годишник на софийския университет _"св. климент охридски_"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Tom 104

ANNUAL OF SOFIA UNIVERSITY "ST. KLIMENT OHRIDSKI"

FACULTY OF MATHEMATICS AND INFORMATICS Volume 104

RIEMANN HYPOTHESIS ANALOGUE FOR LOCALLY FINITE MODULES OVER THE ABSOLUTE GALOIS GROUP OF A FINITE FIELD

AZNIV KASPARIAN, IVAN MARINOV

The article provides a sufficient condition for a locally finite module M over the absolute Galois group $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ of a finite field \mathbb{F}_q to satisfy the Riemann Hypothesis Analogue with respect to the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$. The condition holds for all smooth irreducible projective curves of positive genus, defined over \mathbb{F}_q . We give an explicit example of a locally finite module, subject to the assumptions of our main theorem and, therefore, satisfying the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$, which is not isomorphic to a smooth irreducible projective curve, defined over \mathbb{F}_q .

Keywords: ζ-function of a locally finite G-module; Riemann Hypothesis Analogue with respect to the projective line; finite unramified coverings of locally finite $\mathfrak{G}\text{-modules}$ with Galois closure.

2000 Math. Subject Classification: 14G15, 94B27, 11M38.

1. INTRODUCTION

A set M with an action of a group G will be called a G-module. Most of the time we consider modules over the absolute Galois group $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ of a finite field \mathbb{F}_q .

Definition 1. A $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module M is locally finite if all \mathfrak{G} -orbits on M are finite and for any $n \in \mathbb{N}$ there are at most finitely many \mathfrak{G} -orbits on M of cardinality n.

The cardinality of a $\mathfrak{G}\text{-orbit Orb}_{\mathfrak{G}}(x), x \in M$ is referred to as its degree and denoted by deg $Orb_{\mathfrak{G}}(x)$.

The smooth irreducible projective curves $X/\mathbb{F}_q \subseteq \mathbb{P}^n(\overline{\mathbb{F}_q})$, defined over a \mathbb{F}_q are examples of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules.

Definition 2. If M is a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module then the formal power series

$$
\zeta_M(t) := \prod_{\nu \in \text{Orb}_{\mathfrak{G}}(M)} \left(\frac{1}{1 - t^{\deg \nu}} \right) \in \mathbb{C}[[t]]
$$

is called the ζ -function of M.

By its very definition, $\zeta_M(0) = 1$. In the case of a smooth irreducible curve $X/\mathbb{F}_q \subseteq \mathbb{P}^n(\overline{\mathbb{F}_q})$, the ζ -function $\zeta_X(t)$ of X as a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ module coincides with the local Weil ζ -function of X. We fix the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a basic model, to which we compare the locally finite $\mathfrak{G}\text{-modules }M$ under consideration and recall its ζ-function

$$
\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) = \frac{1}{(1-t)(1-qt)}.
$$

Definition 3. If M is a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module then the ratio

$$
P_M(t):=\frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)}
$$

of the ζ -function of M by the ζ -function of $\mathbb{P}^1(\overline{\mathbb{F}_q})$ is called briefly the ζ -quotient of M. We say that M has a polynomial ζ -quotient if $P_M(t) \in \mathbb{Z}[t]$ is a polynomial with integral coefficients.

A locally finite $\mathfrak{G}\text{-module }M$ satisfies the Riemann Hypothesis Analogue with respect to the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$ if M has a polynomial ζ -quotient

$$
P_M(t) = \sum_{i=0}^{d} a_i t^i = \prod_{i=1}^{d} (1 - \omega_i t) \in \mathbb{C}[t]
$$

with $|\omega_i| = \sqrt[d]{|\omega_1| \dots |\omega_d|} = \sqrt[d]{|a_d|}, \forall 1 \leq i \leq d.$

In order to explain the etymology of the notion, let us plug in q^{-s} , $s \in \mathbb{C}$ in the ζ -function $\zeta_M(t) = \zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) \prod_{i=1}^d$ $\prod_{i=1} (1 - \omega_i t)$ of M and view

$$
\zeta_M\left(q^{-s}\right) = \frac{\prod_{i=1}^d (q^s - \omega_i)}{q^{sd - 2s + 1}(1 - q^s)(1 - q^{s-1})}
$$

as a meromorphic function of $s \in \mathbb{C}$ with poles $2\pi i \mathbb{Z} \cup (1 + 2\pi i \mathbb{Z})$. If $\lambda :=$ $\log_q \sqrt[q]{|a_d|} \in \mathbb{R}^{\geq 0}$ then M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ exactly when the complex zeros $s_o \in \mathbb{C}$ of $\zeta_M(q^{-s})$ have $\text{Re}(s_o) = \lambda$. All smooth irreducible curves $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$ satisfy the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ by the Hasse - Weil Theorem (cf. [1] or [2]). Namely, $P_X(t) = \frac{\zeta_X(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \prod_{i=1}^{2g}$ $\prod_{i=1}^{n} (1 - \omega_i t)$ with $|\omega_i| = q^{\frac{1}{2}}$, $\forall 1 \leq i \leq 2g$, which is equivalent to $\text{Re}(s_o) = \frac{1}{2}$ for all the complex zeros $s_o \in \mathbb{C}$ of $\zeta_X(q^{-s})$. That resembles the original Riemann Hypothesis $Re(z_o) = \frac{1}{2}$ for the non-trivial zeros $z_o \in \mathbb{C} \setminus (-2\mathbb{N})$ of Riemann's ζ -function $\zeta(z) := \sum_{n=1}^{\infty}$ $\frac{1}{n^z}$, $z \in \mathbb{C}$.

The present article translates Bombieri's proof of the Hasse - Weil Theorem from [1] in terms of the locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -action on $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ and provides a sufficient condition for an abstract locally finite $\mathfrak G$ -module M to satisfy the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. Grothendieck has classified the finite etale coverings of a connected scheme by the continuous action of a profinite group on their generic fibre (see [3]). In analogy with his treatment, we introduce the notion of a finite unramified covering of locally finite $\mathfrak{G}\text{-modules}$ and study the deck transformation group of such a covering. One can look for an arithmetic objects A , whose reductions modulo prime integers p are locally finite $Gal(\overline{\mathbb{F}_p}/\mathbb{F}_p)$ -modules and study the global ζ -functions of A. Another topic of interest is the Grothendieck ring of a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module and the construction of a motivic ζ-function. Our study of the Riemann Hypothesis Analogue for a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module is motivated also by Duursma's notion of a ζ -function $\zeta_C(t)$ of a linear code $C \subset \mathbb{F}_q^n$ and the Riemann Hypothesis Analogue for $\zeta_C(t)$, discussed in [4]. Recently, ζ -functions have been used for description of the subgroup growth or the representations of a group, as well as of some properties of finite graphs.

The main result of the article is Theorem 29, which provides a criterion for a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module M to satisfy the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. The criterion is based on three assumptions, which are shown to be satisfied by the smooth irreducible projective curves $X/\mathbb{F}_q \subset$ $\mathbb{P}^N(\overline{\mathbb{F}_q})$ of genus $g \geq 1$. The first assumption is the presence of a polynomial ζ quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \sum_{i=0}^d$ $\sum_{i=0} a_i t^i \in \mathbb{Z}[t]$. The second one is the existence of locally finite $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ -submodules $M_o \subseteq M$, $L_o \subseteq \mathbb{P}^1(\overline{\mathbb{F}_q})$ for some $m \in \mathbb{N}$ with at most finite complements $M \setminus M_o$, $\mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L_o$, which are related by a finite unramified covering $\xi : M_o \to L_o$ of \mathfrak{G}_m -modules with a Galois closure (N, H, H_1) , defined over \mathbb{F}_{q^m} . This means that N is a locally finite \mathfrak{G}_m -module, H is a finite fixed-point free subgroup of the automorphism group $\text{Aut}_{\mathfrak{G}_{m}}(N)$ of N and H_1 is a subgroup of H, such that there are isomorphisms of \mathfrak{G}_m -modules $L_o \simeq \text{Orb}_H(N) = N/H$, $M_o \simeq \text{Orb}_{H_1}(N) = N/H_1$ and the finite unramified H-Galois covering $\xi_H : N \to N/H$, $\xi_H(x) = \text{Orb}_H(x)$, $\forall x \in N$ has factorization

 $\xi_H = \xi \xi_{H_1}$ through ξ and the finite H_1 -Galois covering ξ_{H_1} : $N \to N/H_1$, $\xi_{H_1}(x) =$ Orb $_{H_1}(x)$. Finally, we assume that $\lambda := \log_q \sqrt[q]{|a_d|} \in \mathbb{R}^{\geq 0}$ is an upper bound of the Hasse - Weil order $\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q}))$ of M with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ and the Hasse - Weil H-order $\text{ord}_{\mathfrak{G}_m}^H(N/\mathbb{P}^1(\overline{\mathbb{F}_q}))$ of N with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. We observe that the Riemann Hypothesis Analogue for M with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ implies a specific functional equation for the ζ -polynomial $P_M(t)$. An explicit example, constructed in Proposition 30 illustrates the existence of locally finite $\mathfrak{G}\text{-modules }M,$ which are not isomorphic as \mathfrak{G} -modules to a smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$ and satisfy the assumptions of our criterion for the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$.

Here is a brief synopsis of the paper. The next section 2 collects some trivial immediate properties of the locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules M and their morphisms. Section 3 supplies several expressions of the ζ -function $\zeta_M(t)$ of M and shows that $\zeta_M(t)$ determines uniquely the structure of M as a $\mathfrak{G}\text{-module}$. It studies the ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1}(\overline{\mathbb{F}_q})^{(t)}} \in \mathbb{Z}[[t]]$ of M and provides two necessary and sufficient conditions for $P_M(t) \in \mathbb{Z}[t]$ to be a polynomial. An arbitrary smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$ is shown to contain a $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ -submodule $X_o \subseteq X$ with $|X \setminus X_o| < \infty$, which admits a finite unramified covering $f : X_o \to L_o$ of \mathfrak{G}_{m} -modules and quasi-affine varieties onto a \mathfrak{G}_m -submodule $\overline{L}_o \subseteq \mathbb{P}^1(\overline{\mathbb{F}_q})$ with $\left| \mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L_o \right| < \infty$. The fixed-point free automorphisms $h : M \to M$ of $\mathfrak{G}\text{-modules}$, preserving the fibres of a finite unramified covering $\xi : M \to L$ are called deck transformations of ξ . If a deck transformation group $H < \text{Aut}_{\mathfrak{G}}(M)$ of ξ acts transitively on one and, therefore, on any fibre of ξ , then ξ is said to be an H-Galois covering. In order to explain the etymology of this notion, we show that if the finite separable extension $\overline{\mathbb{F}_q}(X) = \overline{\mathbb{F}_q}(X_o) \supset \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q}))$ of function fields, induced from $f: X_o \to L_o$ is Galois then f is an unramified $Gal(\overline{\mathbb{F}_q}(X)/\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})))$ -Galois covering of locally finite \mathfrak{G}_m -modules. For an arbitrary locally finite \mathfrak{G}_m -module M and an arbitrary finite fixed-point free subgroup $H < \text{Aut}_{\mathfrak{G}}(M)$ we establish that the correspondence $\xi_H : M \to \text{Orb}_H(M) = M/H$, associating to a point $x \in M$ its H-orbit $Orb_H(x)$ is an H-Galois covering of locally finite $\mathfrak{G}\text{-modules. Moreover, }$ $\xi_H : M \to \mathrm{Orb}_H(M)$ turns to be equivariant with respect to the pro-finite completion $\langle \varphi \rangle$ of the infinite cyclic subgroup of $\mathrm{Aut}_\mathfrak{G}(M)$, generated by $\varphi := h \Phi^r_q$ for any $h \in H$, any $r \in \mathbb{N}$ and the Frobenius automorphism Φ_q , which is a topological generator of $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) = \langle \Phi_q \rangle$. Our notion of a Galois closure (N, H, H_1) of a finite unramified covering $\xi : M \to L$ of locally finite \mathfrak{G} -modules arises from the fact that if the function field $\overline{\mathbb{F}_q}(Z)$ of an irreducible quasi-projective curve $Z \subset \mathbb{P}^r(\overline{\mathbb{F}_q})$ is the Galois closure of the finite separable extension $\overline{\mathbb{F}_q}(X_o) \supset \overline{\mathbb{F}_q}(L_o)$, induced from $f: X_o \to L_o$ then $(Z, \text{Gal}(\overline{\mathbb{F}_q}(Z)/\overline{\mathbb{F}_q}(L_o)), \text{Gal}(\overline{\mathbb{F}_q}(Z)/\overline{\mathbb{F}_q}(X_o)))$ is a Galois closure of the restriction $f: X' \to L'$ of f to some locally finite \mathfrak{G}_s -submodules $X' \subseteq X_o$, $L' \subseteq L_o$ with $|X_o \setminus X'| < \infty$, $|L' \setminus L_o| < \infty$. The final, fifth section is devoted to the main result of the article. After reducing the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ for a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module M to lower and upper

bounds on the number of rational points of M , we introduce the notion of a Hasse - Weil order $\text{ord}_{\mathfrak{G}}(M/L)$ of a locally finite $\mathfrak{G}\text{-module }M$ with respect to a locally finite $\mathfrak{G}\text{-module } L$, as well as the notion of a Hasse - Weil H-order ord $_{\mathfrak{G}}^H(N/L)$ of a locally finite $\mathfrak{G}\text{-module }N$ with a finite fixed-point free subgroup $H < \text{Aut}_{\mathfrak{G}}(N)$ with respect to a locally finite $\mathfrak{G}\text{-module }L$. These definitions are motivated by the celebrated Hasse - Weil bound on the number of rational points of a smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$, which can be stated as an upper bound $\frac{1}{2}$ on the Hasse - Weil order of X with respect to the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$. For an arbitrary finite fixed-point free subgroup $H < \text{Aut}_{\mathfrak{G}}(X)$ we establish that the Hasse - Weil Horder $\text{ord}_{\mathfrak{G}}^H(X/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \frac{1}{2}$. The Hasse - Weil order and the Hasse - Weil H-order are shown to be preserved when passing to submodules with finite complements. The existence of a finite unramified covering $\xi : M \to L$ of locally finite $\mathfrak{G}\text{-modules}$ guarantees $\text{ord}_{\mathfrak{G}}(M/L) \leq 1$, while the presence of an H-Galois covering $\xi: N \to L$ suffices for $\text{ord}_{\mathfrak{G}}^H(N/L) \leq 1$. Our main Theorem 29 provides a sufficient condition for a locally finite $\mathfrak{G}\text{-module }M$ to satisfy the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. By a specific example we establish that the assumptions of Theorem 29 hold for a class of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules, which contains strictly the smooth irreducible curves $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$. We observe also that the Riemann Hypothesis Analogue for M with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ implies a functional equation for the ζ -polynomial $P_M(t) := \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} \in \mathbb{Z}[t]$ of M.

2. PRELIMINARIES ON LOCALLY FINITE GAL($\overline{\mathbb{F}_Q}/\mathbb{F}_Q$)-MODULES AND THEIR MORPHISMS

The algebraic and the separable closure of a finite field \mathbb{F}_q is $\overline{\mathbb{F}_q} = \bigcup_{m=1}^{\infty} \mathbb{F}_{q^m}$. The absolute Galois group $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) = \lim_{\leftarrow} \text{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$ is the projective limit of the finite Galois groups $Gal(\mathbb{F}_{q^m}/\mathbb{F}_q) = \langle \Phi_q \rangle = {\Phi_q \mid 0 \leq i \leq m - 1},$ generated by the Frobenius automorphism $\Phi_q : \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$, $\Phi_q(a) = a^q$, $\forall a \in \overline{\mathbb{F}_q}$. Namely,

$$
\mathfrak{G}=\left\lbrace \left(\Phi_q^{l_m(\operatorname{mod} m)}\right)_{m\in\mathbb{N}}\in\prod_{m=1}^{\infty}(\mathbb{Z}_m,+)\,\Big|\, l_n\equiv l_m(\operatorname{mod} m)\ \, \text{for}\ \, m/n\right\rbrace
$$

is the pro-finite completion $\mathfrak{G} = \langle \widehat{\Phi_q} \rangle \simeq \langle \widehat{\mathbb{Z}}, + \rangle$ of the infinite cyclic group $\langle \Phi_q \rangle \simeq$ $(\mathbb{Z}, +)$. For an arbitrary $n \in \mathbb{N}$, note that

$$
\mathfrak{G}\times \mathbb{P}^n(\overline{\mathbb{F}_q})\longrightarrow \mathbb{P}^n(\overline{\mathbb{F}_q}),
$$

 $(\Phi_q^{l_s \, (\text{mod } s)})_{s \in \mathbb{N}} [a_0 : \ldots : a_i : \ldots : a_n] = [a_0^{q^{l_s}}]$ $a_0^{q^{l_s}} : \ldots : a_n^{q^{l_s}}$ if $a_0, \ldots, a_n \in \mathbb{F}_{q^s}$

is a correctly defined action with finite orbits by Remark 2.1.10 (i) and Lemma 2.1.9 from [5]. By Lemma 2.1.11 from [5], the degree of $Orb_{\mathfrak{G}}(a) = Orb_{\langle\Phi_{a}\rangle}(a), a \in$

 $\mathbb{P}^n(\overline{\mathbb{F}_q})$ is the minimal $m \in \mathbb{N}$ with $\left[a_0^{q^m} : \ldots : a_n^{q^m}\right] = \Phi_q^m(a) = a = [a_0 : \ldots : a_n].$ If $a_i \neq 0$ then $\Phi_q^m(a) = a$ amounts to $\left(\frac{a_i}{a_i}\right)$ ai $\Big)^{q^m} = \frac{a_j}{a_j}$ $\frac{a_j}{a_i}$, $\forall 0 \leq j \leq n$ and holds exactly when $\frac{a_j}{a_i} \in \mathbb{F}_{q^m}$, $\forall 0 \leq j \leq n$. Thus, $\forall m \in \mathbb{N}$ there are finitely many $\mathrm{Orb}_{\mathfrak{G}}(a) \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of $\deg \mathrm{Orb}_{\mathfrak{G}}(a) = m$ and $\mathbb{P}^n(\overline{\mathbb{F}_q})$ is a locally finite $\mathfrak{G}\text{-module.}$

If $X = V(f_1, \ldots, f_l) \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ is a smooth irreducible curve, cut by homogeneous polynomials $f_1, \ldots, f_l \in \mathbb{F}_q[x_0, \ldots, x_n]$ with coefficients from \mathbb{F}_q , X is said to be defined over \mathbb{F}_q and denoted by $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$. The $\mathfrak{G}\text{-action}$ on $\mathbb{P}^n(\overline{\mathbb{F}_q})$ restricts to a locally finite $\mathfrak{G}\text{-action}$ on X, due to the $\mathfrak{G}\text{-invariance}$ of f_1, \ldots, f_l .

Here are some trivial properties of the locally finite $\hat{\mathbb{Z}}$ -actions.

Lemma 4. Let $\mathfrak{G} = \langle \varphi \rangle$ be the profinite completion of an infinite cyclic group $\langle \varphi \rangle \simeq (\mathbb{Z}, +)$ *, M be a locally finite* $\mathfrak{G}\text{-module with closed stabilizers, Orb}_{\mathfrak{G}}(x) \subseteq M$ *be a* \mathfrak{G} -*orbit on M of degree* $m = \deg \text{Orb}_{\mathfrak{G}}(x)$ *and* $\mathfrak{G}_m = \widehat{\langle \varphi^m \rangle}$ *be the profinite completion of* $\langle \varphi^m \rangle \simeq (\mathbb{Z}, +)$ *. Then:*

(i) any $y \in \text{Orb}_{\mathfrak{G}}(x)$ *has stabilizer* $\text{Stab}_{\mathfrak{G}}(y) = \text{Stab}_{\mathfrak{G}}(x) = \mathfrak{G}_m$;

(ii) the orbits $Orb_{\mathfrak{G}}(x) = Orb_{\langle\varphi\rangle}(x) = \{x, \varphi(x), \ldots, \varphi^{m-1}(x)\}\coincide;$

(iii) $\forall r \in \mathbb{N}$ *with greatest common divisor* $GCD(r, m) = d \in \mathbb{N}$ *, the* **Ø**-orbit

$$
\operatorname{Orb}_{\mathfrak{G}}(x) = \coprod_{j=1}^{d} \operatorname{Orb}_{\mathfrak{G}_r}(\varphi^{i_j}(x))
$$

of x decomposes into a disjoint union of d orbits of degree $m_1 = \frac{m}{d}$ with respect to *the action of* $\mathfrak{G}_r = \widehat{\langle \varphi^r \rangle}$ *.*

Proof. If $\mathfrak{G}' := \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) = \langle \Phi_q \rangle$ is the absolute Galois group of the finite field \mathbb{F}_q , then the group isomorphism $f: \langle \varphi \rangle \longrightarrow \langle \Phi_q \rangle$, $f(\varphi^s) = \Phi_q^s$, $\forall s \in \mathbb{N}$ extends uniquely to a group isomorphism

$$
f: \mathfrak{G}=\widehat{\langle \varphi \rangle} \longrightarrow \widehat{\langle \Phi_q \rangle}=\mathfrak{G}', \quad f(\varphi^{l_s(\textrm{mod}\,s)})_{s \in \mathbb{N}}=(\Phi_q^{l_s(\textrm{mod}\,s)})_{s \in \mathbb{N}} \in \prod_{s \in \mathbb{N}} (\langle \Phi_q \rangle / \langle \Phi_q^s \rangle)
$$

of the corresponding pro-finite completions. That is why it suffices to prove the lemma for $\mathfrak{G}' = \widehat{\langle \Phi_{q} \rangle}$.

(i) By assumption, $\text{Stab}_{\mathfrak{G}}(x)$ is a closed subgroup of \mathfrak{G} of index

$$
[\mathfrak{G}:\operatorname{Stab}_{\mathfrak{G}}(x)] = \deg \operatorname{Orb}_{\mathfrak{G}}(x) = m.
$$

According to $Gal(\mathbb{F}_{q^m}/\mathbb{F}_q) = Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q)/Gal(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m}) = \mathfrak{G}'/\mathfrak{G}'_m$ for $\mathfrak{G}'_m = \widehat{\langle \Phi_q^m \rangle}$, the closed subgroup \mathfrak{G}'_m of \mathfrak{G}' is of index m and the closed subgroup \mathfrak{G}_m of \mathfrak{G} is of index $[\mathfrak{G} : \mathfrak{G}_m] = m$. If H is a closed subgroup of \mathfrak{G} of $[\mathfrak{G} : \mathcal{H}] = m$ then \mathfrak{G}/\mathcal{H} is an abelian group of order m and $\varphi^m \in \mathcal{H}$, $\forall \varphi \in \mathfrak{G}$. Therefore the closure $\mathfrak{G}_m = \widehat{\langle \varphi^m \rangle}$ of $\langle \varphi^m \rangle$ in $\mathfrak G$ is contained in H and $[\mathcal H : \mathfrak G_m] = \frac{[\mathfrak G : \mathfrak G_m]}{[\mathfrak G : \mathcal H]} = 1$. Thus, $\mathcal H = \mathfrak G_m$ is the

only closed subgroup of $\mathfrak G$ of index m and $\text{Stab}_{\mathfrak G}(x) = \mathfrak G_m$. Since $\mathfrak G$ is an abelian group, any $y \in \text{Orb}_{\mathfrak{G}}(x)$ has the same stabilizer $\text{Stab}_{\mathfrak{G}}(y) = \text{Stab}_{\mathfrak{G}}(x) = \mathfrak{G}_m$ as x.

(ii) The inclusion $\langle \varphi \rangle \subset \widehat{\langle \varphi \rangle} = \mathfrak{G}$ of groups implies the inclusion $\mathrm{Orb}_{\langle \varphi \rangle}(x) \subseteq$ Orb_{$\mathfrak{G}(x)$} of the corresponding orbits. It suffices to show that $x, \varphi(x), \ldots, \varphi^{m-1}(x)$ are pairwise different, in order to conclude that deg $Orb_{\langle\varphi\rangle}(x) \geq m = \deg Orb_{\mathfrak{G}}(x)$, whereas $Orb_{\langle \varphi \rangle}(x) = Orb_{\mathfrak{G}}(x)$. Indeed, if $\varphi^{i}(x) = \varphi^{j}(x)$ for some $0 \leq i < j \leq m-1$ then $x = \varphi^{j-i}(x)$ implies $\varphi^{j-i} \in \text{Stab}_{\mathfrak{G}}(x) \cap \langle \varphi \rangle = \langle \varphi^m \rangle \cap \langle \varphi \rangle = \langle \varphi^m \rangle$ and m divides $0 < j - i \leq m - 1$. This is an absurd, justifying $Orb_{\langle\varphi\rangle}(x) = Orb_{\mathfrak{G}}(x)$.

(iii) It suffices to check that $\forall y \in \text{Orb}_{\mathfrak{G}}(x)$ has stabilizer $\text{Stab}_{\mathfrak{G}_r}(y) = \mathfrak{G}_{rm_1}$, in order to apply (i) and to conclude that $\deg \text{Orb}_{\mathfrak{G}_r}(y) = m_1$. Bearing in mind that $\operatorname{Stab}_{\mathfrak{G}_r}(y) = \operatorname{Stab}_{\mathfrak{G}}(y) \cap \mathfrak{G}_r = \mathfrak{G}_m \cap \mathfrak{G}_r$ and the least common multiple of m and r is $LCM(m,r) = rm_1 = mr_1 \in \mathbb{N}$ for $r_1 = \frac{r}{d}$, we reduce the statement to $\mathfrak{G}_m \cap \mathfrak{G}_r = \mathfrak{G}_{\mathrm{LCM}(m,r)}$. According to

$$
\mathfrak{G}_r/(\mathfrak{G}_m\cap\mathfrak{G}_r)\simeq \mathfrak{G}_r\mathfrak{G}_m/\mathfrak{G}_m<\mathfrak{G}/\mathfrak{G}_m,
$$

the index $s := [\mathfrak{G} : \mathfrak{G}_m \cap \mathfrak{G}_r] = [\mathfrak{G} : \mathfrak{G}_r][\mathfrak{G}_r : (\mathfrak{G}_m \cap \mathfrak{G}_r)] \le rm$ is finite and $\mathfrak{G}_m \cap \mathfrak{G}_r = \mathfrak{G}_s$. By $\mathfrak{G}_s < \mathfrak{G}_m < \mathfrak{G}$ and $\mathfrak{G}_s < \mathfrak{G}_r < \mathfrak{G}$ the integer $s \in \mathbb{N}$ is a common multiple of m, r , so that $LCM(m, r) \in \mathbb{N}$ divides s. Since $\mathfrak{G}_{LCM(m,r)} =$ $\mathfrak{G}_{rm_1} = \mathfrak{G}_{r_1m}$ is contained in \mathfrak{G}_m and \mathfrak{G}_r , there follows $\mathfrak{G}_{\text{LCM}(m,r)} \leq \mathfrak{G}_m \cap \mathfrak{G}_r = \mathfrak{G}_s$, so that s divides LCM (m, r) and $s = \text{LCM}(m, r)$ so that s divides $LCM(m, r)$ and $s = LCM(m, r)$.

If M and L are modules over a group G then the G -equivariant maps

$$
\xi: M \longrightarrow L, \quad g\xi(x) = \xi(gx) \quad \forall g \in G, \quad \forall x \in M
$$

are called morphisms of G-modules. Let $\xi : M \to L$ be a morphism of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules. The next proposition provides a numerical description of the restriction of ξ on a preimage of a \mathfrak{G} -orbit, by the means of the inertia indices of ξ. Note that the image $\xi(M)$ is \mathfrak{G} -invariant and for any complete set $\Sigma_{\mathfrak{G}}(\xi(M)) \subseteq \xi(M)$ of $\mathfrak{G}\text{-orbit}$ representatives on $\xi(M)$, the $\mathfrak{G}\text{-orbit}$ decomposition $\xi(M) = \coprod \text{Orb}_{\mathfrak{G}}(x)$ pulls back to a disjoint $\mathfrak{G}\text{-module}$ decomposition $\xi(M) =$ $x \in \Sigma_{\mathfrak{G}}(\xi(M))$ $Orb_{\mathfrak{G}}(x)$ pulls back to a disjoint $\mathfrak{G}\text{-module decomposition}$

$$
M = \coprod_{x \in \Sigma_{\mathfrak{G}}(\xi(M))} \xi^{-1} \text{Orb}_{\mathfrak{G}}(x). \tag{2.1}
$$

Thus, the morphism $\xi : M \to L$ of $\mathfrak{G}\text{-modules}$ is completely determined by the surjective morphisms $\xi : \xi^{-1} \text{Orb}_{\mathfrak{G}}(x) \longrightarrow \text{Orb}_{\mathfrak{G}}(x)$ of $\mathfrak{G}\text{-modules } \forall x \in \Sigma_{\mathfrak{G}}(\xi(M)).$

Proposition 5. Let $\xi : M \to L$ be a morphism of locally finite modules with *closed stabilizers over the pro-finite completion* $\mathfrak{G} = \overline{\langle \varphi \rangle}$ *of an infinite cyclic group* $\langle \varphi \rangle \simeq (\mathbb{Z}, +),$

$$
\delta = \deg \text{Orb}_{\mathfrak{G}} : L \longrightarrow \mathbb{N}, \quad \delta(x) = \deg \text{Orb}_{\mathfrak{G}}(x) \quad \text{for} \quad \forall x \in L \quad \text{and}
$$

$$
e_{\xi}: M \longrightarrow \mathbb{Q}^{>0}, e_{\xi}(y) = \frac{\deg \operatorname{Orb}_{\mathfrak{G}}(y)}{\deg \operatorname{Orb}_{\mathfrak{G}}(\xi(y))} \quad \forall y \in M.
$$

Then:

 (i) Stab_® (y) *is a subgroup of* Stab_® $(\xi(y))$ *for all the points* $y \in M$ *, so that* $e_{\xi}(y) = [\text{Stab}_{\mathfrak{G}}(\xi(y)) : \text{Stab}_{\mathfrak{G}}(y)] \in \mathbb{N}$ takes natural values;

(*ii*) for any $x \in \xi(M)$ there is a subset $S_x \subseteq \xi^{-1}(x)$, such that

$$
\xi^{-1} \text{Orb}_{\mathfrak{G}}(x) = \coprod_{y \in S_x} \text{Orb}_{\mathfrak{G}}(y) \quad \text{with} \quad \deg \text{Orb}_{\mathfrak{G}}(y) = \delta(x) e_{\xi}(y); \tag{2.2}
$$

(*iii*) $\forall x \in \xi(M)$ *the fibre* $\xi^{-1}(x)$ *is a* $\mathfrak{G}_{\delta(x)}$ -module with orbit decomposition

$$
\xi^{-1}(x) = \coprod_{y \in S_x} \text{Orb}_{\mathfrak{G}_{\delta(x)}}(y) \quad \text{of} \quad \deg \text{Orb}_{\mathfrak{G}_{\delta(x)}}(y) = e_{\xi}(y). \tag{2.3}
$$

The correspondence $e_{\xi}: M \to \mathbb{N}$ *is called the inertia map of* $\xi: M \to L$ *. The values* $e_{\xi}(y)$ *,* $y \in M$ *of* e_{ξ} *are called inertia indices of* ξ *.*

Proof. (i) The G-equivariance of ξ implies that $\text{Stab}_{\mathfrak{G}}(y) \leq \text{Stab}_{\mathfrak{G}}(\xi(y)) \leq \mathfrak{G}$. Combining with Lemma 4 (i), one expresses

$$
e_{\xi}(y) = \frac{[\mathfrak{G}: \mathrm{Stab}_{\mathfrak{G}}(y)]}{[\mathfrak{G}: \mathrm{Stab}_{\mathfrak{G}}(\xi(y))] } = [\mathrm{Stab}_{\mathfrak{G}}(\xi(y)) : \mathrm{Stab}_{\mathfrak{G}}(y)] \in \mathbb{N}.
$$

(ii) We claim that $\forall x \in \xi(M)$ all \mathfrak{G} -orbits on $\xi^{-1}\text{Orb}_{\mathfrak{G}}(x)$ intersect the fibre $\xi^{-1}(x)$. Indeed, assuming $\xi(z) = \varphi^s(x)$ for some $z \in M$ and $0 \leq s \leq \delta(x) - 1$, one observes that $\xi(\varphi^{\delta(x)-s}z) = \varphi^{\delta(x)-s}\xi(z) = x$, whereas $y := \varphi^{\delta(x)-s}(z) \in \xi^{-1}(x)$ with $Orb_{\mathfrak{G}}(z) = Orb_{\mathfrak{G}}(y)$. That allows to choose a complete set $S_x \subseteq \xi^{-1}(x)$ of \mathfrak{G} -orbit representatives on ξ^{-1} Orb $_{\mathfrak{G}}(x)$ and to obtain (2.2) by the very definition of $e_{\xi}(y)$ with $y \in S_x \subseteq \xi^{-1}(x)$.

(iii) If $x \in \xi(M)$, $y \in \xi^{-1}(x)$ then $\xi(\varphi^{\delta(x)}y) = \varphi^{\delta(x)}\xi(y) = \varphi^{\delta(x)}(x) = x$ implies $\varphi^{\delta(x)}(y) \in \xi^{-1}(x)$, so that $\xi^{-1}(x)$ is acted by $\mathfrak{G}_{\delta(x)} = \langle \widehat{\varphi^{\delta(x)}} \rangle$. That justifies the inclusion $\cup_{y\in S_x} \text{Orb}_{\mathfrak{G}_{(\mathcal{X})}}(y) \subseteq \xi^{-1}(x)$. For any $y, y' \in S_x$ the assumption $y' \in \text{Orb}_{\mathfrak{G}_{(\mathfrak{X})}}(y) \subseteq \text{Orb}_{\mathfrak{G}}(y)$ implies that $y' = y$, so that the union $\coprod_{x \in \mathfrak{G}} y$ $\coprod_{y\in S_x} \operatorname{Orb}_{\mathfrak{G}_{\delta(x)}}(y)$ is disjoint. By the very definition of S_x , any

$$
z \in \xi^{-1}(x) \subset \xi^{-1} \text{Orb}_{\mathfrak{G}}(x) = \coprod_{y \in S_x} \text{Orb}_{\mathfrak{G}}(y)
$$

is of the form $z = \varphi^s(y)$ for some $y \in S_x$ and $0 \le s < \delta(x)e_{\xi}(y) - 1$. Due to $x = \xi(z) = \xi(\varphi^s(y)) = \varphi^s(\xi(y)) = \varphi^s(x)$, there follows $\varphi^s \in \text{Stab}_{\mathfrak{G}}(x) \cap \langle \varphi \rangle =$ $\langle \widehat{\varphi^{\delta(x)}} \rangle \cap \langle \varphi \rangle = \langle \varphi^{\delta(x)} \rangle$, whereas $s = \delta(x)r$ for some $r \in \mathbb{Z}^{\geq 0}$. Thus, $z = \varphi^{\delta(x)r}(y) \in$ Orb $\mathfrak{G}_{\delta(x)}(y)$ and $\xi^{-1}(x) \subseteq \coprod_{\zeta \in \zeta}$ $\coprod_{y\in S_x}$ Orb $\mathfrak{G}_{\delta(x)}(y)$. That justifies the $\mathfrak{G}_{\delta(x)}$ -orbit decomposition (2.3). By (ii) and the proof of Lemma 4 (iii), one has $\text{Stab}_{\mathfrak{G}_{\delta(x)}}(y) =$

 $\operatorname{Stab}_{\mathfrak{G}}(y)\cap\mathfrak{G}_{\delta(x)}=\mathfrak{G}_{\delta(x)e_{\xi}(y)}\cap\mathfrak{G}_{\delta(x)}=\mathfrak{G}_{\delta(x)e_{\xi}(y)},$ as far as $\operatorname{LCM}(\delta(x)e_{\xi}(y),\delta(x))=$ $\delta(x)e_{\xi}(y)$. Now, Lemma 4(i) applies to provide deg $Orb_{\mathfrak{G}_{\delta(x)}}(y) = e_{\xi}(y)$.

3. LOCALLY FINITE MODULES WITH A POLYNOMIAL ζ-QUOTIENT

In order to provide two more expressions for the ζ-function of a locally finite module M over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$, let us recall that on an arbitrary smooth irreducible curve $X/\mathbb{F}_q \subseteq \mathbb{P}^n(\overline{\mathbb{F}_q})$, defined over \mathbb{F}_q , the fixed points

$$
X^{\Phi^{r}_{q}}:=\{x\in X\,|\,\Phi^{r}_{q}(x)=x\}=X(\mathbb{F}_{q^{r}})
$$

of an arbitrary power $\Phi^r_q, \, r \in \mathbb{N}$ of the Frobenius automorphism Φ_q coincide with the \mathbb{F}_{q^r} -rational ones. That is why, for an arbitrary locally finite module M over the pro-finite completion $\mathfrak{G} = \langle \varphi \rangle$ of an infinite cyclic group $\langle \varphi \rangle \simeq (\mathbb{Z}, +)$, the fixed points

$$
M^{\varphi^r} := \{ x \in M \, | \, \varphi^r(x) = x \}
$$

of φ^r with $r \in \mathbb{N}$ are called φ^r -rational. Note that if deg $Orb_{\mathfrak{G}}(x) = m$ then $x \in M^{\varphi^r}$ if and only if $\varphi^r \in \text{Stab}_{\mathfrak{G}}(x) = \mathfrak{G}_m = \widehat{\langle \varphi^m \rangle}$ and this holds exactly when m divides r. Since any fixed $r \in \mathbb{N}$ has finitely many natural divisors m and for any $m \in \mathbb{N}$ there are at most finitely many \mathfrak{G} -orbits on M of degree m, the sets M^{φ^r} are finite.

Let us consider the free abelian group $(Div(M), +)$, generated by the $\mathfrak{G}\text{-orbits}$ $\nu \in \mathrm{Orb}_{\mathfrak{G}}(M)$. Its elements are called divisors on M and are of the form $D =$ $a_1\nu_1 + \ldots + a_sv_s$ for some $\nu_i \in \text{Orb}_{\mathfrak{G}}(M), a_i \in \mathbb{Z}$. The terminology arises from the case of a smooth irreducible curve $X/\mathbb{F}_q \subseteq \mathbb{P}^n(\overline{\mathbb{F}_q})$, in which the $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ orbits ν are in a bijective correspondence with the places $\tilde{\nu}$ of the function field $\mathbb{F}_q(X)$ of X over \mathbb{F}_q . If $R_{\tilde{\nu}}$ is the discrete valuation ring, associated with the place $\tilde{\nu}$ then the residue field $R_{\tilde{\nu}}/M_{\tilde{\nu}}$ of $R_{\tilde{\nu}}$ is of degree $[R_{\tilde{\nu}}/M_{\tilde{\nu}} : \mathbb{F}_q] = \deg \nu$.

Note that the degree of a $\mathfrak{G}\text{-orbit}$ extends to a group homomorphism

$$
\deg : (\text{Div}(M), +) \longrightarrow (\mathbb{Z}, +), \ \ \deg \left(\sum_{\nu \in \text{Orb}_{\mathfrak{G}}(M)} a_{\nu} \nu \right) = \sum_{\nu \in \text{Orb}_{\mathfrak{G}}(M)} a_{\nu} \deg \nu.
$$

A divisor $D = a_1 \nu_1 + \ldots + a_s \nu_s \geq 0$ is effective if all of its non-zero coefficients are positive. Let $Div_{\geq 0}(M)$ be the set of the effective divisors on M. Note that the effective divisors $D = a_1 \nu_1 + \ldots + a_s \nu_s \geq 0$ on M of fixed degree deg $D =$ $a_1 \deg \nu_1 + \ldots + a_s \deg \nu_s = m \in \mathbb{Z}^{\geq 0}$ have bounded coefficients $1 \leq a_j \leq m$ and bounded degrees deg $\nu_i \leq m$ of the \mathfrak{G} -orbits from the support of D. Bearing in mind that M has at most finitely many G-orbits ν_i of degree deg $\nu_i \leq m$, one concludes that there are at most finitely many effective divisors on M of degree $m \in \mathbb{Z}^{\geq 0}$ and denotes their number by $\mathcal{A}_m(M)$.

The following statement generalizes two of the well known expressions of the local Weil ζ -function $\zeta_X(t)$ of a smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ to the ζ -function of any locally finite $\mathfrak{G} = \langle \varphi \rangle$ -module M. The proofs are similar to the ones for $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$, given in [5] or in [2].

Proposition 6. Let $\mathfrak{G} = \langle \varphi \rangle$ be the pro-finite completion of an infinite cyclic *group* $\langle \varphi \rangle$ *and M be a locally finite* **G**-module. Then the ζ -function of *M equals*

$$
\zeta_M(t) = \exp\left(\sum_{r=1}^{\infty} \left| M^{\varphi^r} \right| \frac{t^r}{r} \right) = \sum_{m=0}^{\infty} \mathcal{A}_m(M) t^m,
$$

where $|M^{\varphi}|\$ is the number of φ^r -rational points on M and $\mathcal{A}_m(M)$ is the number *of the effective divisors on* M *of degree* $m \in \mathbb{Z}^{\geq 0}$ *.*

Proof. If $B_k(M)$ is the number of \mathfrak{G} -orbits on M of degree k then

$$
\zeta_M(t) := \prod_{\nu \in \text{Orb}_{\mathfrak{G}}(M)} \left(\frac{1}{1 - t^{\deg \nu}} \right) = \prod_{k=1}^{\infty} \left(\frac{1}{1 - t^k} \right)^{B_k(M)}.
$$

Therefore

$$
\log \zeta_M(t) = -\sum_{k=1}^{\infty} B_k(M) \log(1 - t^k) = \sum_{k=1}^{\infty} B_k(M) \left(\sum_{n=1}^{\infty} \frac{t^{kn}}{n} \right)
$$

$$
= \sum_{r=1}^{\infty} \left(\sum_{k/r} k B_k(M) \right) \frac{t^r}{r},
$$

according to the equality of formal power series

$$
\log(1 - z) = -\sum_{r=1}^{\infty} \frac{z^r}{r} \in \mathbb{Q}[[z]].
$$
 (3.1)

If $M^{\varphi^r} = \prod$ $\deg \mathrm{Orb}_{\mathfrak{G}}(x)/r$ $Orb_{\mathfrak{G}}(x)$ is the decomposition of M^{φ^r} into a disjoint union

of $\mathfrak G$ -orbits then the number of the φ^r -rational points on M is

$$
\left| M^{\varphi^r} \right| = \sum_{k/r} k B_k(M),\tag{3.2}
$$

whereas $\log \zeta_M(t) = \sum_{r=1}^{\infty}$ $\left|M^{\varphi^r}\right| \frac{t^r}{r}$ $\frac{t}{r}$.

On the other hand, there is an equality of formal power series

$$
\zeta_M(t) = \prod_{\nu \in \text{Orb}_{\mathfrak{G}}(M)} \left(\sum_{n=0}^{\infty} t^{\deg(n\nu)} \right) = \sum_{D \in \text{Div}_{\geq 0}(M)} t^{\deg D} = \sum_{m=0}^{\infty} \mathcal{A}_m(M) t^m. \quad \Box
$$

For an arbitrary group G, the bijective morphisms $\xi : M \to L$ of G-modules are called isomorphisms of G-modules.

Corollary 7. Locally finite $\mathfrak{G} = \widehat{\varphi}$ *-modules* M, L admit an isomorphism of $\mathfrak{G}\text{-modules } \xi : M \to L$ *if and only if their* ζ -functions $\zeta_M(t) = \zeta_L(t)$ *coincide.*

Proof. Let $\xi : M \to L$ be an isomorphism of $\mathfrak{G}\text{-modules}$ and $x \in L$ be a point with deg $Orb_{\mathfrak{G}}(x) = \delta(x)$. Then (2.3) from Proposition-Definition 5 (iii) provides a decomposition $\xi^{-1}(x) = \prod$ $\coprod_{y\in S_x} \operatorname{Orb}_{\mathfrak{G}_{\delta(x)}}(y)$ of the fibre $\xi^{-1}(x)$ in a disjoint union of $\mathfrak{G}_{\delta(x)}$ -orbits of deg $\text{Orb}_{\mathfrak{G}_{\delta(x)}}(y) = e_{\xi}(y)$. Therefore $|S_x| = 1, \forall x \in$ L, $e_{\xi}(y) = 1$, $\forall y \in M$ and $\xi^{-1} \text{Orb}_{\mathfrak{G}}(x) = \text{Orb}_{\mathfrak{G}} \xi^{-1}(x)$ is of degree $\delta(x)$ by (2.2) from Proposition-Definition 5 (ii). As a result, (2.1) takes the form $M =$ ĪĪ $x \in \Sigma_{\mathfrak{G}}(L)$ Orb $\mathfrak{g}\xi^{-1}(x)$ for any complete set $\Sigma_{\mathfrak{G}}(L)$ of \mathfrak{G} -orbit representatives on L

and
$$
\zeta_M(t) = \prod_{x \in \Sigma_{\mathfrak{G}}(L)} \left(\frac{1}{1 - t^{\delta(x)}} \right) = \zeta_L(t).
$$

Conversely, assume that the locally finite $\mathfrak{G}\text{-modules }M$ and L have one and a same ζ -function $\zeta_M(t) = \zeta_L(t)$. Then by Proposition 6, there follows the equality

$$
\sum_{r=1}^{\infty} \left| M^{\varphi^r} \right| \frac{t^r}{r} = \log \zeta_M(t) = \log \zeta_L(t) = \sum_{r=1}^{\infty} \left| L^{\varphi^r} \right| \frac{t^r}{r} \in \mathbb{Q}[[t]]
$$

of formal power series of t , whereas the equalities

$$
\sum_{d/r} dB_d(M) = \left| M^{\varphi^r} \right| = \left| L^{\varphi^r} \right| = \sum_{d/r} dB_d(L)
$$

of their coefficients $\forall r \in \mathbb{N}$. By an induction on r, one derives that $B_d(M) = B_d(L)$, $\forall d \in \mathbb{N}$. For any $k \in \mathbb{N}$ note that $M^{(\leq k)} := \{x \in M \mid \deg \text{Orb}_{\mathfrak{G}}(x) \leq k\}$ is a finite $\mathfrak{G}\text{-submodule of }M$ and the locally finite $\mathfrak{G}\text{-module }M=\cup_{k=1}^k M^{(\leq k)}$ is exhausted by $M^{(\leq k)}$. If $L^{(\leq k)} := \{y \in L \mid \deg \text{Orb}_{\mathfrak{G}}(y) \leq k\}$ then by an induction on $k \in \mathbb{N}$ one constructs isomorphisms $\xi : M^{(\leq k)} \to L^{(\leq k)}$ of $\mathfrak{G}\text{-modules}$ and obtains and isomorphism of $\mathfrak{G}\text{-modules } \xi : M = \bigcup_{k=1}^{\infty} M^{(\leq k)} \to \bigcup_{k=1}^{\infty} L^{(\leq k)} = L.$

Lemma 8. *If M is a locally finite* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *-module with* ζ *-function* $\zeta_M(t) \in \mathbb{Z}[[t]]$ then the quotient

$$
P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \sum_{i=0}^{\infty} a_i t^i \in \mathbb{Z}[[t]]^*
$$

is a formal power series with integral coefficients $a_m \in \mathbb{Z}$, which is invertible in $\mathbb{Z}[[t]]$ *. Its coefficients* $a_m \in \mathbb{Z}$ *satisfy the equality*

$$
\mathcal{A}_m(M) = \sum_{i=0}^m a_i \left| \mathbb{P}^{m-i}(\mathbb{F}_q) \right|
$$

and can be interpreted as "multiplicities" of the projective spaces $\mathbb{P}^{m-i}(\mathbb{F}_q)$, "ex*hausting" the effective divisors on* M *of degree* m*.*

Proof. If $P_M(t) = \sum_{m=0}^{\infty} a_m t^m \in \mathbb{C}[[t]]$ is a formal power series with complex coefficients $a_m \in \mathbb{C}$ then the comparison of the coefficients of

$$
\sum_{m=0}^{\infty} a_m t^m = P_M(t) = \zeta_M(t)(1-t)(1-qt) = \left(\sum_{m=0}^{\infty} A_m(M)t^m\right) [1 - (q+1)t + qt^2]
$$

yields

$$
a_m = \mathcal{A}_m(M) - (q+1)\mathcal{A}_{m-1}(M) + q\mathcal{A}_{m-2}(M) \in \mathbb{Z} \quad \forall m \in \mathbb{Z}^{\geq 0},\tag{3.3}
$$

as far as $\mathcal{A}_m(M) \in \mathbb{Z}^{\geq 0}$, $\forall m \in \mathbb{Z}^{\geq 0}$ and $\mathcal{A}_{-1}(M) = \mathcal{A}_{-2}(M) = 0$. In particular, $a_0 = \mathcal{A}_0(M) = \zeta_M(0) = 1$ and $P_M(t) = 1 + \sum_{i=1}^{\infty} a_i t^i \in \mathbb{Z}[[t]]^*$ is invertible by a formal power series $P_M^{-1}(t) = 1 + \sum_{m=1}^{\infty} b_m t^m \in \mathbb{Z}[[t]]$ with integral coefficients. (The existence of $b_m \in \mathbb{Z}$ with $\left[1 + \sum_{m=1}^{\infty} a_m t^m\right] \left[1 + \sum_{m=1}^{\infty} b_m t^m\right] = 1$ follows from $b_m + \sum_{n=1}^{m-1}$ $\sum_{i=1} b_i a_{m-i} + a_m = 0$ by an induction on $m \in \mathbb{N}$.)

The comparison of the coefficients of

$$
\sum_{m=0}^{\infty} \mathcal{A}_m(M)t^m = \zeta_M(t) = P_M(t)\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) = \left(\sum_{m=0}^{\infty} a_m t^m\right) \left(\sum_{s=0}^{\infty} t^s\right) \left(\sum_{r=0}^{\infty} q^r t^r\right)
$$

provides

$$
\mathcal{A}_m(M) = \sum_{i=0}^m a_i \left(\sum_{j=0}^{m-i} q^j \right) = \sum_{i=0}^m a_i \left(\frac{q^{m-i+1} - 1}{q - 1} \right) = \sum_{i=0}^m a_i \left| \mathbb{P}^{m-i}(\mathbb{F}_q) \right|.
$$
 (3.4)

According to the Riemann-Roch Theorem for a divisor D of degree deg $D =$ $n \geq 2g - 1$ on a smooth irreducible curve $X/\mathbb{F}_q \subseteq \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 0$, the linear equivalence class of D is isomorphic to $\mathbb{P}^{n-g}(\mathbb{F}_q)$. For any $n \in \mathbb{Z}^{\geq 0}$ there exist one and a same number h of linear equivalence classes of divisors on X of degree *n*. The natural number $h = P_X(1)$ equals the value of the ζ -polynomial $P_X(t) = \frac{\zeta_X(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \sum_{i=0}^{2g}$ $\sum_{j=0}^{\infty} a_j t^j \in \mathbb{Z}[t]$ of X at 1 and is called the class number of X. Thus, for any natural number $n \geq 2q - 1$ there are

$$
\mathcal{A}_n(X) = P_X(1) \left| \mathbb{P}^{n-g}(\mathbb{F}_q) \right| = P_X(1) \left(\frac{q^{n-g+1} - 1}{q - 1} \right)
$$

effective divisors of X of degree n. Note that the ζ -function $\zeta_X(t) = \frac{P_X(t)}{(1-t)(1-qt)}$ has residua $\text{Res}_{\frac{1}{q}}(\zeta_X(t)) = \frac{P_X(\frac{1}{q})}{1-q}$, $\text{Res}_{1}(\zeta_X(t)) = \frac{P_X(1)}{q-1}$ at its simple poles $\frac{1}{q}$,

respectively, 1. The ζ -polynomial $P_X(t)$ of X satisfies the functional equation $P_X(t) = P_X\left(\frac{1}{qt}\right)q^gt^2$, according to Theorem 4.1.13 from [5] or to Theorem V.1.15 (b) from [2]. In particular, $P_X\left(\frac{1}{q}\right)$ $= q^{-g} P_X(1)$ and

$$
\mathcal{A}_n(X) = -q^{n+1} \text{Res}_{\frac{1}{q}}(\zeta_X(t)) - \text{Res}_{1}(\zeta_X(t)) \quad \forall n \ge 2g - 1.
$$

Definition 9. A locally finite module M over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ satisfies the Generic Riemann-Roch Conditions if M has

$$
\mathcal{A}_n(M) = -q^{n+1} \text{Res}_{\frac{1}{q}}(\zeta_M(t)) - \text{Res}_1(\zeta_M(t))
$$

effective divisors of degree *n* for sufficiently large natural numbers $n \geq n_o$.

One can compare the Generic Riemann-Roch Conditions with the Polarized Riemann-Roch Conditions from [6], which are shown to be equivalent to Mac Williams identities for linear codes over finite fields. A generalized version of [6], concerning additive codes will appear elsewhere.

Here is a characterization of the locally finite $\mathfrak{G}\text{-modules }M$ with a polynomial ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} \in \mathbb{Z}[t].$

Proposition 10. *The following conditions are equivalent for the* ζ*-function* $\zeta_M(t)$ *of a locally finite module* M *over* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$:

 (i) $P_M(t) := \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} \in \mathbb{Z}[t]$ *is a polynomial of* deg $P_M(t) = d \le \delta \in \mathbb{N}$;

(ii) M *satisfies the Generic Riemann-Roch Conditions*

$$
\mathcal{A}_n(M) = -q^{n+1} \text{Res}_{\frac{1}{q}}(\zeta_M(t)) - \text{Res}_{1}(\zeta_M(t)) = \frac{q^{n+1} P_M\left(\frac{1}{q}\right) - P_M(1)}{q-1}
$$
(3.5)

for all $n \geq \delta - 1$ *;*

(iii)
$$
\left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^r} \right| - \left| M^{\Phi_q^r} \right| = \sum_{j=1}^d \omega_j^r \quad \text{for} \quad \forall r \in \mathbb{N}
$$
 (3.6)

and some $\omega_j \in \mathbb{C}^*$, which turn out to satisfy $P_M(t) = \prod_{i=1}^d$ $\prod_{j=1} (1 - \omega_j t).$

Proof. (*i*) \Rightarrow (*ii*) If $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1}(\overline{\mathbb{F}_q})^{(t)}} = \sum_{i=1}^d$ $\sum_{j=0} a_j t^j \in \mathbb{Z}[t]$ is a polynomial of deg $P_M(t) = d \leq \delta \in \mathbb{N}$ then (3.4) reduces to

$$
\mathcal{A}_m(M) = \sum_{i=0}^d a_i \left(\frac{q^{m-i+1} - 1}{q - 1} \right) = \frac{q^{m+1} P_M\left(\frac{1}{q}\right) - P_M(1)}{q - 1} \quad \forall m \ge \delta.
$$

Moreover, (3.4) implies that

$$
\mathcal{A}_{\delta-1}(M) = \frac{q^{\delta}\left[P_M\left(\frac{1}{q}\right) - \frac{a_{\delta}}{q^{\delta}}\right] - [P_M(1) - a_{\delta}]}{q-1} = \frac{q^{\delta}P_M\left(\frac{1}{q}\right) - P_M(1)}{q-1}.
$$

Now (3.5) follows from the fact that the residua of $\zeta_M(t) = \frac{P_M(t)}{(1-t)(1-qt)}$ at its simple poles are $\text{Res}_{\frac{1}{q}}(\zeta_M(T)) = \frac{P_M(\frac{1}{q})}{1-q}$, respectively, $\text{Res}_{1}(\zeta_M(t)) = \frac{P_M(1)}{q-1}$.

 $(ii) \Rightarrow (i)$ Plugging (3.5) in (3.3), one obtains $a_m(M) = 0$, $\forall m \ge \delta + 1$. Therefore $P_M(t) = \sum_{n=1}^{N}$ $\sum_{i=0} a_i(M)t^i \in \mathbb{Z}[t]$ is a polynomial of degree $\deg P_M(t) \leq \delta$.

 $(i) \Rightarrow (iii)$ If $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} \in \mathbb{Z}[t]$ is a polynomial of degree deg $P_M(t)$

 $d \leq \delta$, then $P_M(0) = \frac{\zeta_M(0)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(0)} = 1$ allows to express $P_M(t) = \prod_{i=1}^d$ $\prod_{j=1} (1 - \omega_j t)$ by some complex numbers $\omega_j \in \mathbb{C}^*$. According to Proposition 6,

$$
\zeta_M(t) = \exp\left(\sum_{r=1}^{\infty} \left| M^{\Phi_q^r} \right| \frac{t^r}{r} \right) \quad \text{and} \quad \zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) = \exp\left(\sum_{r=1}^{\infty} \left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^r} \right| \frac{t^r}{r} \right), \tag{3.7}
$$

whereas

$$
\sum_{j=1}^d \log(1-\omega_j t) = \log P_M(t) = \log \zeta_M(t) - \log \zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) = \sum_{r=1}^\infty \left(\left| M^{\Phi_q^r} \right| - \left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^r} \right| \right) \frac{t^r}{r}.
$$

Making use of (3.1), one obtains $-\sum_{r=1}^{\infty}$ $\sum_{i=1}^{d}$ $\sum_{j=1} \omega_j^r$ $\bigg\} \frac{t^r}{r} = \sum_{r=1}^{\infty}$ $r=1$ $\left(\left|M^{\Phi^{r}_{q}}\right| - \right.$ $\left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi^r_q} \right|$ $\frac{t^r}{t^r}$ $\frac{t}{r}$. The comparison of the coefficients of $\frac{t^r}{r}$ $\frac{t'}{r}$, ∀r ∈ N provides (3.6).

 $(iii) \Rightarrow (i)$ Multiplying (3.6) by $\frac{t^r}{r}$, summing $\forall r \in \mathbb{N}$ and making use of (3.1), r one obtains $\log \zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t) - \log \zeta_M(t) = -\sum_{i=1}^d$ $\sum_{j=1}$ log(1 – $\omega_j t$). The change of the sign and an exponentiation provides $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1}(\overline{\mathbb{F}_q})(t)} = \prod_{i=1}^d$ $\prod_{j=1}^{n} (1 - \omega_j t) \in \mathbb{Z}[t].$

Corollary 11. Let M and L be locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules with $polynomial \zeta\text{-}quotients \ P_M(t) \ = \ \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)}, \ \ P_L(t) \ = \ \frac{\zeta_L(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} \ \in \ \mathbb{Z}[t] \ \ of \ degree$ $\deg P_M(t) \leq \delta$, $\deg P_L(t) \leq \delta$. Then M and L are isomorphic (as $\mathfrak{G}\text{-modules}$) *if and only if they have one and the same number* $B_k(M) = B_k(L)$ *of* \mathfrak{G} *-orbits of degree* k *for all* $1 \leq k \leq \delta$.

Proof. According to Corollary 7, it suffices to prove that $B_k(M) = B_k(L)$ for all $1 \leq k \leq \delta$ is equivalent to the coincidence $\zeta_M(t) = \zeta_L(t)$ of the corresponding

ζ-functions. The infinite product expressions

$$
\zeta_M(t) = \prod_{k=1}^{\infty} \left(\frac{1}{1-t^k} \right)^{B_K(M)}, \quad \zeta_L(t) = \prod_{k=1}^{\infty} \left(\frac{1}{1-t^k} \right)^{B_K(L)}
$$

reveals that $\zeta_M(t) = \zeta_L(t)$ if and only if $B_k(M) = B_k(L)$, $\forall k \in \mathbb{N}$. There remains to be shown that if $\deg P_M(t) \leq \delta$ then $B_k(M)$ with $1 \leq k \leq \delta$ determine uniquely $B_k(M)$ for $\forall k \in \mathbb{N}$. Let $P_M(t) = \prod_{k=1}^d$ $\prod_{j=1} (1 - \omega_j t)$ for some $d \leq \delta$, $\omega_j \in \mathbb{C}^*$ and denote $S_r \,:=\, \sum\limits_{}^d$

 $\sum_{j=1} \omega_j^r$, $\forall r \in \mathbb{N}$. By (3.6) from Proposition 10 and (3.2) from the proof of Proposition 6 one has

$$
S_r = (q^r + 1) - \left|M^{\Phi_q^r}\right| = (q^r + 1) - \sum_{k/r} k B_k(M) \quad \text{for} \quad \forall r \in \mathbb{N}.
$$
 (3.8)

Thus $B_k(M)$ with $1 \leq k \leq \delta$ determine uniquely S_r , $\forall 1 \leq r \leq \delta$. Since $P_M(t)$ is of deg $P_M(t) = d \le \delta$, S_r with $1 \le r \le \delta$ determine uniquely S_r , $\forall r \in \mathbb{N}$ by Newton formulae. By an induction on $r \in \mathbb{N}$ and making use of (3.8), S_r with $r \in \mathbb{N}$ determine uniquely $B_r(M)$ $\forall r \in \mathbb{N}$ $r \in \mathbb{N}$ determine uniquely $B_r(M)$, $\forall r \in \mathbb{N}$.

Proposition 12. *Let* M *be a locally finite module over the pro-finite completion* $\mathfrak{G} = \langle \varphi \rangle$ *of* $\langle \varphi \rangle \simeq (\mathbb{Z}, +)$ *and* M_r *be the locally finite* $\mathfrak{G}_r = \langle \varphi^r \rangle$ *-module, supported by* M *for some* $r \in \mathbb{N}$ *. Then the* ζ *-functions of* M *and* M_r *are related by the equality*

$$
\zeta_{M_r}(t^r) = \prod_{k=0}^{r-1} \zeta_M\left(e^{\frac{2\pi ik}{r}}t\right). \tag{3.9}
$$

In particular, if M has polynomial ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \prod_{i=1}^d$ $\prod_{j=1} (1 - \omega_j t)$ *o* $\deg P_M(t) = d$ then M_r has $P_{M_r}(t) := \frac{\zeta_{M_r}(t)}{\zeta_{m_r}(t)}$ $\frac{\zeta_{M_r}(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})_r}(t)} = \prod_{i=1}^d$ $\prod_{j=1} (1 - \omega_j^r t)$ of deg $P_{M_r}(t) = d$

and M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a \mathfrak{G} *module if and only if* M^r *satisfies the Riemann Hypothesis Analogue with respect to* $\mathbb{P}^1(\overline{\mathbb{F}_q})_r$ *as a* \mathfrak{G}_r *-module.*

Proof. According to (1.7) from subsection V.1 of [2], for any $m, r \in \mathbb{N}$ with greatest common divisor $GCD(m, r) = d \in \mathbb{N}$ there holds the equality of polynomials

$$
\left(1 - t^{r\frac{m}{d}}\right)^d = \prod_{k=0}^{r-1} \left[1 - \left(e^{\frac{2\pi ik}{r}}t\right)^m\right].
$$

By Lemma 4 (iii), any $\mathfrak{G}\text{-orbit }\nu$ of $\deg \nu = m$ splits in d orbits $\nu = \nu_1 \coprod \dots \coprod \nu_d$ over \mathfrak{G}_r of deg $\nu_j = \frac{m}{d}$, $\forall 1 \leq j \leq d$. The contribution of ν to $\left[\prod_{i=1}^{r-1} \alpha_i\right]$ $\prod_{k=0}^{r-1}\zeta_M\left(e^{\frac{2\pi i k}{r}}t\right)\right]^{-1}$ is

 \prod^{r-1} $k=0$ $\left[1 - \left(e^{\frac{2\pi i k}{r}}t\right)^m\right] = \left(1 - t^r^{\frac{m}{d}}\right)^d = \prod_{r=1}^d$ $j=1$ $(1 - t^{r \deg \nu_j})$ and equals the contribution of $\nu_1 \coprod \dots \coprod \nu_d$ to $\zeta_{M_r}(t^r)^{-1}$. That justifies the equality of power series (3.9).

For any $\omega \in \mathbb{C}^*$ note that

$$
\prod_{k=0}^{r-1} \left(1 - e^{\frac{2\pi ik}{r}} \omega t\right) = (\omega t)^r \prod_{k=0}^{r-1} \left(\frac{1}{\omega t} - e^{\frac{2\pi ik}{r}}\right) = (\omega t)^r \left[\frac{1}{(\omega t)^r} - 1\right] = 1 - \omega^r t^r. \tag{3.10}
$$

If $P_M(t):=\frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)}=\prod\limits_{i=1}^d$ $\prod_{j=1} (1 - \omega_j t) \in \mathbb{Z}[t]$ with $a_d := \mathrm{LC}(P_M(t)) = (-1)^d \omega_1 \dots \omega_d$ for some $\omega_j \in \mathbb{C}^*$ and $\mathbb{P}^1(\overline{\mathbb{F}_q})_r$ is the \mathfrak{G}_r -module, supported by $\mathbb{P}^1(\overline{\mathbb{F}_q}) = \mathbb{P}^1(\overline{\mathbb{F}_{q^r}})$ then (3.9) and (3.10) yield

$$
P_{M_r}(t^r) = \frac{\zeta_{M_r}(t^r)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})_r}(t^r)} = \prod_{k=0}^{r-1} \frac{\zeta_M\left(e^{\frac{2\pi ik}{r}}t\right)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}\left(e^{\frac{2\pi ik}{r}}t\right)} = \prod_{k=0}^{r-1} P_M\left(e^{\frac{2\pi ik}{r}}t\right)
$$

=
$$
\prod_{k=0}^{r-1} \prod_{j=1}^d \left(1 - \omega_j e^{\frac{2\pi ik}{r}}t\right) = \prod_{j=1}^d \prod_{k=0}^{r-1} \left(1 - \omega_j e^{\frac{2\pi ik}{r}}t\right) = \prod_{j=1}^d \left(1 - \omega_j^r t^r\right).
$$

Thus, $P_{M_r}(t) = \prod^d$ $\prod_{j=1} (1 - \omega_j^r t)$ is a polynomial of deg $P_{M_r}(t) = d \in \mathbb{N}$ with $|\text{LC}(P_{M_r}(t))|$ $= |\omega_1 \dots \omega_d|^r = |a_d|^r$ and $|\omega_j| = \sqrt[d]{|a_d|}$ if and only if $|\omega_j^r| = \sqrt[d]{|\text{LC}(P_{M_r}(t))|}$. That justifies the equivalence of the Riemann Hypothesis Analogue for M and M_r with respect to the projective line, whenever M has a polynomial ζ -quotient $P_M(t)$. \Box

4. FINITE UNRAMIFIED COVERING OF LOCALLY FINITE MODULES

Extracting some properties of the finite unramified coverings $f: X \to Y$ of quasi-projective curves X, Y or topological spaces X, Y , we introduce the notion of a finite unramified covering of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules.

Definition 13. A surjective morphism $\xi : M \to L$ of $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules is an unramified covering of degree $\deg \xi = k$ if all the fibres $\xi^{-1}(x)$, $x \in L$ of ξ are of one and a same cardinality $\left|\xi^{-1}(x)\right|=k$.

The inertia map $e_{\xi}: M \to \mathbb{N}$ of an unramified covering $\xi: M \to L$ of deg $\xi = k$ takes values in $\{1, \ldots, k\}$. This follows from Proposition-Definition 5 (iii), according to which $\xi^{-1}(x) = \coprod_{y \in S_x} \text{Orb}_{\mathfrak{G}_{\delta(x)}}(y)$, $\forall x \in M$, $\delta(x) = \deg \text{Orb}_{\mathfrak{G}}(x)$, deg Orb $\mathfrak{G}_{\delta(x)}(y) = e_{\xi}(y)$, whereas $k = |\xi^{-1}(x)| = \sum_{n=0}^{\infty}$ $\sum_{y \in S_x} e_{\xi}(y)$ with $e_{\xi}(y) \in \mathbb{N}$.

The next proposition establishes that an arbitrary irreducible quasi-projective curve $X \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$ contains a locally finite $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ submodule X_o with at most finite complement $X \setminus X_o$, which admits a finite unramified covering $f: X_o \to f(X_o)$ onto a \mathfrak{G}_m -submodule $f(X_o) \subseteq \mathbb{P}^1(\overline{\mathbb{F}_q})$ with $\left| \mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus f(X_o) \right| < \infty$ for some $m \in \mathbb{N}$.

Proposition 14. For any irreducible quasi-projective curve $X \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of *positive genus there exist* $m \in \mathbb{N}$ and locally finite $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ -submodules $X_o \subseteq X \cap \overline{\mathbb{F}_q}^n \subset \mathbb{P}^n(\overline{\mathbb{F}_q}), L_o \subseteq \overline{\mathbb{F}_q} \subset \mathbb{P}^1(\overline{\mathbb{F}_q})$ with at most finite complements $X \setminus X_o$, $\mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L_o$, related by a finite unramified covering $f : X_o \to L_o$ of \mathfrak{G}_{m} -modules and quasi-affine curves, which induces the identical inclusion $f^* = \text{Id} : \overline{\mathbb{F}_q}(L_o) =$ $\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})) \hookrightarrow \overline{\mathbb{F}_q}(X) = \overline{\mathbb{F}_q}(X_o)$ of the corresponding function fields. Moreover, *there exist a plane quasi-affine curve* $Y_o \subset \overline{\mathbb{F}_q}^2$, which is a locally finite \mathfrak{G}_m -module, *as well as an isomorphism* $\varphi: X_o \to Y_o$ *of quasi-affine curves and* \mathfrak{G}_m *-modules, such that* f *factors through* φ *and the first canonical projection* $pr_1: Y_o \to L_o$, $pr_1(u_o, v_o) = u_o, \forall (u_o, v_o) \in Y_o$ along the commutative diagram

Proof. According to Proposition 1 from 4 of Algebraic Preliminaries of [7], there exist such generators u, v of the function field $\overline{\mathbb{F}_q}(X) = \overline{\mathbb{F}_q}(u, v)$ of X over $\overline{\mathbb{F}_q}$ that u is transcendental over $\overline{\mathbb{F}_q}$ and v is separable over $\overline{\mathbb{F}_q}(u)$. If $\widetilde{g}(x) =$ $\sum_{k=1}^{k}$ $i=0$ $\alpha_i(u)$ $\frac{\alpha_i(u)}{\beta_i(u)}x^i \in \overline{\mathbb{F}_q}(u)[x]$ with $\alpha_i(u), \beta_i(u) \in \overline{\mathbb{F}_q}[u], \alpha_k(u) = \beta_k(u) \equiv 1$ is the minimal polynomial of v over $\overline{\mathbb{F}_q}(u)$ and $q(u) \in \overline{\mathbb{F}_q}[u]$ is a least common multiple of the denominators $\beta_i(u)$ of the coefficients of $\tilde{g}(x)$ then

$$
q(u)\widetilde{g}(x) = \sum_{i=0}^{k} \frac{q(u)\alpha_i(u)}{\beta_i(u)} x^i \in \overline{\mathbb{F}_q}[u, x]
$$

is a polynomial in two variables u, x of positive degree $k := \deg_x(q(u)\tilde{g}(x)) \in \mathbb{N}$ with respect to x . Dividing by the greatest common divisor of the coefficients $q(u)\alpha_i(u)$ $\frac{u}{\beta_i(u)} \in \overline{\mathbb{F}_q}[u], 0 \leq i \leq k$ of $q(u)\tilde{g}(x)$, one obtains a primitive and therefore irreducible polynomial $g(u, x) \in \overline{\mathbb{F}_q}[u, x]$. The affine curve

$$
Y := V(g(u, x)) = \{(u_o, v_o) \in \overline{\mathbb{F}_q}^2 \mid g(u_o, v_o) = 0\}
$$

has function field $\overline{\mathbb{F}_q}(Y) = \overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(X)$. That suffices for the existence of a birational map $\varphi: X \longrightarrow Y$, inducing the identity $\varphi^* = \mathrm{Id} : \overline{Y} = \overline{\mathbb{F}_q}(u, v) \to$ $\overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(X)$ of $\overline{\mathbb{F}_q}$ -algebras. In other words, there are quasi-affine curves

 $X_1 \subseteq X$, $X_1 \subseteq \overline{\mathbb{F}_q}^n$, respectively, $Y_1 \subseteq Y \subset \overline{\mathbb{F}_q}^2$ with an isomorphism $\varphi: X_1 \to Y_1$ of quasi-affine varieties. For any $1 \leq j \leq 2$ let $\text{pr}_j : \overline{\mathbb{F}_q}^2 \to \overline{\mathbb{F}_q}$, $\text{pr}_j(x_1, x_2) = x_j$ be the canonical projection on the j-th component. Then $\varphi_j := \text{pr}_j \varphi : X_1 \longrightarrow$ $\overline{\mathbb{F}_q}$, $1 \leq j \leq 2$ are regular functions on X_1 and there are such polynomials $g_j(x_1,...,x_n), h_j(x_1,...,x_n) \in \overline{\mathbb{F}_q}[x_1,...,x_n]$ that $\varphi_j\Big|_{X_1} = \frac{g_j(x_1,...,x_n)}{h_j(x_1,...,x_n)}$ $h_j(x_1,...,x_n)$ $\Big|_{X_1}$, after replacing X_1 by its sufficiently small Zariski open subset. The proper Zariski closed subvarieties of curves are finite sets of points, so that $|X \setminus X_1| < \infty$, $|Y \setminus Y_1| < \infty$. If $Y \setminus Y_1 = \{y_1, \ldots, y_s\}$ then $Y_2 := Y \setminus \text{pr}_1^{-1} \{ \text{pr}_1(y_1), \ldots, \text{pr}_1(y_s) \} \subseteq Y_1$ is a quasiaffine curve, on which the fibres $pr_1^{-1}(u_o) = \{(u_o, v_o) \in \overline{\mathbb{F}_q}^2 \mid g(u_o, v_o) = 0\} \simeq \{v_o \in \mathbb{F}_q \}$ $\overline{\mathbb{F}_q} | g(u_o, v_o) = 0$ of $\text{pr}_1 : Y_2 \to \text{pr}_1(Y_2)$ coincide with the corresponding fibres of $\text{pr}_1: Y \to \overline{\mathbb{F}_q}$ and are of cardinality $|\text{pr}_1^{-1}(u_o)| \leq k$. Note that $X_2 := \varphi^{-1}(Y_2)$ is a quasi-affine curve, $|X_1 \setminus X_2| < \infty$, $|Y_1 \setminus Y_2| < \infty$ and $\varphi : X_2 \to Y_2$ is an isomorphism of quasi-affine curves. The discriminant $D_x(g) \in \overline{\mathbb{F}_q}[u]$ of $g(u, x)$ with respect to x is a polynomial of u and has a finite set of zeroes $V(D_x(g)) \subset pr_1(Y_2)$. All the fibres of

$$
\operatorname{pr}_1: Y_o = Y_2 \setminus \operatorname{pr}_1^{-1}(V(D_x(g))) \longrightarrow \overline{\mathbb{F}_q}
$$

are of cardinality k and $\varphi: X_o = \varphi^{-1}(Y_o) \to Y_o$ is an isomorphism of quasi-affine varieties with $|X_1 \setminus X_o| < \infty$, $|Y_1 \setminus Y_o| < \infty$. If $X_o = V(g'_1, \ldots, g'_s) \setminus V(h'_1, \ldots, h'_r)$ consists of the common zeroes of the polynomials $g'_i(x_1, \ldots, x_n) \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n],$ which are not a common zero of $h'_1(x_1,\ldots,x_n),\ldots,h'_r(x_1,\ldots,x_n) \in \overline{\mathbb{F}_q}[x_1,\ldots,x_n],$ then the minimal finite extension $\mathbb{F}_{q^{\mu}} \supseteq \mathbb{F}_{q}$, which contains the coefficients of all $g'_i(x_1,\ldots,x_n)$, $h'_j(x_1,\ldots,x_n)$ is called the definition field of X_o . One sees immediately that for any $\mathbb{F}_{q^s} \supseteq \mathbb{F}_{q^{\mu}}$ the quasi-affine curve X_o is a locally finite $\mathfrak{G}_s = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^s})$ -module. The minimal finite extension $\mathbb{F}_{q^{\nu}} \supseteq \mathbb{F}_q$, containing the coefficients of the numerators $g_j(x_1, \ldots, x_n) \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ and the denominators $h_j(x_1,\ldots,x_n) \in \overline{\mathbb{F}_q}[x_1,\ldots,x_n]$ of the components φ_j of $\varphi = (\varphi_1,\varphi_2): X_o \to \mathbb{F}_q[x_1,\ldots,x_n]$ $Y_o \subset \overline{\mathbb{F}_q}^2$ is said to be the definition field of φ . We choose such $m \in \mathbb{N}$ that \mathbb{F}_{q^m} contains the definition fields of X_0 , Y_0 , φ and observe that $\varphi: X_0 \to Y_0$ is an isomorphism of locally finite $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ -modules.

Moreover, $L_o := \text{pr}_1(Y_o) \subseteq \overline{\mathbb{F}_q} \subset \mathbb{P}^1(\overline{\mathbb{F}_q})$ is a quasi-affine curve since $|\overline{\mathbb{F}_q} \setminus L_o|$ ∞ and $pr_1: Y_o \to L_o$ is an unramified covering of quasi-affine varieties. If \mathbb{F}_{q^m} contains the definition field of L_o then $pr_1: Y_o \to L_o$ is a finite unramified covering of locally finite \mathfrak{G}_m -modules of degree k. We put $f := \text{pr}_1 \varphi : X_o \to L_o$ and note that under the aforementioned choices $f: X_o \to L_o$ is a finite unramified covering of locally finite \mathfrak{G}_m -modules and quasi-affine varieties, inducing the identical inclusion $f^* = \varphi^* \text{pr}_1^* = \text{pr}_1^* : \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(u) \hookrightarrow \overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(X_o).$

An automorphism α of a $\mathfrak{G}\text{-module }M$ is a self-isomorphism $\alpha : M \to M$ of $\mathfrak{G}\text{-modules.}$ We denote by $\text{Aut}_{\mathfrak{G}}(M)$ the automorphism group of M. Since \mathfrak{G} is an abelian group, any $\varphi \in \mathfrak{G}$ induces an automorphism $\varphi : M \to M$. In such a way there arises a group homomorphism $\Psi : \mathfrak{G} \to \text{Aut}_{\mathfrak{G}}(M)$. If Ψ is injective, the **G**-module M is said to be faithful and **G** is identified with $\Psi(\mathfrak{G}) \leq \text{Aut}_{\mathfrak{G}}(M)$.

Lemma 15. *A locally finite module M over* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *with closed stabilizers is faithful if and only if* M *is an infinite set.*

Proof. By the very definition of the homomorphism $\Psi : \mathfrak{G} \to \text{Aut}_{\mathfrak{G}}(M)$, its kernel

$$
\ker \Psi = \bigcap_{x \in M} \operatorname{Stab}_{\mathfrak{G}}(x)
$$

is the intersection of the stabilizers of all the points of M . In the proof of Lemma 4 (iii) we have established that $\mathfrak{G}_m \cap \mathfrak{G}_n = \mathfrak{G}_{\text{LCM}(m,n)}$. If $M = \{x_1, \ldots, x_r\}$ is a finite set then the map deg $Orb_{\mathfrak{G}} : M \to \mathbb{N}$ has finitely many values m_1, \ldots, m_ν , $\nu \leq r$. As a result, ker $\Psi = \bigcap_{j=1}^{r} \mathfrak{G}_{m_j} = \mathfrak{G}_{\text{LCM}(m_j \mid 1 \leq j \leq \nu)} \neq \{0\}$ and M is not a faithful G-module.

Suppose that M is an infinite locally finite $\mathfrak{G}\text{-module}$ and

$$
\alpha = (\Phi_q^{l_s \text{(mod } s)})_{s \in \mathbb{N}} \in \ker \Psi = \cap_{x \in M} \text{Stab}_{\mathfrak{G}}(x)
$$

$$
= \cap_{x \in M} \mathfrak{G}_{\deg \text{Orb}_{\mathfrak{G}}(x)} = \cap_{x \in M} \left\{ \Phi_q^{\deg \text{Orb}_{\mathfrak{G}}(x)m_s \text{(mod } s)} \right\}_{s \in \mathbb{N}}
$$

.

Then for any point $x \in M$ and any $s \in \mathbb{N}$ the degree deg $Orb_{\mathfrak{G}}(x)$ of the \mathfrak{G} -orbit of x divides l_s . For an infinite locally finite $\mathfrak{G}\text{-module }M$ the map deg $\text{Orb}_{\mathfrak{G}} : M \to \mathbb{N}$ has an infinite image, so that any l_s is divisible by infinitely many different natural numbers deg Orb $g(x)$, $x \in M$. That implies $l_s = 0$, $\forall s \in \mathbb{N}$, whereas ker $\Psi = \{0\}$.
Thus any infinite locally finite \mathfrak{G} -module M is faithful Thus, any infinite locally finite $\mathfrak{G}\text{-module }M$ is faithful.

Definition 16. If $\xi : M \to L$ is a finite unramified covering of locally finite **G**-modules then the fixed-point free automorphisms of **G**-modules $\alpha : M \to M$ with $\xi \alpha = \xi$ are called deck transformations of ξ .

Any subgroup H of Aut_{$\mathfrak{G}(M)$}, which consists of deck transformations of $\xi : M \to L$ is called a deck transformation group of ξ .

Note that an automorphism $\alpha : M \to M$ of a locally finite $\mathfrak{G}\text{-module }M$ and a finite unramified covering $\xi : M \to L$ of $\mathfrak{G}\text{-modules}$ are subject to the equality $\xi \alpha = \xi$ if and only if α restricts to a bijection $\alpha : \xi^{-1}(x) \to \xi^{-1}(x)$ on any fibre $\xi^{-1}(x), x \in L$ of ξ . Namely, $y \in \xi^{-1}(x)$ maps to $\alpha(y) \in \xi^{-1}(x)$ exactly when $\xi \alpha(y) = x = \xi(y)$. Thus, for any deck transformation group H of $\xi : M \to L$ and any point $x \in L$ there arises a group homomorphism

$$
\Psi_x: H \to \text{Sym}(\xi^{-1}(x)) = \text{Sym}(k),
$$

where $k = \deg(\xi)$. Due to the lack of fixed points of H, Ψ_x are injective and H is a finite group, whose orbits on $\xi^{-1}(x)$ are of one and a same cardinality $|H| \leq k!$. In particular, H acts transitively on some fibre $\xi^{-1}(x_o)$, $x_o \in L$ of a finite unramified covering $\xi : M \to L$ exactly when $|H| = k = \deg(\xi)$. If so, then H acts transitively on all the fibres $\xi^{-1}(x)$, $x \in L$ of ξ .

Definition 17. A finite unramified covering $\xi : M \to L$ of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules is H-Galois if there is a deck transformation group $H < \text{Aut}_{\mathfrak{G}}(M)$, acting transitively on one and, therefore, on any fibre $\xi^{-1}(x)$, $x \in L$ of ξ .

Proposition 18. *In the notations from Proposition 14, the Galois group*

$$
H = \operatorname{Gal}(\overline{\mathbb{F}_q}(X)/\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})))
$$

of the finite separable function fields extension $\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})) \subset \overline{\mathbb{F}_q}(X)$ *is a deck transformation group of the finite unramified covering* $f = \text{pr}_1 \varphi : X_o \to L_o$ *of locally finite* $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ *-modules. If* $\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})) \subset \overline{\mathbb{F}_q}(X)$ *is a Galois extension then* $f = \text{pr}_1 \varphi : X_o \to L_o$ *is an H-Galois covering. If* $f = \text{pr}_1 \varphi : X_o \to L_o$ *has a deck transformation group* H *, which consists of birational maps* $h: X_o \longrightarrow X_o$ and acts transitively on the fibres of $f: X_o \to L_o$ then the finite separable extension *of function fields* $\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})) \subset \overline{\mathbb{F}_q}(X)$ *is Galois and* $H \simeq \text{Gal}(\overline{\mathbb{F}_q}(X)/\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})))$.

Proof. As far as $\varphi: X_o \to Y_o$ is an isomorphism of locally finite \mathfrak{G}_m -modules, inducing the identity $\varphi^* = \text{Id} : \overline{\mathbb{F}_q}(Y_o) = \overline{\mathbb{F}_q}(u, v) \to \overline{\mathbb{F}_q}(X_o) = \overline{\mathbb{F}_q}(X)$ of the corresponding function fields, it suffices to prove the corresponding statements for $\underline{\text{pr}}_1: Y_o \to L_o.$ More precisely, we claim that $H = \text{Gal}(\overline{\mathbb{F}_q}(Y_o)/\overline{\mathbb{F}_q}(L_o))$ with $\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q})) = \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(u)$ is a deck transformation group of the finite unramified covering $pr_1: Y_o \to L_o$ of locally finite \mathfrak{G}_m -modules. If $\overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v)$ is a Galois extension then $pr_1: Y_o \to L_o$ is a Galois covering. If $pr_1: Y_o \to L_o$ has a deck transformation group H, which consists of birational maps $h: Y_o \longrightarrow Y_o$ and acts transitively on the fibres of $pr_1: Y_o \to L_o$ then the finite separable extension $\overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v)$ of function fields is Galois.

Note that for any fixed $u_o \in L_o$ the Galois group $H = \text{Gal}(\overline{\mathbb{F}_q}(u, v)/\overline{\mathbb{F}_q}(u))$ acts without fixed points on the fibre $pr_1^{-1}(u_o) = \{(u_o, v_o) \in \overline{\mathbb{F}_q}^2 | g(u_o, v_o) = 0\}$ of the projection $pr_1: Y_o \to L_o$. That allows to view H as a fixed-point free subgroup of the symmetric group $\text{Sym}(Y_o)$ of Y_o . If $\text{deg}_x g(u, x) = k$ then $\overline{\mathbb{F}_q}(u, v)$ is a k-dimensional vector space over $\overline{\mathbb{F}_q}(u)$ with basis $1, v, \ldots, v^{k-1}$. The Frobenius automorphism $\Phi_{q^m} : \overline{\mathbb{F}_q(u,v)} \to \overline{\mathbb{F}_q(u,v)}$ acts on the coefficients of the rational functions $\frac{g_1(u)}{g_2(u)} \in \overline{\mathbb{F}_q}(u)$ with $g_1(u), g_2(u) \in \overline{\mathbb{F}_q}[u], g_2(u) \neq 0$ and fixes v^i for $\forall 0 \leq i \leq$ k − 1. By their very definition, all $h \in H = \text{Gal}(\overline{\mathbb{F}_q}(u, v)/\overline{\mathbb{F}_q}(u))$ act identically on $\overline{\mathbb{F}_q}(u)$ and permute the roots $x_i \in \overline{\mathbb{F}_q}$ of $g(u, x) = 0$. That is why $h\Phi_{q^m} = \Phi_{q^m}h$ as an automorphism of the function field $\overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(Y_o)$ and of the affine coordinate ring $\overline{\mathbb{F}_q}[Y_o] = \overline{\mathbb{F}_q}[u, x]/\langle g(u, x)\rangle = \overline{\mathbb{F}_q}[u, v] = \overline{\mathbb{F}_q}[u] + \overline{\mathbb{F}_q}[u]v + \ldots + \overline{\mathbb{F}_q}[u]v^{k-1}$ of Y_o . The affine closure $Y = V(g(u, x)) \subset \overline{\mathbb{F}_q}^2$ of Y_o in $\overline{\mathbb{F}_q}^2$ has the same affine coordinate ring $\overline{\mathbb{F}_q}[Y] = \overline{\mathbb{F}_q}[Y_o]$ as Y_o . The $\overline{\mathbb{F}_q}$ -algebra automorphisms of $\overline{\mathbb{F}_q}[Y]$ are in a bijective correspondence with the automorphisms $Y \to Y$ of the affine curve Y, so that $h\Phi_{q^m} = \Phi_{q^m}h$ coincide as automorphisms of Y. By the very choice of $m \in \mathbb{N}$, the quasi-affine curve Y_o is Φ_{q^m} -invariant. According to $Y_o = Y \setminus \text{pr}_1^{-1}\{u_1, \ldots, u_r\}$ for some $u_1, \ldots, u_r \in \overline{\mathbb{F}_q}$, the fibres of $\text{pr}_1 : Y_o \to \text{pr}_1(Y_o)$ coincide with the fibres of

 $\text{pr}_1: Y \to \overline{\mathbb{F}_q}$ over $\text{pr}_1(Y_o)$. Since h acts on the fibres of $\text{pr}_1: Y \to \overline{\mathbb{F}_q}$ without fixed points, the curve Y_o is preserved by h and $h\Phi_{q^m} = \Phi_{q^m} h$ coincide as automorphisms of Y_o . In such a way we have justified that H is a deck transformation group of the unramified covering $\text{pr}_1: Y_o \to L_o$ of \mathfrak{G}_m -modules.

If the finite separable extension $\overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v)$ is normal, i.e., Galois, then its Galois group $H = \text{Gal}(\overline{\mathbb{F}_q}(u, v)/\overline{\mathbb{F}_q}(u))$ is of order $|H| = [\overline{\mathbb{F}_q}(u, v) : \overline{\mathbb{F}_q}(u)] =$ $\deg_x g(u, x) = k = \deg(\text{pr}_1)$. Therefore H acts transitively on the fibres of pr_1 : $Y_o \to L_o$ and $\text{pr}_1 : Y_o \to L_o$ is an H-Galois covering of locally finite \mathfrak{G}_m -modules.

Let H be a deck transformation group of $pr_1: Y_o \to L_o$, which consists of birational maps $h: Y_o \longrightarrow Y_o$ and acts transitively on the fibres of pr₁. After replacing Y_o by a non-empty Zariski open subset $Y_1 \subseteq Y_o$, one can assume that all $h \in H$ are injective morphisms $h: Y_1 \to Y_o$. Any such $h = (h_1, h_2)$ is a pair of regular functions $h_i: Y_1 \to \overline{\mathbb{F}_q}$, $1 \leq i \leq 2$. The equality $\text{pr}_1 h = \text{pr}_1$, $\forall h = (h_1, h_2)$ is equivalent to $h_1(u, v) = u$, so that $h_1 = \text{pr}_1$. Any birational map $h: Y_o \to Y_o$ induces an isomorphism $h^*: \overline{\mathbb{F}_q}(Y_o) = \overline{\mathbb{F}_q}(u, v) \to \overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(Y_o)$ of $\overline{\mathbb{F}_q}$ -algebras. According to $u = \text{pr}_1(u, v)$ one has $h^*(u) = h^*(\text{pr}_1)(u, v) = \text{pr}_1h(u, v) = h_1(u, v) =$ u, $\forall h \in H$. Moreover, h^* acts identically on the constant field $\overline{\mathbb{F}_q}$ and, therefore, fixes any element of $\overline{\mathbb{F}_q}(u)$. That allows to view $h^* \in \text{Gal}(\overline{\mathbb{F}_q}(u,v)/\overline{\mathbb{F}_q}(u))$ as an element of the Galois group of the finite separable extension $\overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v)$. The group H, acting transitively on the fibres of $pr_1: Y_o \to L_o$ is of order $|H| =$ $\deg(\text{pr}_1) = k = \deg_x g(u, x) = [\overline{\mathbb{F}_q}(u, v) : \overline{\mathbb{F}_q}(u)]$ and the extension $\overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v)$ is Galois. \Box

Note that, in general, if the finite coverings $pr_1: Y_o \to L_o$, $f = pr_1\varphi: X_o \to L_o$ of locally finite \mathfrak{G}_m -modules are H-Galois for some deck transformation group H of pr₁ and f then the finite separable extension $\overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(u) \subset \overline{\mathbb{F}_q}(u, v) = \overline{\mathbb{F}_q}(Y_o) =$ $\overline{\mathbb{F}_q}(X_o)$ is not supposed to be Galois. The reason is that the automorphisms $h \in H$ of the \mathfrak{G}_m -modules Y_o , X_o are not necessarily birational maps of Y_o , X_o .

Let $\xi : M \to L$ be a finite unramified covering of locally finite $\mathfrak{G}\text{-modules.}$ Then any deck transformation group H of ξ is a finite fixed-point free subgroup of the automorphism group $\text{Aut}_{\mathfrak{G}}(M)$ of M. The next lemma establishes that the orbit space $\mathrm{Orb}_H(M)$ of an arbitrary finite fixed-point free subgroup $H < \mathrm{Aut}_{\mathfrak{G}}(M)$ has natural structure of a locally finite $\mathfrak{G}\text{-module}$, with respect to which the map $\xi_H : M \to \mathrm{Orb}_H(M), \xi_H(x) = \mathrm{Orb}_H(x)$, associating to a point $x \in M$ its H-orbit $Orb_H(x)$ is an H-Galois covering.

Lemma 19. Let M be an infinite locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_a}/\mathbb{F}_a)$ -module and H *be a finite fixed-point free subgroup of* $\text{Aut}_{\mathfrak{G}}(M)$ *. Then:*

(i) the product $H\mathfrak{G} \simeq H \times \mathfrak{G}$ *of the subgroups* H *and* \mathfrak{G} *of* $\text{Aut}_{\mathfrak{G}}(M)$ *is direct*; *(ii) the set* $\text{Orb}_H(M) = \{\text{Orb}_H(x) | x \in M\}$ *of the H-orbits on* M *is a locally finite* G*-module with respect to the action*

$$
\mathfrak{G} \times \mathrm{Orb}_{H}(M) \longrightarrow \mathrm{Orb}_{H}(M),
$$

\n
$$
(\varphi, \mathrm{Orb}_{H}(x)) \mapsto \varphi \mathrm{Orb}_{H}(x) = \mathrm{Orb}_{H}\varphi(x) \quad \forall \varphi \in \mathfrak{G}, \quad \forall x \in M;
$$
\n(4.1)

(iii) the correspondence

$$
\xi_H : M \to \text{Orb}_H(M), \quad \xi_H(x) = \text{Orb}_H(x) \quad \forall x \in M
$$

is a finite unramified H-Galois covering of degree $\deg \xi_H = |H|$.

Proof. (i) According to Lemma 15, the infinite locally finite $\mathfrak{G}\text{-module }M$ is faithful and one can view \mathfrak{G} as a subgroup of $\text{Aut}_{\mathfrak{G}}(M)$. By its very definition, Aut_{$\mathfrak{G}(M)$} centralizes \mathfrak{G} . In particular, $h\varphi = \varphi h$, $\forall h \in H$ and $\forall \varphi \in \mathfrak{G}$. The isomorphism $\mathfrak{G} \simeq (\widehat{\mathbb{Z}}, +) \simeq \prod$ $\prod_{\text{prime }p}(\mathbb{Z}_p, +)$ with the direct product of the additive

groups $(\widehat{\mathbb{Z}}_p, +)$ of the *p*-adic integers reveals that any $\varphi \in \widehat{\mathbb{Z}} \setminus \{0\}$ is of infinite order. As far as any entry h of the finite group H is of finite order in $\text{Aut}_{\mathfrak{G}}(M)$, there follows $H \cap \mathfrak{G} = {\mathrm{Id}_M}$ and the product $H \mathfrak{G} \simeq H \times \mathfrak{G}$ of subgroups of ${\mathrm{Aut}}_{\mathfrak{G}}(M)$ is direct.

(ii) Note that the map (4.1) is correctly defined, as far as $\forall x \in M$, $\forall \varphi \in \mathfrak{G}$, $\forall h \in H$ one has $\varphi \text{Orb}_H(hx) = \text{Orb}_H(\varphi h(x)) = \text{Orb}_H(h\varphi(x)) = \text{Orb}_H(\varphi(x)) =$ $\varphi \text{Orb}_H(x)$. The axioms for a $\mathfrak{G}\text{-action}$ on $\text{Orb}_H(M)$ follow from the ones for the $\mathfrak{G}\text{-action on }M$. Since H centralizes \mathfrak{G} the $\mathfrak{G}\text{-orbits Orb}_{\mathfrak{G}}\xi_H(x) = \text{Orb}_{\mathfrak{G}}\text{Orb}_H(x)$ $Orb_HOrb_{\mathfrak{G}}(x) = \xi_HOrb_{\mathfrak{G}}(x)$ on $Orb_H(M)$ are the images of the \mathfrak{G} -orbits on M under ξ_H , so that deg $Orb_{\mathfrak{G}}\xi_H(x) < \infty$, $\forall x \in M$. If deg $Orb_{\mathfrak{G}}\xi_H(x) = |\xi_H Orb_{\mathfrak{G}}(x)| =$ m then the restriction $\xi_H|_{\text{Orb}_{\mathfrak{G}}(x)} : \text{Orb}_{\mathfrak{G}}(x) \to \text{Orb}_{\mathfrak{G}}\xi_H(x)$ of $\xi_H : M \to \text{Orb}_H(M)$ is of degree $\deg(\xi_H|_{\text{Orb}_{\mathfrak{G}}(x)}) \leq \deg(\xi_H) = |H|$, so that

$$
\deg \operatorname{Orb}_{\mathfrak{G}}(x) = \deg(\xi_H|_{\operatorname{Orb}_{\mathfrak{G}}(x)}) \deg \operatorname{Orb}_{\mathfrak{G}} \xi_H(x) \le m|H|.
$$

By assumption, the $\mathfrak{G}\text{-action}$ on M is locally finite and there are finitely many $\mathfrak{G}\text{-}$ orbits $Orb_{\mathfrak{G}}(x)$ on M of degree $\leq m|H|$. Therefore, there are finitely many $\mathfrak{G}\text{-orbits}$ $Orb_{\mathfrak{G}}\xi_H(x)$ on $Orb_H(M)$ of degree m and $Orb_H(M)$ is a locally finite $\mathfrak{G}\text{-module}$.

(iii) The \mathfrak{G} -equivariance of ξ_H is an immediate consequence of the definition of the $\mathfrak{G}\text{-action}$ on $\mathrm{Orb}_H(M)$

Let M be an infinite locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module. The next proposition describes the "twist" of the $\mathfrak{G}\text{-action}$ on M by a fixed-point free automorphism $h \in \text{Aut}_{\mathfrak{G}}(M)$ of finite order.

Proposition 20. Let M be an infinite locally finite $\mathfrak{G} = \mathfrak{G}(\Phi_q) = \overline{\Phi_q}$. *module with closed stabilizers, H be a finite fixed-point free subgroup of* $\text{Aut}_{\mathfrak{G}}(M)$ $and \varphi = h\Phi_q^r$ *for some* $h \in H$ *and some natural number* $r \in \mathbb{N}$ *. Then:*

- *(i) the pro-finite completion* $\mathfrak{G}(\varphi) = \langle \varphi \rangle$ *of the infinite cyclic group* $\langle \varphi \rangle \simeq (\mathbb{Z}, +)$ *is a subgroup of* $H\mathfrak{G} \simeq H \times \mathfrak{G}$;
- *(ii) M is a locally finite* $\mathfrak{G}(\varphi) = \widehat{\langle \varphi \rangle}$ -module;

(*iii*) the second canonical projection pr_2 : $H \times \mathfrak{G} \to \mathfrak{G}$, $pr_2(h', \gamma) = \gamma$, $\forall h' \in H$, [∀]^γ [∈] ^G *provides a locally finite* ^G(ϕ)*-action*

$$
\mathfrak{G}(\varphi) \times \text{Orb}_H(M) \longrightarrow \text{Orb}_H(M),
$$

$$
(\gamma, \text{Orb}_H(x)) \mapsto \text{pr}_2(\gamma) \text{Orb}_H(x) = \text{Orb}_H(\text{pr}_2(\gamma)x);
$$

(iv) the map

 $\xi_H : M \longrightarrow \mathrm{Orb}_H(M), \quad \xi_H(x) = \mathrm{Orb}_H(x) \quad \forall x \in M$

is an H-Galois covering of locally finite $\mathfrak{G}(\varphi)$ *-modules.*

Proof. (i) First of all, $\varphi = h\Phi_q^r$ is of infinite order. Otherwise, for h of order m and φ of order l, one has $\mathrm{Id}_N = \varphi^{ml} = h^m \Phi_q^{rml} = \Phi_q^{rml}$ and the Frobenius automorphism $\Phi_q : M \to M$ turns to be of finite order. This is an absurd, justifying $\langle \varphi \rangle \simeq (\mathbb{Z}, +)$. Note that $\varphi = h \Phi_q^r \in H\mathfrak{G}$ suffices for $\langle \varphi \rangle$ to be a subgroup of the compact group H \mathfrak{G} . The pro-finite completion $\mathfrak{G}(\varphi) = \langle \varphi \rangle$ is the closure of $\langle \varphi \rangle$ with respect to the discrete topology, so that $\mathfrak{G}(\varphi) = \widehat{\langle \varphi \rangle} \leq H\mathfrak{G}$ since $H\mathfrak{G}$ is closed with respect to the discrete topology.

(ii) In order to show that all the $\mathfrak{G}(\varphi)$ -orbits on M are of finite degree, let us consider a point $x \in M$ with $\deg \text{Orb}_{\mathfrak{G}}(x) = \delta$. If $h \in H < \text{Aut}_{\mathfrak{G}}(M)$ is of order m then

$$
\mathfrak{G}(\varphi^{m\delta}) := \widehat{\langle \varphi^{m\delta} \rangle} = \widehat{\langle \Phi_q^{m\delta r} \rangle} = \mathfrak{G}(\Phi_q^{mr\delta}) \leq \mathfrak{G}(\Phi_q^{\delta}) = \text{Stab}_{\mathfrak{G}}(x) \leq \text{Stab}_{H \times \mathfrak{G}}(x),
$$

whereas $\mathfrak{G}(\varphi^{m\delta}) \leq \mathfrak{G}(\varphi) \cap \text{Stab}_{H \times \mathfrak{G}}(x) = \text{Stab}_{\mathfrak{G}(\varphi)}(x) \leq \mathfrak{G}(\varphi)$. Therefore

$$
\deg \operatorname{Orb}_{\mathfrak{G}(\varphi)}(x) = [\mathfrak{G}(\varphi) : \operatorname{Stab}_{\mathfrak{G}(\varphi)}(x)] = \frac{[\mathfrak{G}(\varphi) : \mathfrak{G}(\varphi^{m\delta})]}{[\operatorname{Stab}_{\mathfrak{G}(\varphi)}(x) : \mathfrak{G}(\varphi^{m\delta})]} = \frac{m\delta}{[\operatorname{Stab}_{\mathfrak{G}(\varphi)}(x) : \mathfrak{G}(\varphi^{m\delta})]} \in \mathbb{N}
$$

and all the $\mathfrak{G}(\varphi)$ -orbits on M are finite. Let $n \in \mathbb{N}$ and $y \in M$ be a point with deg $Orb_{\mathfrak{G}(\varphi)}(y) = n$ or, equivalently, with $\mathrm{Stab}_{\mathfrak{G}(\varphi)}(y) = \mathfrak{G}(\varphi^n)$. If $\delta :=$ deg Orb_{$\mathfrak{G}(y)$} and $h \in H < \text{Aut}_{\mathfrak{G}}(M)$ is of order m then

$$
\mathfrak{G}(\varphi^{nm})=\mathfrak{G}(\Phi_q^{nmr})<\mathfrak{G}\cap\mathrm{Stab}_{H\times \mathfrak{G}}(y)=\mathrm{Stab}_{\mathfrak{G}}(x)=\mathfrak{G}(\Phi_q^{\delta}).
$$

Therefore δ is a natural divisor of nmr. By assumption, M contains finitely many **G**-orbits of degree δ . For any fixed $n \in \mathbb{N}$ there are finitely many natural divisors δ of nmr and, therefore, finitely many $\mathfrak{G}(\varphi)$ -orbits on M of degree n. In such a way we have checked that the $\mathfrak{G}(\varphi)$ -action on M is locally finite.

(iii) is an immediate consequence of Lemma 19 (ii).

(iv) Towards the $\mathfrak{G}(\varphi)$ -equivariance of $\xi_H : M \to \text{Orb}_H(M), \xi_H(x) = \text{Orb}_H(x)$, $\forall x \in M$, let us consider the first canonical projection $\text{pr}_1 : H \times \mathfrak{G} \to \mathfrak{G}$, $\text{pr}_1(h', \gamma) = h'$,

 $\forall h' \in H, \forall \gamma \in \mathfrak{G}$. An arbitrary $\rho \in \mathfrak{G}(\varphi) < H\mathfrak{G} \simeq H \times \mathfrak{G}$ has an unique factorization $\rho = \text{pr}_1(\rho) \text{pr}_2(\rho)$ into a product of $\text{pr}_1(\rho) \in H$ and $\text{pr}_2(\rho) \in \mathfrak{G}$. Then $\xi_H(\rho x) = \xi_H(\text{pr}_1(\rho)\text{pr}_2(\rho)x) = \xi_H(\text{pr}_2(\rho)x) = \text{pr}_2(\rho)\xi_H(x), \forall x \in M$ verifies that ξ_H is an H-Galois covering of locally finite $\mathfrak{G}(\varphi)$ -modules.

From now on, we identify the isomorphic locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ modules, in order to avoid cumbersome notations.

Definition 21. A Galois closure of a finite unramified covering $\xi : M \to L$ of locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules is a triple (N, H, H_1) , which consists of a locally finite $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\overline{\mathbb{F}_{q^m}})$ -module N for some $m \in \mathbb{N}$, a finite fixed-point free subgroup H of $\text{Aut}_{\mathfrak{G}_m}(N)$ and a subgroup H_1 of H, such that $\text{Orb}_{H_1}(N)$ is isomorphic to M as a \mathfrak{G}_m -module, $\mathrm{Orb}_H(N)$ is isomorphic to L as a \mathfrak{G}_m -module and the H-Galois covering $\xi_H : N \to L$, $\xi_H(x) = \text{Orb}_H(x)$, $\forall x \in N$ factors through the H_1 -Galois covering $\xi_{H_1} : N \to M$, $\xi_{H_1}(x) = \text{Orb}_{H_1}(x)$, $\forall x \in N$ and ξ along a commutative diagram

of finite unramified coverings of \mathfrak{G}_m -modules.

We say that (N, H, H_1) is defined over \mathbb{F}_{q^m} .

Proposition 22. *For any irreducible quasi-projective curve* X *of positive genus over* $\overline{\mathbb{F}_q}$ *there exist* $s \in \mathbb{N}$ *, locally finite* $\mathfrak{G}_s = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^s})$ *-submodules* $X' \subseteq X$ *,* $L \subseteq \mathbb{P}^1(\overline{\mathbb{F}_q})$ with at most finite complements $X \setminus X'$, $\mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L$, a finite unramified *covering* $f: X' \to L$ *of* \mathfrak{G}_s -modules and a Galois closure (Z, H, H_1) *of* f *, such that* Z is an irreducible quasi-projective curve $Z \subseteq \mathbb{P}^r(\overline{\mathbb{F}_q}), H = \text{Gal}(\overline{\mathbb{F}_q}(Z)/\overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q}))),$ $H_1 = \text{Gal}(\overline{\mathbb{F}_q}(Z)/\overline{\mathbb{F}_q}(X)).$

Proof. Let $f: X_o \to L_o$ be the finite unramified covering of locally finite \mathfrak{G}_m -modules from Proposition 14. The finite separable extension

$$
\overline{\mathbb{F}_q}(X) = \overline{\mathbb{F}_q}(X_o) = \overline{\mathbb{F}_q}(u, v) \supset \overline{\mathbb{F}_q}(u) = \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(\mathbb{P}^1(\overline{\mathbb{F}_q}))
$$

of the corresponding function fields admits a Galois closure $K \supseteq \overline{\mathbb{F}_q}(u, v) \supseteq \overline{\mathbb{F}_q}(u)$ of finite degree $[K : \overline{\mathbb{F}_q}(u)] < \infty$, i.e., K is normal over $\overline{\mathbb{F}_q}(u)$ and $\overline{\mathbb{F}_q}(u, v)$. Then there is an irreducible quasi-projective curve $Z_0 \subset \mathbb{P}^r(\overline{\mathbb{F}_q})$ with function field $\overline{\mathbb{F}_q}(Z_0) = K$ and dominant rational maps $f_0 : Z_0 \longrightarrow Z_0, f_1 : Z_0 \longrightarrow X_0$, inducing the identical inclusions $f_0^* = \text{Id} : \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(u) \hookrightarrow \overline{\mathbb{F}_q}(Z_0)$, respectively, $f_1^* = \text{Id} : \overline{\mathbb{F}_q}(X_o) =$ $\overline{\mathbb{F}_q}(u, v) \hookrightarrow \overline{\mathbb{F}_q}(Z_0)$ of the associated function fields. Bearing in mind that the finite covering $f: X_o \to L_o$ induces the identity $f^* = \text{Id} : \overline{\mathbb{F}_q}(L_o) = \overline{\mathbb{F}_q}(u) \hookrightarrow \overline{\mathbb{F}_q}(u, v) =$

 $\overline{\mathbb{F}_q}(X_o)$, one obtains a commutative diagram

of identical inclusions of function fields over $\overline{\mathbb{F}_q}$. Therefore, the composition ff_1 coincides with the dominant rational map f_0 . Let $Z'_1 \subset \overline{\mathbb{F}_q}^r$ be a quasi-affine curve, contained in the regularity domains of f_0 and f_1 . Then $f_0: Z'_1 \to f_0(Z'_1)$ is a finite covering of affine curves. Removing from Z'_1 the branch locus of $f_0|_{Z'_1}$, one obtains a quasi-affine curve $Z_1'' \subseteq Z_1' \subseteq Z_0$. The finite set $Z_0 \setminus Z_1''$ has finite image $f(Z_0 \setminus Z_1'')$, so that $L_1 := L_o \setminus f_0(Z_0 \setminus Z_1''), X_1 := f^{-1}(L_1), Z_1 := f_0^{-1}(L_1) = f_1^{-1}(X_1) \subseteq Z_1''$ are quasi-affine curves, subject to a commutative diagram

of finite unramified coverings of quasi-affine curves. In particular, $Z_0 \setminus Z_1, X_o \setminus X_1$, $L_o \setminus L_1$ are finite sets.

The normal separable extension $\overline{\mathbb{F}_q}(L_0) \subset \overline{\mathbb{F}_q}(Z_0)$ is finite, so that its Galois group $H := \text{Gal}(\overline{\mathbb{F}_q}(Z_0)/\overline{\mathbb{F}_q}(L_o)) = \text{Gal}(\overline{\mathbb{F}_q}(Z_1)/\overline{\mathbb{F}_q}(L_1))$ is finite. Any $h \in H$ transforms the affine coordinates z_j , $1 \leq j \leq r$ on $Z_1 \subset \overline{\mathbb{F}_q}^r$ to rational functions $h(z_j) \in \overline{\mathbb{F}_q}(Z_1)$. Let Z'_2 be the intersection of the regularity domains of $h(z_j)$: $Z_1 \longrightarrow \overline{\mathbb{F}_q}$, $\forall h \in H$ and $\forall 1 \leq j \leq r$. Then for any $h \in H$ the map

$$
\widetilde{h}: Z_2' \longrightarrow \widetilde{h}(Z_2') \subseteq Z_1 \subset \overline{\mathbb{F}_q}^r,
$$

$$
\widetilde{h}(u_1, \dots, u_r) := (h(z_1)(u_1), \dots, h(z_r)(u_r)) \quad \forall u = (u_1, \dots, u_r) \in Z_2'
$$

is a morphism of quasi-affine varieties. Since H is a finite group, $Z_2'' := \bigcap_{h \in H} h(Z_2')$ is a quasi-affine curve, so that $|Z_2' \setminus Z_2''| < \infty$. Moreover, $\forall u \in Z_2''$ and $\forall h_o, h \in H$ one has $u \in \widetilde{h_o}^{-1} \widetilde{h}(Z_2')$, whereas $\widetilde{h_o}(u) \in \widetilde{h}(Z_2')$. Thus, $\widetilde{h_o}(u) \in \bigcap_{h \in H} \widetilde{h}(Z_2') = Z_2''$, $\forall u \in Z_2'', \forall h_o \in H$ and Z_2'' is H-invariant. Note that for any $h \in H$ the equation $h(u) = u$ has at most finitely many solutions on Z_2'' . Therefore H has at most finitely many fixed points on Z''_2 . After removing the H-orbits of the H-fixed points on Z_2'' , one obtains a quasi-affine curve $Z_2 \subseteq Z_2''$, acted by H without fixed points.

By the very construction of Z_0 , the function fields extensions

$$
\overline{\mathbb{F}_q}(Z_0) = \overline{\mathbb{F}_q}(Z_1) = \overline{\mathbb{F}_q}(Z_2) \supseteq \overline{\mathbb{F}_q}(X_1) = \overline{\mathbb{F}_q}(X_o) \text{ and}
$$

$$
\overline{\mathbb{F}_q}(Z_0) = \overline{\mathbb{F}_q}(Z_1) = \overline{\mathbb{F}_q}(Z_2) \supseteq \overline{\mathbb{F}_q}(L_1) = \overline{\mathbb{F}_q}(L_o)
$$

are Galois. Therefore the Galois groups

$$
H = \operatorname{Gal}(\overline{\mathbb{F}_q}(Z_2)/\overline{\mathbb{F}_q}(L_1)) \text{ and } H_1 := \operatorname{Gal}(\overline{\mathbb{F}_q}(Z_0)/\overline{\mathbb{F}_q}(X_o)) = \operatorname{Gal}(\overline{\mathbb{F}_q}(Z_2)/\overline{\mathbb{F}_q}(X_1))
$$

have invariant fields $\overline{\mathbb{F}_q}(Z_2)^H = \overline{\mathbb{F}_q}(L_1)$, respectively, $\overline{\mathbb{F}_q}(Z_2)^{H_1} = \overline{\mathbb{F}_q}(X_1)$. The correspondence

$$
f_H: Z_2 \longrightarrow \text{Orb}_H(Z_2) = Z_2/H
$$
, $f_H(z) = \text{Orb}_H(z) \quad \forall z \in Z_2$,

associating to $z \in Z_2$ its H-orbit is a surjective morphism of algebraic curves, which induces an isomorphism $f_H^* : \overline{\mathbb{F}_q}(Z_2/H) \to \overline{\mathbb{F}_q}(Z_2)^H = \overline{\mathbb{F}_q}(L_1)$ of $\overline{\mathbb{F}_q}$ -algebras. Therefore there is a birational map $\varphi_0: L_1 \longrightarrow Z_2/H$ with $\varphi_0^* = f_H^*$. Similarly,

$$
f_{H_1}: Z_2 \longrightarrow \text{Orb}_{H_1}(Z_2) = Z_2/H_1, f_{H_1}(z) = \text{Orb}_{H_1}(z) \quad \forall z \in Z_2
$$

is a surjective morphism of algebraic curves, inducing an isomorphism of $\overline{\mathbb{F}_q}$ -algebras $f_{H_1}^* : \overline{\mathbb{F}_q}(Z_2/H_1) \to \overline{\mathbb{F}_q}(Z_2)^{H_1} = \overline{\mathbb{F}_q}(X_1)$. Let $\varphi_1 : X_1 \longrightarrow Z_2/H_1$ be the birational map with $\varphi_1^* = f_{H_1}^*$. The commutative diagrams

of embeddings Id, f_H^* , $f_{H_1}^*$ of $\overline{\mathbb{F}_q}$ -algebras and isomorphisms φ_0^* , φ_1^* of $\overline{\mathbb{F}_q}$ -algebras induce commutative diagrams

of morphisms f_0 , f_H , f_1 , f_{H_1} and birational maps φ_0 , φ_1 .

There is a quasi-affine curve $L'_2 \subseteq L_1$, such that $\varphi_0: L_1 \longrightarrow Z_2/H$ restricts to an isomorphism $\varphi_0: L'_2 \to \varphi_0(L'_2) \subseteq Z_2/H$ of algebraic varieties. Similarly, one can choose a quasi-affine curve $X'_2 \subseteq X_1$, such that $\varphi_1 : X'_2 \to \varphi_1(X'_2) \subseteq Z_2/H_1$ is an isomorphism of algebraic curves. Since $L_1 \setminus L'_2$ and $X_1 \setminus X'_2$ are finite sets and

 $f_0: Z_1 \to L_1, f_1: Z_1 \to X_1$ are finite coverings, $S := f_0^{-1}(L_1 \setminus L_2') \cup f_1^{-1}(X_1 \setminus X_2')$ is a finite subset of Z_2 . Removing from Z_2 the H-orbit of S, one obtains a quasi-affine curve $Z_3 \subseteq Z_2$, acted by H without fixed points. The factorization $f_H|_{Z_3} = \varphi_0 f_0|_{Z_3}$ with a biregular $\varphi_0: f_0(Z_3) \to f_H(Z_3)$ implies the coincidence of the fibres of f_H and f_0 . Therefore, $f_H : Z_3 \to f_H(Z_3)$ and $f_0 : Z_3 \to L_3 := f_0(Z_3)$ are finite unramified coverings of algebraic curves of degree |H|. Similarly, $f_{H_1}|_{Z_3} = \varphi_1 f_1|_{Z_3}$ with biregular $\varphi_1: f_1(Z_3) \to f_{H_1}(Z_3)$ reveals that $f_{H_1}: Z_3 \to f_{H_1}(Z_3)$ and f_1 : $Z_3 \rightarrow X_3 := f_1(Z_3)$ are finite unramified coverings of algebraic curves of degree |H₁|. There exists a sufficiently large $s \in \mathbb{N}$, such that \mathbb{F}_{q^s} contains the definition fields of the curves Z_3 , X_3 , L_3 , Z_3/H , Z_3/H_1 , as well as the coefficients of the components of the regular maps $f, f_0, f_1, f_H, f_{H_1}$. Then

turns out to be a commutative diagram of finite unramified coverings of locally finite \mathfrak{G}_s -modules with bijective φ_0 , φ_1 , H-Galois covering f_H , H₁-Galois covering f_{H_1} . Introducing $Z := Z_3, X' := X_3, L := L_3$, one concludes that (Z, H, H_1) is a Galois closure of the finite unramified covering $f : X' \to L$.

5. RIEMANN HYPOTHESIS ANALOGUE FOR LOCALLY FINITE MODULES

The next proposition provides a numerical necessary and sufficient condition for a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module with a polynomial ζ -quotient to satisfy the Riemann Hypothesis Analogue with respect to the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$.

Proposition 23. *The following conditions are equivalent for a locally finite module* M *over* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *with a polynomial* ζ *-quotient* $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{F}_1}(\overline{\mathbb{F}_q})}(t)$ $\mathbb{Z}[t]$ *of deg* $P_M(t) = d \in \mathbb{N}$ *with leading coefficient* $LC(P_M(t)) = a_d \in \mathbb{Z} \setminus \{0\}$ *and* $for \ \lambda := \log_q \sqrt[d]{|a_d|} \in \mathbb{R}^{\geq 0}$.

(*i*) *M* satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a G*-module;*

 (iii) $q^r + 1 - dq^{\lambda r} \le |M^{\Phi_q^r}| \le q^r + 1 + dq^{\lambda r}, \forall r \in \mathbb{N},$

(*iii*) there exist constants $C_1, C_2 \in \mathbb{R}^{>0}, \nu, r_1, r_2 \in \mathbb{N}$, such that

$$
|M^{\Phi_q^{\nu r}}| \le q^{\nu r} + 1 + C_1 q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_1 \quad \text{and}
$$

$$
|M^{\Phi_q^{\nu r}}| \ge q^{\nu r} + 1 - C_2 q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_2.
$$

Proof. (*i*) \Rightarrow (*ii*) If $P_M(t) = \prod^d$ $\prod_{j=1} (1 - q^{\lambda} e^{i\varphi_j} t)$ for some $\varphi_j \in [0, 2\pi)$ then

$$
\left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^r} \right| - \left| M^{\Phi_q^r} \right| = \sum_{j=1}^d q^{\lambda r} e^{ir\varphi_j} \text{ for } \forall r \in \mathbb{N}
$$

by (3.6) from Proposition 10. Therefore,

$$
\left| \left| M^{\Phi_q^r} \right| - (q^r + 1) \right| = \left| \sum_{j=1}^d q^{\lambda r} e^{i r \varphi_j} \right| \leq \sum_{j=1}^d \left| q^{\lambda r} e^{i r \varphi_j} \right| = \sum_{j=1}^d q^{\lambda r} = dq^{\lambda r},
$$

hence (ii) holds.

(*ii*)
$$
\Rightarrow
$$
 (*iii*) is trivial
(*iii*) \Rightarrow (*i*) Let $P_M(t) = \prod_{j=1}^d (1 - \omega_j t) \in \mathbb{Z}[t]$. The formal power series

$$
H(t) := \sum_{j=1}^d \frac{\omega_j^{\nu} t}{1 - \omega_j^{\nu} t}
$$

has radius of convergence $\rho = \min\left(\frac{1}{|\omega_1|^{\nu}},\ldots,\frac{1}{|\omega_d|^{\nu}}\right)$, i.e., $H(t) < \infty$ converges $\forall t \in \mathbb{C}$ with $|t| < \rho$ and $H(t) = \infty$ diverges $\forall t \in \mathbb{C}$ with $|t| > \rho$. Making use of the formal series expansion $\frac{1}{1-\omega_j^{\nu}t} = \sum_{i=1}^{\infty}$ $\sum_{i=0} \omega_j^{\nu i} t^i$ and exchanging the summation order, one represents

$$
H(t) = \sum_{i=0}^{\infty} \Big(\sum_{j=1}^{d} \omega_j^{\nu(i+1)} \Big) t^{i+1}.
$$

Let $C := \max(C_1, C_2)$, $r_0 := \max(r_1, r_2)$ and note that assumption (iii) implies that

$$
\left|\sum_{j=1}^d \omega_j^{\nu r}\right| = \left|\left|M^{\Phi_q^{\nu r}}\right| - \left(q^{\nu r} + 1\right)\right| \le Cq^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_0,
$$

according to (3.6) from Proposition 10. Thus, $\Big|\sum_{i=1}^d$ $\sum_{j=1}^d \omega_j^{\nu(i+1)} \leq Cq^{\lambda \nu(i+1)}, \ \forall i \in \mathbb{Z},$ $i \geq r_0 - 1$ and

$$
|H(t)|\leq \sum_{i=0}^\infty \Big|\sum_{j=1}^d \omega_j^{\nu(i+1)}\Big|t^{i+1}\leq C\sum_{i=0}^\infty q^{\lambda \nu(i+1)}t^{i+1}=C\sum_{i=0}^\infty (q^{\lambda \nu}t)^{i+1}.
$$

As a result, $H(t) < \infty$, $\forall t \in \mathbb{C}$ with $|t| < \frac{1}{q^{\lambda \nu}}$, whereas $\frac{1}{q^{\lambda \nu}} \leq \rho \leq \frac{1}{|\omega_j|^{\nu}}$, $\forall 1 \leq j \leq d$. Bearing in mind that for any fixed $\nu \in \mathbb{N}$ the function $f(x) = x^{\nu}$ is non-decreasing on $x \in [0, \infty) \subset \mathbb{R}$, one concludes that $q^{\lambda} \geq |\omega_j|$. Therefore, the leading coefficient $a_d := \text{LC}(P_M(t)) = \prod^d$ $\prod_{j=1}^d (-\omega_j) \in \mathbb{Z} \setminus \{0\}$ has modulus $|a_d| = \prod_{j=1}^d$ $\prod_{j=1} |\omega_j| \leq q^{\lambda d} = |a_d|$, whereas $|\omega_j| = q^{\lambda}, \forall 1 \leq j \leq d$ and M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a module over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$.

In the case of a smooth irreducible projective curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus g, defined over \mathbb{F}_q , condition (ii) from Proposition 23 reduces to the celebrated Hasse - Weil bound

$$
\left| \left| X^{\Phi_q^r} \right| - \left(q^r + 1 \right) \right| \le 2g\sqrt{q^r} \quad \forall r \in \mathbb{N} \tag{5.1}
$$

on the number $|X^{\Phi_q^r}| = |X(\mathbb{F}_{q^r})| = |X \cap \mathbb{P}^n(\mathbb{F}_{q^r})|$ of the \mathbb{F}_{q^r} -rational points of X. The equivalence of the conditions (i) and (iii) from Proposition (23) is well known and shown by Theorem V.2.3 and Lemma V.2.5 from Stichtenoth's monograph [2]. The proof of the Riemann Hypothesis Analogue for X with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ from [2] makes use of the bound

$$
\left| X^{\Phi_q^{2r}} \right| < q^{2r} + 1 + (2g + 1)q^r \quad \forall r \in \mathbb{N},\tag{5.2}
$$

which is established in [2, Proposition V.2.6]. Bearing in mind that $\left| \mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^{2r}} \right| =$ $q^{2r} + 1 > q^{2r}$, we note that (5.2) implies

$$
\left|X^{\Phi_q^{2r}}\right| - \left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^{2r}}\right| < (2g+1)\left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^{2r}}\right|^{\frac{1}{2}} \quad \forall r \in \mathbb{N}
$$

and think of $\lambda := \log_q \sqrt[2g]{LC(P_X(t))} = \log_q \sqrt[2g]{q^g} = \frac{1}{2}$ as of the Hasse - Weil order of X with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. That motivates the following

Definition 24. Let M and L be locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_a}/\mathbb{F}_a)$ -modules. If there exist constants $\rho \in \mathbb{R}^{\geq 0}$, $C \in \mathbb{R}^{>0}$, $\nu, r_o \in \mathbb{N}$, such that

$$
\left| M^{\Phi_q^{\nu r}} \right| - \left| L^{\Phi_q^{\nu r}} \right| \le C \left| L^{\Phi_q^{\nu r}} \right|^\rho \quad \forall r \in \mathbb{N}, \quad r \ge r_o,
$$
\n
$$
(5.3)
$$

 M is said to be of finite Hasse - Weil order with respect to L .

The minimal $\rho \in \mathbb{R}^{\geq 0}$, subject to (5.3) for some $C \in \mathbb{R}^{>0}$, $\nu, r_o \in \mathbb{N}$ is called the Hasse - Weil order of M with respect to L and denoted by $\text{ord}_{\mathfrak{G}}(M/L)$.

The following simple lemma collects some properties of the Hasse - Weil order of locally finite G-modules.

Lemma 25. *(i)* If M, L are infinite locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules *and* $M_o ⊆ M$, $L_o ⊆ L$ *are* $\mathfrak{G}\text{-submodules with at most finite complements } M \setminus M_o$, $L \setminus L_o$, then

$$
\text{ord}_{\mathfrak{G}}(M/L) = \text{ord}_{\mathfrak{G}}(M_o/L_o).
$$

(ii) If $\xi : M \to L$ *is a finite unramified covering of locally finite* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *modules, then* $\text{ord}_{\mathfrak{G}}(M/L) \leq 1$ *.*

(iii) Let M be a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module such that $\zeta_M(t) =$ $P_M(t)\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)$ *for a polynomial* $P_M(t) \in \mathbb{Z}[t]$ *of* $\deg P_M(t) = d \in \mathbb{N}$ *with* $LC(P_M(t)) = a_d$ and $\lambda := \log_q \sqrt[d]{|a_d|}$. If M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$, then $\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \lambda$.

Proof. (i) It suffices to show that if there exist $C \in \mathbb{R}^{>0}$, $\nu, r' \in \mathbb{N}$ with

$$
\left| M^{\Phi_q^{\nu r}} \right| \le \left| L^{\Phi_q^{\nu r}} \right| + C \left| L^{\Phi_q^{\nu r}} \right|^\rho \quad \forall r \in \mathbb{N}, \quad r \ge r', \tag{5.4}
$$

then there exist $C_o \in \mathbb{R}^{>0}$, $\nu_o, r'_o \in \mathbb{N}$ with

$$
\left| M_o^{\Phi_q^{\nu_o r}} \right| \le \left| L_o^{\Phi_q^{\nu_o r}} \right| + C_o \left| L_o^{\Phi_q^{\nu_o r}} \right|^\rho \quad \forall r \in \mathbb{N}, r \ge r_o' \tag{5.5}
$$

and if there are $C_o \in \mathbb{R}^{>0}$, $\widetilde{\nu}_o, r_o' \in \mathbb{N}$ with

$$
\left| M_o^{\Phi_q^{\widetilde{\nu}_o r}} \right| \le \left| L_o^{\Phi_q^{\widetilde{\nu}_o r}} \right| + \widetilde{C}_o \left| L_o^{\Phi_q^{\widetilde{\nu}_o r}} \right|^\rho \quad \forall r \in \mathbb{N}, \quad r \ge \widetilde{r}_o', \tag{5.6}
$$

then there are $\tilde{C} \in \mathbb{R}^{>0}, \tilde{\nu}, \tilde{r'} \in \mathbb{N}$ with

$$
\left| M^{\Phi_q^{\tilde{\nu}_r}} \right| \le \left| L^{\Phi_q^{\tilde{\nu}_r}} \right| + \tilde{C} \left| L^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho \quad \forall r \in \mathbb{N}, \quad r \ge \tilde{r'}.
$$
\n(5.7)

To this end, let us denote $m := |M \setminus M_o|$, $s := |L \setminus L_o| \in \mathbb{Z}^{\geq 0}$ and observe that

$$
\left| L^{\Phi_q^{\nu_o r}} \right| = \left| L_o^{\Phi_q^{\nu_o r}} \right| + \left| L^{\Phi_q^{\nu_o r}} \setminus L_o \right| \le \left| L_o^{\Phi_q^{\nu_o r}} \right| + s,
$$

$$
\left| M^{\Phi_q^{\bar{\nu}_r}} \right| = \left| M_o^{\Phi_q^{\bar{\nu}_r}} \right| + \left| M^{\Phi_q^{\bar{\nu}_r}} \setminus M_o \right| \le \left| M_o^{\Phi_q^{\bar{\nu}_r}} \right| + m, \quad \forall r \in \mathbb{N}.
$$

Since L_o is an infinite locally finite $\mathfrak{G}\text{-module}$, the map

$$
\deg \text{Orb}_{\mathfrak{G}}: L_o \to \mathbb{N}, \ \ x \mapsto \deg \text{Orb}_{\mathfrak{G}}(x)
$$

takes infinitely many values and there exists $\sigma_o \in \mathbb{N}$ with $\sigma_o \ge \max(s, \sqrt[n]{s})$ from the image of deg Orb_{$\mathfrak{G}: L_o \to \mathbb{N}$. In other words, the number $B_{\sigma_o}(L_o) \geq 1$ of the} **G**-orbits on L_0 of degree σ_0 is positive. If $\nu_0 := \nu \sigma_0 \in \mathbb{N}$, then by (3.2) one has

$$
\left| L_o^{\Phi_{q}^{\nu_o r}} \right| = \sum_{k/\nu_o r} k B_k(L_o) \ge \sigma_o B_{\sigma_o}(L_o) \ge \sigma_o \ge \max\left(s, \sqrt[p]{s}\right) \quad \forall r \in \mathbb{N}.
$$

Similarly, there exists $\sigma \in \mathbb{N}$ with $\sigma > \sqrt[p]{m}$ and $B_{\sigma}(L_o) \geq 1$. Thus, for $\tilde{\nu} := \tilde{\nu}_o \sigma \in \mathbb{N}$ there holds

$$
\left| L_o^{\Phi_q^{\bar{\nu}_r}} \right| = \sum_{k/\tilde{\nu}_r} k B_k(L_o) \ge \sigma B_\sigma(L_o) \ge \sigma \ge \sqrt{\epsilon m} \ \ \forall r \in \mathbb{N}.
$$

Now (5.4) implies

$$
\begin{aligned} \left|M_{o}^{\Phi_{q}^{\nu_{o}r}}\right| &\leq \left|M^{\Phi_{q}^{\nu_{o}r}}\right| \leq \left|L^{\Phi_{q}^{\nu_{o}r}}\right|+C\left|L^{\Phi_{q}^{\nu_{o}r}}\right|^{\rho} \leq \left|L^{\Phi_{q}^{\nu_{o}r}}\right|+s+C\left(\left|L^{\Phi_{q}^{\nu_{o}r}}\right|+s\right)^{\rho} \\ &\leq \left|L^{\Phi_{q}^{\nu_{o}r}}\right|+\left|L^{\Phi_{q}^{\nu_{o}r}}\right|^{\rho}+C\left(2\left|L^{\Phi_{q}^{\nu_{o}r}}\right|\right)^{\rho}=\left|L^{\Phi_{q}^{\nu_{o}r}}\right|+(2^{\rho}C+1)\left|L^{\Phi_{q}^{\nu_{o}r}}\right|^{\rho} \end{aligned}
$$

 $\forall r \in \mathbb{N}, r \geq \frac{r'}{\sigma_c}$ $\frac{r'}{\sigma_o}$, which is equivalent to (5.5) with $C_o = 2^{\rho}C + 1$ and some $r'_o \in \mathbb{N}$, $r'_o \geq \frac{r'}{\sigma_c}$ $\frac{r}{\sigma_o}$. Similarly, (5.6) yields

$$
\left| M^{\Phi_q^{\tilde{\nu}_r}} \right| \leq \left| M_o^{\Phi_q^{\tilde{\nu}_r}} \right| + m \leq \left| L_o^{\Phi_q^{\tilde{\nu}_r}} \right| + \widetilde{C}_o \left| L_o^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho + \left| L_o^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho
$$

$$
= \left| L_o^{\Phi_q^{\tilde{\nu}_r}} \right| + (\widetilde{C}_o + 1) \left| L_o^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho \leq \left| L^{\Phi_q^{\tilde{\nu}_r}} \right| + (\widetilde{C}_o + 1) \left| L^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho
$$

 $\forall r \in \mathbb{N}, r \geq \frac{r_o'}{\sigma}$, and hence (5.7) holds with $\widetilde{C} := \widetilde{C_o} + 1$ and some $\widetilde{r'} \in \mathbb{N}, \widetilde{r'} \geq \frac{r_o'}{\sigma}$.

(ii) The \mathfrak{G} -equivariance of ξ implies that $\xi(M^{\Phi_q^r}) \subseteq L^{\Phi_q^r}$, $\forall r \in \mathbb{N}$. The cardinalities of the fibres of $\xi|_{M^{\Phi_q^r}}$ do not exceed $k := \deg \xi$, so that

$$
\left| L^{\Phi_q^r} \right| \ge \left| \xi(M^{\Phi_q^r}) \right| \ge \frac{\left| M^{\Phi_q^r} \right|}{k}
$$

$$
\left| M^{\Phi_q^r} \right| - \left| L^{\Phi_q^r} \right| \le (k-1) \left| L^{\Phi_q^r} \right|.
$$

and

That suffices for
$$
\text{ord}_{\mathfrak{G}}(M/L) \leq 1
$$
.

(iii) By Proposition 23, if M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a $\mathfrak{G}\text{-module}$, then

$$
\left|M^{\Phi_{q}^{r}}\right| \leq q^{r} + 1 + dq^{\lambda r} = \left|\mathbb{P}^{1}(\overline{\mathbb{F}_{q}})^{\Phi_{q}^{r}}\right| + d\left(\left|\mathbb{P}^{1}(\overline{\mathbb{F}_{q}})^{\Phi_{q}^{r}}\right| - 1\right)^{\lambda} \n< \left|\mathbb{P}^{1}(\overline{\mathbb{F}_{q}})^{\Phi_{q}^{r}}\right| + d\left|\mathbb{P}^{1}(\overline{\mathbb{F}_{q}})^{\Phi_{q}^{r}}\right|^{\lambda} \quad \forall r \in \mathbb{N},
$$

so that $\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \lambda.$

Definition 26. Let M and L be locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -modules and H be a finite fixed-point free subgroup of $\text{Aut}_{\mathfrak{G}}(M)$. If there exist constants $\rho \in \mathbb{R}^{\geq 0}$, $C \in \mathbb{R}^{>0}, \nu, r_o \in \mathbb{N}$, such that

$$
\left|M^{h\Phi_q^{\nu r}}\right| - \left|L^{\Phi_q^{\nu r}}\right| \le C \left|L^{\Phi_q^{\nu r}}\right|^\rho \quad \text{for} \quad \forall r \in \mathbb{N}, \quad r \ge r_o \quad \text{and} \quad \forall h \in H,\tag{5.8}
$$

then M is said to be of finite Hasse - Weil H -order with respect to L .

The minimal $\rho \in \mathbb{R}^{\geq 0}$, subject to (5.8) for some $C \in \mathbb{R}^{>0}$, $\nu, r_o \in \mathbb{N}$ is called the Hasse - Weil H-order of M with respect to L and denoted by $\text{ord}_{\mathfrak{G}}^H(M/L)$.

Proposition 27. *(i) If M is an infinite locally finite* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *-module,* $H \leq \text{Aut}_{\mathfrak{G}}(M)$ *is a finite fixed-point free subgroup and* $M_o \subset M$ *is an* $H \times \mathfrak{G}$ *submodule of* M *with* $|M \setminus M_o| < \infty$ *, then*

$$
\mathrm{ord}_{\mathfrak{G}}^H(M/\mathrm{Orb}_H(M)) = \mathrm{ord}_{\mathfrak{G}}^H(M_o/\mathrm{Orb}_H(M_o)).
$$

(ii) If M is a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module and $H < \text{Aut}_{\mathfrak{G}}(M)$ is a *finite fixed-point free subgroup, then* $\text{ord}_{\mathfrak{G}}^H(M/\text{Orb}_H(M)) \leq 1$.

(*iii)* Let $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ be a smooth irreducible curve of genus $g \geq 1$ and H *be a finite fixed-point free subgroup of* Aut_{$\mathfrak{G}(X)$ *. Then* $\text{ord}_{\mathfrak{G}}^H(X/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \frac{1}{2}$ *.*}

Proof. (i) As in the proof of Lemma 25 (i), one has to check that if there exist $\rho \in \mathbb{R}^{\geq 0}, C \in \mathbb{R}^{>0}, \nu, r' \in \mathbb{N}$ with

$$
\left| M^{h\Phi_q^{\nu r}} \right| \le \left| \text{Orb}_H(M)^{\Phi_q^{\nu r}} \right| + C \left| \text{Orb}_H(M)^{\Phi_q^{\nu r}} \right|^\rho \ \forall h \in H, \ \forall r \in \mathbb{N}, \ r \ge r', \tag{5.9}
$$

then there exist $C_o \in \mathbb{R}^{>0}$, $\nu_o, r'_o \in \mathbb{N}$ with

$$
\left| M_o^{h\Phi_q^{\nu_o r}} \right| \le \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right| + C_o \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right|^\rho \ \forall h \in H, \ \forall r \in \mathbb{N}, \ r \ge r_o' \tag{5.10}
$$

and if there are $\tilde{C}_o \in \mathbb{R}^{>0}$, $\tilde{\nu}_o, \tilde{r}_o \in \mathbb{N}$ with

$$
\left| M_o^{h\Phi_q^{\tilde{\nu}_o r}} \right| \le \left| \text{Orb}_H(M_o)^{\Phi_q^{\tilde{\nu}_o r}} \right| + \widetilde{C}_o \left| \text{Orb}_H(M_o)^{\Phi_q^{\tilde{\nu}_o r}} \right|^{\rho} \ \forall h \in H, \ \forall r \in \mathbb{N}, \ r \ge \widetilde{r}_o \ (5.11)
$$

then there are $\widetilde{C} \in \mathbb{R}^{>0}, \widetilde{\nu}, \widetilde{r} \in \mathbb{N}$ with

$$
\left| M^{h\Phi_q^{\tilde{\nu}_r}} \right| \le \left| \text{Orb}_H(M)^{\Phi_q^{\tilde{\nu}_r}} \right| + \tilde{C} \left| \text{Orb}_H(M)^{\Phi_q^{\tilde{\nu}_r}} \right|^\rho \ \forall h \in H, \ \forall r \in \mathbb{N}, \ r \ge \tilde{r}.
$$
 (5.12)

Note that if $|M \setminus M_0| = m$, then $\mathrm{Orb}_H(M) \setminus \mathrm{Orb}_H(M_0) = \mathrm{Orb}_H(M \setminus M_0)$ is of cardinality $|\text{Orb}_H(M \setminus M_o)| = \frac{m}{|H|}$ and $\text{Orb}_H(M_o)$ is an infinite locally finite \mathfrak{G} module. As in the proof of Lemma 25 (i), one has

$$
\left|\text{Orb}_{H}(M)^{\Phi_{q}^{\nu_{o}r}}\right| \leq \left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\nu_{o}r}}\right| + \frac{m}{|H|} \quad \text{and} \quad \left|M^{h\Phi_{q}^{\bar{\nu}r}}\right| \leq \left|M_{o}^{h\Phi_{q}^{\bar{\nu}r}}\right| + m \ \ \forall r \in \mathbb{N}.
$$

Further, there exist $\nu_o := \nu \sigma_o$ and $\tilde{\nu} := \tilde{\nu_o} \sigma$ with $\sigma_o, \sigma \in \mathbb{N}$, such that

$$
\left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\nu_{o}r}}\right| \geq \sigma_{o} \geq \max\left(\frac{m}{|H|}, \sqrt[n]{\frac{m}{|H|}}\right),\,
$$

respectively,

$$
\left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\tilde{\nu}r}}\right| \geq \sigma \geq \sqrt[p]{m} \ \ \forall r \in \mathbb{N}.
$$

Then from

$$
\left| M_o^{h\Phi_q^{\nu_o r}} \right| \leq \left| M^{h\Phi_q^{\nu_o r}} \right| \leq \left| \text{Orb}_H(M)^{\Phi_q^{\nu_o r}} \right| + C \left| \text{Orb}_H(M)^{\Phi_q^{\nu_o r}} \right|^{\rho}
$$

\n
$$
\leq \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right| + \frac{m}{|H|} + C \left(\left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right| + \frac{m}{|H|} \right)^{\rho}
$$

\n
$$
\leq \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right| + \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right|^{\rho} + C \left(2 \left| \text{Orb}_H(M_o)^{\Phi_q^{\nu_o r}} \right| \right)^{\rho},
$$

 $\forall r \in \mathbb{N}, r \geq \frac{r'}{\sigma_c}$ $\frac{r'}{\sigma_o}$, we deduce (5.10) with $C_o := 2^{\rho}C + 1$, and from

$$
\begin{split} \left|M^{h\Phi_{q}^{\tilde{\nu}r}}\right| &\leq \left|M_{o}^{h\Phi_{q}^{\tilde{\nu}r}}\right|+m\\ &\leq \left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\tilde{\nu}r}}\right|+\widetilde{C}_{o}\left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\tilde{\nu}r}}\right|^\rho+\left|\text{Orb}_{H}(M_{o})^{\Phi_{q}^{\tilde{\nu}r}}\right|^\rho\\ &\leq \left|\text{Orb}_{H}(M)^{\Phi_{q}^{\tilde{\nu}r}}\right|+(\widetilde{C}_{o}+1)\left|\text{Orb}_{H}(M)^{\Phi_{q}^{\tilde{\nu}r}}\right|^\rho, \end{split}
$$

 $\forall r \in \mathbb{N}, r \geq \frac{\tilde{r}_o}{\sigma}$, we obtain (5.12) with $\tilde{C} := \tilde{C}_o + 1$.

(ii) For any $h \in H$ and $r \in \mathbb{N}$ the map $\xi_H : M \to \text{Orb}_H(M)$ is an H-Galois covering of locally finite modules over $\mathfrak{G}(h\Phi_q^r) = \widehat{\langle h\Phi_q^r \rangle}$ by Proposition 20. If $y \in M^{h\Phi_{q}^{r}}$, then the $\mathfrak{G}(h\Phi_{q}^{r})$ -equivariance of ξ_{H} implies $\Phi_{q}^{r}\xi_{H}(y) = \xi_{H}(\Phi_{q}^{r}y)$ $\xi_H(h\Phi_q^r y) = \xi_H(y)$, so that $\xi_H(y) \in \text{Orb}_H(M)^{\Phi_q^r}$ and $\xi_H(M^{\Phi_q^r}) \subseteq \text{Orb}_H(M)^{\Phi_q^r}$. Bearing in mind that the restriction $\xi_H : M^{h\Phi_q^r} \to \text{Orb}_H(M)^{\Phi_q^r}$ has fibres of cardi- $\text{ality} \leq |H|, \text{ one concludes that } \left| \text{Orb}_H(M)^{\Phi_q^r} \right| \geq$ $\Big|\xi_H\big(M^{h\Phi^r_q}\big)\Big| \geq$ $\frac{|M^{h\Phi_q^r}|}{|H|}$. Therefore

$$
\left|M^{h\Phi_q^r}\right| - \left|\text{Orb}_H(M)^{\Phi_q^r}\right| \le (|H|-1)\left|\text{Orb}_H(M)^{\Phi_q^r}\right|,
$$

 $\forall h \in H, \forall r \in \mathbb{N} \text{ and } \mathrm{ord}_{\mathfrak{G}}^H(M/\mathrm{Orb}_H(M)) \leq 1.$

(iii) The argument is a slight modification of Grothedieck's proof of the Hasse - Weil Theorem (see Theorem 3.6 from Mustata[']s book [8]). Namely, let $S := X \times X$ be the Cartesian square of X, $\Delta := \{(x, x) \in S \mid x \in X\}$ be the diagonal of S, $L_1 := X \times \{x_2\}$ be a generic fibre of the second canonical projection $pr_2 : S \to X$, $\text{pr}_2(x_1, x_2) = x_2$ and $L_2 := \{x_1\} \times X$ be a generic fibre of the first canonical projection $pr_1: S \to X$, $pr_1(x_1, x_2) = x_1$. For arbitrary $h \in H$ and $r \in \mathbb{N}$ put $\varphi := h \Phi_q^r$ and denote by $\Gamma(\varphi) := \{(x, \varphi(x)) \mid x \in X\}$ the graph of $\varphi : X \to X$. Then the intersection number $\Gamma(\varphi) \Delta = |X^{\varphi}|$ equals the number of the φ -rational points of X. One checks immediately that $L_1^2 = L_2^2 = 0$, $L_1.L_2 = 1$, $\Delta.L_1 = \Delta.L_2 = 1$, $\Gamma(\varphi) L_2 = 1$ and $\Gamma(\varphi) L_1 = \Gamma(\Phi_q^r) L_1 = q^r$, as far as the equation $h \Phi_q^r(x) = x_2$ is equivalent to $\Phi_q^r(x) = h^{-1}(x_2)$ and has q^r solutions on a smooth irreducible projective curve X, defined over \mathbb{F}_q . The canonical class K_S of S is numerically equivalent to $(2g-2)(L_1+L_2)$ and the application of the Adjunction Formula to Δ and $\Gamma(\varphi)$ provides

$$
2g - 2 = \Delta.(\Delta + K_S) = \Delta^2 + 2(2g - 2),
$$

$$
2g - 2 = \Gamma(\varphi) \cdot (\Gamma(\varphi) + K_S) = \Gamma(\varphi)^2 + (q^r + 1)(2g - 2),
$$

whereas $\Delta^2 = -(2g - 2)$, $\Gamma(\varphi)^2 = -q^r(2g - 2)$. The Hodge Index Theorem on $S = X \times X$ asserts that if a divisor $E \subset S$ has vanishing intersection number $E.H = 0$ with an ample divisor $H \subset S$ then E has non-positive self-intersection $E^2 \leq 0$. For an arbitrary divisor $D \subset S$ let us put $E := D - (D.L_1)L_2 - (D.L_2)L_1$, $H := L_1 + L_2$ and note that H is an ample divisor on S with $E.H = 0$. Therefore

$$
0 \ge E^2 = D^2 - 2(D.L_1)(D.L_2). \tag{5.13}
$$

If $D := a\Delta + b\Gamma(\varphi)$ for some $a, b \in \mathbb{Z}, b \neq 0$ and $f(z) := gz^2 + (q^r + 1 - |X^{\varphi}|)z + gq^r \in \mathbb{Z}$ $\mathbb{Z}[z]$, then (5.13) is equivalent to $f\left(\frac{a}{b}\right) \geq 0$, $\forall \frac{a}{b} \in \mathbb{Q}$ and holds exactly when the discriminant $D(f) = (q^r + 1 - |X^{\varphi}|)^2 - 4q^r g^2 \le 0$. Thus,

$$
-2g q^{\frac{r}{2}} \leq |X^{\varphi}| - (q^r + 1) \leq 2g q^{\frac{r}{2}} \quad \forall r \in \mathbb{N}
$$

and, in particular,

$$
\left|X^{h\Phi_{q}^{2r}}\right| \leq (q^{2r}+1) + 2g q^r = \left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_{q}^{2r}}\right| + 2g\left(\left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_{q}^{2r}}\right| - 1\right)^{\frac{1}{2}}
$$

$$
\leq \left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_{q}^{2r}}\right| + 2g\left|\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_{q}^{2r}}\right|^{\frac{1}{2}} \quad \forall r \in \mathbb{N}.
$$

That establishes the inequality $\mathrm{ord}_{\mathfrak{G}}^H(X/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \frac{1}{2}$

The following simple lemma is crucial for the proof of the main Theorem 29.

Lemma 28. Let $\xi_H : N \to L$ be an H-Galois covering of infinite locally *finite modules over* $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *for some finite fixed-point free subgroup* $H <$ Aut_{$\mathfrak{G}(N)$ *. Then*}

$$
\sum_{h\in H} |N^{h\Phi_q}| = |H| |L^{\Phi_q}|.
$$

Proof. The lack of fixed points of H implies that $N^{h_1\Phi_q} \cap N^{h_2\Phi_q} = \emptyset$ for all $h_1, h_2 \in H$, $h_1 \neq h_2$. It suffices to check that $\xi_H^{-1}(L^{\Phi_q}) = \coprod_{h \in H} N^{h\Phi_q}$, in order to conclude that

$$
|H||L^{\Phi_q}| = \left|\xi_H^{-1}(L^{\Phi_q})\right| = \sum_{h \in H} |N^{h\Phi_q}|.
$$

If $y \in \xi_H^{-1}(L^{\Phi_q})$, then $\xi_H(y) = \Phi_q \xi_H(y) = \xi_H(\Phi_q(y))$ implies the existence of $h \in H$ with $h(y) = \Phi_q(y)$. Therefore $y \in N^{h^{-1}\Phi_q}$ and $\xi_H^{-1}(L^{\Phi_q}) \subseteq \coprod_{h \in H} N^{h\Phi_q}$.

Conversely, for any $y \in N^{h\Phi_q}$ one has $h^{-1}(y) = \Phi_q(y)$, whereas

$$
\xi_H(y) = \xi_H(h^{-1}(y)) = \xi_H(\Phi_q(y)) = \Phi_q \xi_H(y).
$$

That justifies $N^{h\Phi_q} \subseteq \xi_H^{-1}(L^{\Phi_q})$ and $\xi_H^{-1}(L^{\Phi_q}) = \coprod_{h \in H} N^{h\Phi_q}$.

Here is the main result of the article.

132 *Ann. Sofia Univ.*, *Fac. Math and Inf.*, 104, 2017, 99–137.

.

Theorem 29. Let M be an infinite locally finite module over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ *with closed stabilizers and a polynomial* ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = \sum_{i=1}^d$ $\sum_{j=0} a_j t^j \in$ $\mathbb{Z}[t]$ *of* deg $P_M(t) = d \in \mathbb{N}$ *with leading coefficient* $LC(P_M(t)) = a_d \in \mathbb{Z} \setminus \{0\}$ *and* $\lambda := \log_q \sqrt[d]{|a_d|} \in \mathbb{R}^{>0}$ *. Suppose that there exist* $m \in \mathbb{N}$ and $\mathfrak{G}_m = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m})$ $submodules M_o \subseteq M$, $L_o \subseteq \mathbb{P}^1(\overline{\mathbb{F}_q})$ with $|M \setminus M_o| < \infty$, $|\mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L_o| < \infty$, which *are related by a finite unramified covering* $\xi : M_o \to L_o$ *of* \mathfrak{G}_m -modules with a *Galois closure* (N, H, H_1) *, defined over* \mathbb{F}_{q^m} *.*

(i) If $\lambda \geq 1$, then M satisfies the Riemann Hypothesis Analogue with respect *to the projective line* $\mathbb{P}^1(\overline{\mathbb{F}_q})$ *as a* $\mathfrak{G}\text{-module.}$

(ii) If

$$
\max \left(\operatorname{ord}_{\mathfrak G}(M/\mathbb P^1(\overline{\mathbb F_q})),\operatorname{ord}_{\mathfrak G_m}^H(N/\mathbb P^1(\overline{\mathbb F_q})\right)\leq \lambda<1,
$$

then M *satisfies the Riemann Hypothesis Analogue with respect to* $\mathbb{P}^1(\overline{\mathbb{F}_q})$ *as a* G*-module.*

Proof. It suffices to prove that if

$$
\max(\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})), \text{ord}_{\mathfrak{G}_m}^H(N/\mathbb{P}^1(\overline{\mathbb{F}_q})) \le \lambda,
$$
\n(5.14)

then M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a **G**-module. Namely, if $\lambda \geq 1$, then by Lemma 25 (i), (ii) one has

$$
\operatorname{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})) = \operatorname{ord}_{\mathfrak{G}}(M_o/L_o) \le 1 \le \lambda,
$$

while Proposition 27 (i), (ii) guarantee that

$$
\operatorname{ord}_{\mathfrak{G}_m}^H(N/\mathbb{P}^1(\overline{\mathbb{F}_q})) = \operatorname{ord}_{\mathfrak{G}_m}^H(N/L_o) \le 1 \le \lambda,
$$

whence (5.14) holds.

Since $f(x) = a^x$ is an increasing function on $x \in \mathbb{R}$ for $a \in \mathbb{N}$, $a \ge 2$, the assumption $\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})) \leq \lambda$ implies the existence of constants $C_1 \in \mathbb{R}^{>0}$, $\nu_1, r_1 \in \mathbb{N}$, such that

$$
\left|M^{\Phi_q^{\nu_1 r}}\right| \leq (q^{\nu_1 r}+1)+C_1(q^{\nu_1 r}+1)^\lambda < (q^{\nu_1 r}+1)+C_1(2q^{\nu_1 r})^\lambda=(q^{\nu_1 r}+1)+(2^\lambda C_1)q^{\lambda \nu_1 r},
$$

 $\forall r \in \mathbb{N}, r \ge r_1$. Similarly, $\text{ord}_{\mathfrak{G}_m}^H(N/\mathbb{P}^1(\overline{\mathbb{F}_q})) \le \lambda$ provides the presence of constants $C_2 \in \mathbb{R}^{>0}$, $\nu_2, r_2 \in \mathbb{N}$ with

$$
\left|N^{h\Phi_{q}^{\nu_{2}r}}\right| \leq (q^{\nu_{2}r}+1)+C_{2}(q^{\nu_{2}r}+1)^{\lambda} < (q^{\nu_{2}r}+1)+(2^{\lambda}C_{2})q^{\lambda\nu_{2}r},
$$

 $\forall r \in \mathbb{N}, r \geq r_2$. For an arbitrary common multiple $\nu \in \mathbb{N}$ of ν_1 and ν_2 , one has

$$
\left| M^{\Phi_q^{\nu r}} \right| < \left(q^{\nu r} + 1 \right) + \left(2^{\lambda} C_1 \right) q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge \frac{r_1 \nu_1}{\nu} \tag{5.15}
$$

and

$$
\left|N^{h\Phi_{q}^{\nu r}}\right| < (q^{\nu r} + 1) + (2^{\lambda}C_2)q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge \frac{r_2 \nu_2}{\nu}
$$

If $\left| \mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus L_o \right| = s$, then the decomposition $\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_q^{\nu r}} = L_o^{\Phi_{q}^{\nu r}} \coprod (\mathbb{P}^1(\overline{\mathbb{F}_q})^{\Phi_{q}^{\nu r}} \setminus L_o)$ into a disjoint union provides the inequality $q^{\nu r} + 1 \leq \left| L_o^{\Phi_q^{\nu r}} \right| + s$, whereas

$$
\left|N^{h\Phi_q^{\nu r}}\right| < \left|L_o^{\Phi_q^{\nu r}}\right| + s + (2^{\lambda}C_2)q^{\lambda \nu r} \le \left|L_o^{\Phi_q^{\nu r}}\right| + (2^{\lambda}C_2 + 1)q^{\lambda \nu r},\tag{5.16}
$$

 $\forall r \in \mathbb{N}, r \geq r_o$ and a fixed natural number $r_o \geq \max\left(\frac{r_2\nu_2}{\nu}, \frac{\log_q(s)}{\lambda\nu}\right)$. By Proposition 23, it suffices to show the existence of constants $C \in \mathbb{R}^{>0}$, $r_o \in \mathbb{N}$ with

$$
\left| M^{\Phi_q^{\nu r}} \right| \ge (q^{\nu r} + 1) - Cq^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_o \tag{5.17}
$$

.

and to combine with (5.15) , in order to conclude that M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a module over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$.

To this end, note that Lemma 28 implies

$$
\sum_{h\in H} \left| N^{h\Phi_q^{\nu r}} \right| = |H| \left| L_o^{\Phi_q^{\nu r}} \right| \quad \text{and} \quad \sum_{h\in H_1} \left| N^{h\Phi_q^{\nu r}} \right| = |H_1| \left| M_o^{\Phi_q^{\nu r}} \right| \quad \forall r \in \mathbb{N}.
$$

Putting together with (5.16), one obtains that

$$
|H_{1}| \left| M_{o}^{\Phi_{q}^{\nu r}} \right| = \sum_{h \in H_{1}} \left| N^{h \Phi_{q}^{\nu r}} \right| + |H| \left| L_{o}^{\Phi_{q}^{\nu r}} \right| - \sum_{h \in H} \left| N^{h \Phi_{q}^{\nu r}} \right|
$$

\n
$$
= |H| \left| L_{o}^{\Phi_{q}^{\nu r}} \right| - \sum_{h \in H \backslash H_{1}} \left| N^{h \Phi_{q}^{\nu r}} \right|
$$

\n
$$
\geq |H| \left| L_{o}^{\Phi_{q}^{\nu r}} \right| - (|H| - |H_{1}|) \left| L_{o}^{\Phi_{q}^{\nu r}} \right| - (|H| - |H_{1}|) (2^{\lambda} C_{2} + 1) q^{\lambda \nu r}
$$

\n
$$
= |H_{1}| \left| L_{o}^{\Phi_{q}^{\nu r}} \right| - (|H| - |H_{1}|) (2^{\lambda} C_{2} + 1) q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \ r \geq r_{o}.
$$

Denoting $C_3 := \left(\frac{|H|-|H_1|}{|H_1|}\right)$ $|H_1|$ $(2^{\lambda}C_2 + 1) \in \mathbb{R}^{\geq 0}$ and dividing by $|H_1|$, one obtains

$$
\left|M_o^{\Phi_q^{\nu r}}\right| \ge \left|L_o^{\Phi_q^{\nu r}}\right| - C_3 q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_o.
$$

Bearing in mind $\left| L_o^{\Phi_q^{\nu r}} \right| \ge (q^{\nu r} + 1) - s \ge (q^{\nu r} + 1) - q^{\lambda \nu r}$ for $r \ge \frac{\log_q(s)}{\lambda \nu}$, one concludes that

$$
\left|M_o^{\Phi_q^{\nu r}}\right| \ge (q^{\nu r} + 1) - (C_3 + 1)q^{\lambda \nu r} \quad \forall r \in \mathbb{N}, \quad r \ge r_o.
$$

Combining with $\left|M^{\Phi_q^{\nu r}}\right| \geq$ $\left| M_o^{\Phi_q^{\nu r}} \right|$, one verifies (5.17) with $C := C_3 + 1$ and concludes the proof of the theorem. \Box

According to Proposition 22, Lemma 25 (iv) and Proposition 27 (iii), any smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ of genus $g \geq 1$ satisfies the assumptions of Theorem 29 with $\lambda = \frac{1}{2}$ as a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module. Here is an example of a locally finite $\mathfrak{G}\text{-module }M$, which is subject to the assumptions of Theorem 29 with $\lambda = 0$. Therefore M satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$ as a $\mathfrak{G}\text{-module}$ and is not isomorphic (as a $\mathfrak{G}\text{-module}$) to a smooth irreducible projective curve, defined over \mathbb{F}_q .

Proposition 30. For any finite field \mathbb{F}_q and $\forall x_1 \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ the quasi-affine $curve M := \overline{\mathbb{F}_q} \setminus \{x_1, x_1^q\}, \ defined \ over \mathbb{F}_{q^2} \ is \ a \ locally \ finite \ \mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) \text{-}module$ *with*

$$
\zeta_M(t) = \frac{(1-t)(1+t)}{1-qt},\tag{5.18}
$$

which satisfies the assumptions of Theorem 29. Thus, M *is subject to the Riemann Hypothesis Analogue with respect to* $\mathbb{P}^1(\overline{\mathbb{F}_q})$ *as a module over* \mathfrak{G} *and* M *is not isomorphic (as a* $\mathfrak{G}\text{-}module$) to a smooth irreducible projective curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ *of genus* $g \geq 1$ *, defined over* \mathbb{F}_q *.*

Proof. The identical inclusion Id : $M \hookrightarrow \mathbb{P}^1(\overline{\mathbb{F}_q}) = \overline{\mathbb{F}_q} \cup \{\infty\}$ is a finite unramified covering of G-modules of degree 1 over its image. It has a Galois closure $(M, \{Id_M\}, \{Id_M\})$. If $\zeta_M(t)$ is given by (5.18) then

$$
P_M(t) := \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1(\overline{\mathbb{F}_q})}(t)} = (1-t)^2(1+t) \in \mathbb{Z}[t]
$$

is a polynomial of deg $P_M(t) = 3$ with $a_3 = LC(P_M(t)) = 1$, so that $\lambda :=$ $\log_q \sqrt[3]{|a_3|} = 0$. Since M is a **G**-submodule of $\mathbb{P}^1(\overline{\mathbb{F}_q})$ with $|\mathbb{P}^1(\overline{\mathbb{F}_q}) \setminus M| = 3 < \infty$, the relative order $\text{ord}_{\mathfrak{G}}(M/\mathbb{P}^1(\overline{\mathbb{F}_q})) = \text{ord}_{\mathfrak{G}}(M/M) = 0 = \lambda$ by Lemma 25 (i) and M is subject to the assumptions of Theorem 29. If M were isomorphic to a smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^n(\overline{\mathbb{F}_q})$ as a module over \mathfrak{G} then $P_M(t) = P_X(t) \in \mathbb{Z}[t]$ would have an even degree deg $P_M(t) = 2g \in \mathbb{N}$ and $\lambda := \log_q \sqrt[2g]{|\text{LC}(P_M(t))|} = \frac{1}{2}$, which contradicts (5.18).

Towards the calculation of $\zeta_M(t)$, let us note that $\overline{\mathbb{F}_q}$ is a locally finite $\mathfrak{G} =$ $Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module and $Orb_{\mathfrak{G}}(x_1) = \{x_1, x_1^q\}$, in order to conclude that M is a locally finite $\mathfrak{G}\text{-module}$. Moreover, $x_1, x_1^q \in \overline{\mathbb{F}_q}^{\Phi_q^{2r}} = \mathbb{F}_{q^{2r}}$ and $x_1, x_1^q \notin \overline{\mathbb{F}_q}^{\Phi_q^{2r+1}} =$ $\mathbb{F}_{q^{2r+1}}$ for $\forall r \in \mathbb{Z}^{\geq 0}$. Therefore $|M^{\Phi_{q}^{2r}}|$ = $\left| \overline{\mathbb{F}_q}^{\Phi_q^{2r}} \right| - 2 = q^{2r} - 2, \, \forall r \in \mathbb{N}, \, \left| M^{\Phi_q^{2r+1}} \right| =$ $\left| \overline{\mathbb{F}_q}^{\Phi_q^{2r+1}} \right| = q^{2r+1}, \, \forall r \in \mathbb{Z}^{\geq 0},$ whereas

$$
\log \zeta_M(t) = \sum_{r=1}^{\infty} \left| M^{\Phi_q^r} \right| \frac{t^r}{r} = \sum_{r=1}^{\infty} (q^{2r} - 2) \frac{t^{2r}}{2r} + \sum_{r=0}^{\infty} q^{2r+1} \frac{t^{2r+1}}{2r+1}
$$

=
$$
\sum_{r=1}^{\infty} q^r \frac{t^r}{r} - \sum_{r=1}^{\infty} \frac{t^{2r}}{r} = \log \left(\frac{1}{1 - qt} \right) - \log \left(\frac{1}{1 - t^2} \right) = \log \left(\frac{1 - t^2}{1 - qt} \right),
$$

by (3.1) . That suffices for (5.18) .

The next corollary establishes that the Riemann Hypothesis Analogue with respect to the projective line $\mathbb{P}^1(\overline{\mathbb{F}_q})$ for a locally finite $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -module M implies a functional equation for the polynomial ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1}(\overline{\mathbb{F}_q})}(t) \in \mathbb{Z}[t]$.

Corollary 31. Let M be an infinite locally finite module over $\mathfrak{G} = \text{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$, which satisfies the Riemann Hypothesis Analogue with respect to $\mathbb{P}^1(\overline{\mathbb{F}_q})$. Then *the polynomial* ζ -quotient $P_M(t) = \frac{\zeta_M(t)}{\zeta_{\mathbb{P}^1}(\overline{\kappa_q})(t)} = \sum_{i=0}^d$ $\sum_{j=0} a_j t^j \in \mathbb{Z}[t]$ of M satisfies the *functional equation*

$$
P_M(t) = sign(a_d) P_M\left(\frac{1}{q^{2\lambda t}}\right) q^{\lambda d} t^d \quad \text{for} \quad \lambda := \log_q \sqrt[d]{|a_d|}.
$$

Proof. If $P_M(t) = \prod^d$ $\prod_{j=1} (1 - q^{\lambda} e^{i\varphi_j} t)$ for some $\varphi_j \in [0, 2\pi)$ then the leading

coefficient $LC(P_M(t)) = a_d = (-1)^d q^{\lambda d} e^{i \left(\sum\limits_{j=1}^d \varphi_j \right)}$, whereas

$$
P_M\left(\frac{1}{q^{2\lambda}t}\right) = \frac{a_d}{q^{2\lambda}dt^d} \prod_{j=1}^d (1 - q^{\lambda}e^{-i\varphi_j}t).
$$

The polynomial $P_M(t) \in \mathbb{Z}[t]$ has real coefficients and is invariant under the complex conjugation. Thus, the sets $\{e^{i\varphi_j} \mid 1 \leq j \leq d\} = \{e^{-i\varphi_j} \mid 1 \leq j \leq d\}$ coincide when counted with multiplicities and $P_M(t) = \prod^d$ $\prod_{j=1} (1 - q^{\lambda} e^{-i\varphi_j} t)$. That allows to express

$$
P_M\left(\frac{1}{q^{2\lambda}t}\right) = \frac{a_d}{q^{2\lambda d}}P_M(t)t^{-d}.
$$

Making use of $|a_d| = q^{\lambda d}$ and $a_d = \text{sign}(a_d) |a_d|$, one concludes that

$$
P_M\left(\frac{1}{q^{2\lambda}t}\right) = \frac{\text{sign}(a_d)}{q^{\lambda d}} P_M(t) t^{-d}.
$$

ACKNOWLEDGEMENT. This work was partially supported by the Sofia University Research Fund under Contract 144/2015, Contract 57/12.04.2016 and Contract 80-10-74/20.04.2017.

6. REFERENCES

- [1] Bombieri, E.: Counting Points on Curves over Finite Fields. *S´em. Bourbaki* 430, 1972/73.
- [2] Stichtenoth, H.: *Algebraic Function Fields and Codes*. Springer-Verlag, Berlin, Heidelberg, 1993.
- [3] Grothendieck, A.: *Séminaire de géométrie algébrique, 1: Revêtements étales et groupe fondamental, 1960-1961*. Lecture Notes in Mathematics 224, Springer-Verlag, Berlin, 1971.
- [4] Duursma, I.: From weight enumerators to zeta functions. *Discrete Appl. Math.*, 111, 2001, 55-73.
- [5] Niederreiter, H., Xing, Ch.: *Algebraic geometry in Coding Theory and Cryptography*. Princeton University Press, Princeton and Oxford, 2009).
- [6] Kasparian, A., Marinov, I.: Mac Williams identities for linear codes as Riemann-Roch Conditions. *Electronic Notes in Discrete Mathematics*, 57, 2017, 121–126.
- [7] Shafarevich, I. R.: *Basics of Algebraic Geometry*. Science, Moscow, 1988.
- [8] Mustată, M.: *Zeta Functions in Algebraic Geometry*. Lecture Notes of Mihnea Popa.

Received on July 17, 2017

Azniv Kasparyan, Ivan Marinov Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., BG-1164 Sofia BULGARIA

E-mails: kasparia@fmi.uni-sofia.bg ivanm@fmi.uni-sofia.bg