequently ®(A) >0 for n > 4.

By a direct verification one can see that inequality (1.10) holds also in the case
n==k=3.

Case k=4:

0
0 4882
0 0
2100 46515
2756 106120
0 11060
0 0

0

0 0

10200
30891
229110
120645
876330
662604
0

10200

72480
359695
1642830
2404465
2582090
2653840
1120600

72480

323700
2625259
6282570
10159765
7616630
6215776
4777900

323700

1413060

7966210
16699200
20026720
17567550
11121880

3435000

1413060

3602340
13275570
24837120
25810890
18060000

7413000

0

4340700
12707100
18692100
16625700

6300000

0
0

3602340 4340700

1890000
5670000
5670000
1890000

0

0

0

1890000

0 8715
0 —15330

2100 46515

2800 106120

0 15960

30891
229110
120645
876330
722904

359695
1642830
2404465
2582090
2653840

2625259
6282570
10159765
7616630
6215776

7966210
16699200
20026720
17567550
11121880

13275570
24837120
25810890
18060000
7413000

12707100
18692100
16625700
6300000
0

5670000
5670000
1890000
0
0

—700

k=5:

0 0 0

0 0 91665

0 19824 130578

0 0 1451982
3675 128835 0

02!

0

0

0

Case

6027 381850 6416795
52297 5062484

0 0

0 0

0 0

—19600

64925
1204470
3408188

16288020
24490445
22404550
58263912
15084950

0

64

—241200 1120600

1064665
9699090
48487642

114900450
226233910
169885205
213196158
144208510

8138830
71280390
313463920
672910770
991504675
1005110890
589342950
409403975

4777900

43256150
373661895
1271550350
2546690160
3153540110
2985302145
1804792500
1057769610

3435000

0

172898565 474925185
1241223900
3522779568
6152610870
7169071245
5744010510
3787471002
1931913900

0 256255650 690284700 417538800 0

925

1064665

0 91665

M=

0

0

0 27804

0 —39900
3675 128835
6125 381850

0 77616
—2450 —123445

0 —15750

130578
1500030
—240240
6416795
5699022
—3055430
—636300
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1204470
3408188
16288020
24490445
22404550
58263912
20292530
—26037900

9699090
48487642
114900450
226233910
169885205
213196158
152590030
—41907600

8138830
71280390
313463920
672910770
991504675
1005110890
589342950
409403975

43256150

172898565

474925185

0

805850640

0
0

805850640

0

734423760 266716800

0 0
0 0
0 0

734423760

373661895 1241223900

1271550350
2546690160
3153540110
2985302145
1804792500
1057769610

3522779568
6152610870
7169071245
5744010510
3787471002
1931913900

256255650 690284700 417538800

2610599670
6544523790
9859721760

3473555400 2804336640
7686433440 5117787360
10218685680 5871579840

10.

9013742640

7716554370

4038237000

1309770000
0

Math and Inf., 104, 2017, 55-75.

5584488840 1111320000
1770703200 0

0 0

0 0

2610599670 3473555400 2804336640 1066867200
6544523790 7686433440 5117787360 1600300800
9859721760 10218685680 5871579840 1066867200
10438959825 9013742640 3935025360 266716800
7716554370 5584488840 1111320000 0
4038237000 1770703200
1309770000

266716800
1066867200
1600300800
1066867200

266716800

0

0
0
0

69



Case k=6:

0 0 0 0 48510 95223

0 0 0 0 16170
0 0 0 425810 0 2817045 9741270 1348462 0 0 1252020
0 0 3476550 6110115 48434732 0 336258384 218861747 0 0 38848656
0 6055665 95465370 190273710 1221447150 1171139970 2726237052 7298343195 0 0 1158647028
3128160 204553195 1480047030 5336244870 15771654360 0 0
116263280 3318028175 1 0 0
1988081620 1551387171180 2562636437130 0
21102099620 0 0 0
AT = 64463871381756 25413887653770
179681190528840
13493 317406347163180 5 5
1 160 127817022168000 27594339093216
30888195414300 211221314490186 667161153364860 1 6 7959911420160
1 201 137 7880 227021138467200 33927611477760 0
0 0
60744201708960 1200 63688771238400 0 0 0
143165195712000 151 0 0 0 0
6337191168000 31685955840000 6337191680000 6337191680000  31685955840000 6337191168000 0 0 0 0 0
0 0 0 0 0 48510 97020 0 64680 0 16170
0 0 0 544005 709170 2817045 9741270 2279970 5453910 810810 1252020
0 0 3476550 6110115 51415980 17887485 336258384 259149660 233284590 50657310 38848656
0 6055665 95465370 190273710 1221447150 1171139970 2726237052 7522825695 627553080 4316051520 1158647028
3128160 204553195 1480047030 5336244870 15771654360 1628131756 5517429876
116263280 3318028175 672486 1
1988081620 1551387171180 2562636437130 568697131530 1107182700456
21102099620 0 =
MT = 64463871381756  64790433176084 0 1386627217054:
179681190528840
1 317406347163180 182484813042840 861
1 160
30888195414300 211221314490186 667161153364860 7959911420160
201 1371614133582000 691021013177880 227021138467200 33927611477760 0
3 0 0
607: 10455 1200 63688771238400 0 0 0
000 1 151 0 0 0 0
6337191168000 3168595584000 6337191168000  63371911680000 3168595584000 6337191168000 0 0 0 0 0

3.2. UPPER BOUNDS FOR ¢, (o)

We apply Proposition 3 to estimate the largest zero z, = c¢2(a) of the poly-
nomial R, (z) from above,

Ty < uk(Rn) :pk(Rn)l/kv k= 37 47 57 6.

Then with the assistance of computer algebra we obtain a further estimation of the
form

uk(Ry) < ¢ (n+1)(n+ o(a+1)),

with the optimal (i.e., the smallest possible) constants ¢ = ¢(k) and o = o (k).

The algorithm is analogous to Algorithm 1, and the code has only a few dif-
ferences which are specified later.

Algorithm 2  Estimating ¢, («) from above

Input: k€ {3,4,5,6} — the number of the highest degree coefficients of R, (z)
Step 1. Express the power sum py(R,) in terms of {b;}*_;
Step 2. Find {b;}}_; in terms of n and « using Proposition 2
Step 3. Find a proper value o for parameter s in the expression
c(n+1)¥(n+s(a+1))* —pr, where c is the coefficient of n?* in py
Step 4. Represent the numerator of f =c(n+ 1)*(n+o(a+ 1))k — py
in powers of n and (a+ 1)
Step 5.  Estimate from below the expression f to prove that f >0

Step 1: The same as in Algorithm 1.
Step 2: Identical to that in Algorithm 1.
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Step 3: The only differences with Algorithm 1 are that we set ¢ to be the
coefficient of n?* in p, and

fo=cn+1D*n+s(@+1)* —px.

The highest order coefficients in -, p1; j(s) (e + 1)4=7 are functions in s of the
form A;s¥ — B;, with A; > 0 and B; > 0. We denote their non-negative zeros by
s; for each ¢ and choose o = max; s; .

The results for k = 3,4,5,6 obtained by symbolic computations are given in
Table 2.

Table 2: The optimal values of ¢ and ¢ in the upper bounds for c2 ().

k c o
; 1 %
(a+1)3(a+3)(a+5) 5

4 da + 17 3
2@+ 1)*Ha+3)2(a+5)(a+T) 7

5 (T + 31) 4
(a+1)°(a+3)*(a+5)(a+7)(a+9) 9

210 4 299a? 4 1391ar + 2073 5
(a+1D)(a+3)3(a+5)2(a+ T (a+9)(a+11) 11

Step 4: With ¢ and o determined in the previous Step 3 we set

p(n, a)
Y(a)

The rest of the source has no difference with Step 4 of Algorithm 1.

f = C(Tl+ 1)k(n+g(a+ 1))k —pp =

Step 5: The same as in Algorithm 1. Using the same recursive procedure we
find a matrix A satisfying 0 < A <M. Then ¢(n,a) >0, f >0 and therefore

Rla) <pp <cn+1)*n+o(a+1))F
for the corresponding ¢ and ¢ evaluated in Step 3. For k = 3,4,5,6 we obtain
estimations (1.11), (1.13), (1.15), and (1.17), respectively.

The matrices M from Step 4 and A from Step 5 obtained with Mathematica
are given below.

Case k= 3:
0 0 0 1500 3300 0 0 0 1500 3300
0 115 1885 4170 4233 0 115 1885 4170 4650
A=| 32 598 3026 6360 0 M= | 32 598 3026 6360 —600
9 979 2143 850 0 96 979 2143 1560 —1950
9% 624 1098 0 0 9% 624 1098 —2130 0

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 55-75. 71



Case k=4:

0 0 0 0 905520 8808240 29717520 41571600 19756800
0 0 54390 2038890 16676660 60285680 115770830 117031110 48774600
0 42294 1237572 10966494 52723608 141477042 198565500 127823850 24194362
A=| 6075 266115 3694950 25364010 85166735 157047575 154257320 46893642 0
24300 617510 5700800 26734470 72437020 97039330 34815501 0 0
36450 678780 4979940 16392810 28823750 17907835 0 0 0
24300 360421 2131108 6792156 5246162 0 0 0 0
0 0 0 0 905520 8808240 29717520 41571600 19756800
0 0 54390 2038890 16676660 60285680 115770830 117031110 48774600
0 42294 1237572 10966494 52723608 141477042 198565500 127823850 27783000
M= | 6075 266115 3694950 25364010 85166735 157047575 154257320 52558380 —11730600
24300 617510 5700800 26734470 72437020 97039330 38636640 —18088350 —10495800
36450 678780 4979940 16392810 28823750 20280800 —12849340 —18282390 0
24300 360421 2131108 6792156 5246162 —9491857 —9740850 0 0
Case k=5:
0 0 0 0 0 85424220 1436596560 8988832440 26097558480 34662943980 16203045600
0 0 0 4261005 260814330 3617057430 22250151630 73071107235 134891273160 134642808090 56710659600
0 0 5436720 241567920 3235204800 22246774740 91003127400 223063050420 312360753600 222393230640 64812182400
0 1982358 88937982 1392482448 12340605438 63755213760 194677526736 357163148790 375802372260 186521488020 12638375568
A= 200704 14563010 340432890 544 5294 994! 8208 241. 48 338611016520 235926284580 44541786567 0
1003520 42390775 693405300 6004806185 31876009900 96870254355 175080003840 176585507595 54286938720 0 0
2007040 63580160 829630410 22495811450 57112266330 77686343280 30853075478 0 0 0
2007040 52428341 568553244 3375204826 9950248616 17535199185 13032227178 0 0 0 0
1003520 22758400 207566490 998218460 3486984100 3092469120 0 0 0 0 0
0 0 0 0 0 1 40 26097558480 34662943980 16203045600
0 0 0 4261005 260814330 3617057430 22250151630 73071107235 134891273160 134642808090 56710659600
0 0 5436720 241567920 3235204800 22246774740 91003127400 223063050420 312360753600 222393230640 64812182400
0 1982358 88937982 1392482448 12340605438 63755213760 194677526736 357163148790 375802372260 186521488020 16203045600
M= 200704 14563010 3. 544 5294 994! 08 241 338611016520 235926284580 51689001420 —16203045600
1003520 42390775 85 318 355 1' 176585507595 59214803760 31849915230 8101522800
2007040 63580160 829630410 5638883530 22495811450 57112266330 77686343280 32878980540 21278795580 —19430795160 0
2007040 52428341 568553244 3375204826 9950248616 17535199185 14090589072 —8987585040 —16802648100 0 0
1003520 22758400 207566490 998218460 3486984100 3092469120 5291809470 —5709701340 0 0 0
Case k=6:
. sz
D 19301411805553332
; f
SEATISM0ONTED) SATTIASI3 SRR TASTIRATETIORND 3 H H
0 . . . . coro  mewre mesew e s
o . i
M
; s e
1 13 100639 5675 0

4. CONCLUDING REMARKS

1. In our computer algebra approach for derivation of bounds for the best
Markov constant ¢, (a) we perform some optimization with respect to parameter s.
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Our motivation for searching lower bounds for ¢Z(a) with a factor depending on
n of the special form n(n+ o(a+ 1)) is Corollary D(ii).

An interesting observation about the lower bounds ¢, () in Theorem 1 is
that they imply

kn . 2 . 2
= < <k<
P algnéoagn’k(a) _alirréoacn(a), 3<k<6
(the lower bound in Corollary 2 follows from the case k& = 6). This observation
and Proposition 3 give rise for the following

Conjecture 1. The best Markov constant ¢, («) satisfies:

. 2
ah_}rréo ac,(a)=n.

We also performed a search for lower bounds for ¢2(a) with a factor depending
on n of the form (n+1)(n+o(a+1)). Such a choice is reasonable, as the resulting
lower bounds preserve the limit relation in Corollary D (i). The optimal value then
is 0 = —1/3 (the same for all k, 3 < k < 6), and we obtain lower bounds as in
Theorem 1 with n(n+o(a+1)) replaced by (n+1)(n—(a+1)/3) . These lower
bounds make sense only for n > (a+1)/3, and are better than those in Theorem 1
only for « close to —1.

2. The bounds (c,, (@), Enk(a)) (3 <k < 6) in Theorem 1 imply bounds
(g (), ux(c)) (occurring in the middle columns of Tables 1 and 2) for the asymp-
totic Markov constant c(a), and the bounds deduced with a larger k are superior.
While the lower bounds £ () are of the correct order O(a™!) as a — oo, for the
upper bound wug(a) we have uy (o) = O(a~1t3F) as o — oo, (3 <k < 6). The

ratio

pr(a) == Z:((z)) , 3<k<6,

tends to 1 as a — —1, which indicates that for moderate o the bounds ¢ («)
and wug(«) are rather tight. This observation is clearly seen in the particular case
a = 0, where, according to Turén’s result, we have ¢(0) = % . We give the lower
and the upper bounds for ¢(0) and the overestimation factors in Table 3.

3. Another interesting observation, concerning the coefficients of R,, inspires
the following

Conjecture 2. For every fixed k € N, the coefficient b, , n > k, of the
polynomial R, (z) =a™ —by 2" ' 4+ by a2 — -+ (=1)" by, , satisfies

n2k

T (at 1) (at2k—1) +O(n*h). (4.1)

bk,n

Conjecture 2 is verified with our computer algebra approach for 1 < k < 6,
but so far we do not have a proof for the general case. Having (4.1) proved,
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we could try to find the explicit form of d, the coefficient of n?* in Newton’s
function pg(R,), and consequently to obtain two sequences {¢;} and {uy} defined
by £x = +/di/dr_1 and up = %/d) which converge monotonically from below and
from above, respectively, to c(«), the sharp asymptotic Markov constant.

Table 3: The lower and the upper bounds for the asymptotic Markov constant ¢(0)
and the overestimation factors.

<(0) uk(0)
k (0 0
k( ) uk( ) ék(o) C(O)
3 2 ~ 0.63245553 ¢/ ~0.63677321  1.006584242 1.00024103
4 17 ~ 0.63620901 V) b & 0.63663212  1.00064564  1.00001939
62 o/ 31
5 22 ~0.63657580 '/ 5ok ~ 0.63662085  1.00006906  1.00000170

(=)

2073 0.63661494 7/ 223 ~ 0.63661987  1.00000757  1.00000015

Although the ratios pr, 3 < k <6, satisfy pr(a) = 00 as a — oo, they grow
rather slowly. For instance, pg(a) < 2 for « < 140000, see Figure 1.

Pe(@)
2.0 5

S Iy S S A R U
20000 40000 60000 80000 100000 120000 140000

Figure 1: The graph of pg(a) < 2.
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