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1. INTRODUCTION

A set M with an action of a group G will be called a G-module. Most of the
time we consider modules over the absolute Galois group & = Gal(F,/F,) of a
finite field IF,.

Definition 1. A & = Gal(F,/F,)-module M is locally finite if all &-orbits on
M are finite and for any n € N there are at most finitely many &-orbits on M of
cardinality n.
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The cardinality of a &-orbit Orbg(x), © € M is referred to as its degree and
denoted by deg Orbg ().

The smooth irreducible projective curves X/F, C P*(F,), defined over a F,
are examples of locally finite & = Gal(F,/F,)-modules.

Definition 2. If M is a locally finite & = Gal(F,/F,)-module then the formal

power series = Tl (HldegV) e C[[t]]

v€Orbg (M)
is called the {-function of M.

By its very definition, (3;(0) = 1. In the case of a smooth irreducible curve
X/F, € P*(F,), the (-function (x(t) of X as a locally finite & = Gal(F,/F,)-
module coincides with the local Weil {-function of X. We fix the projective line
P1(F,) as a basic model, to which we compare the locally finite ®-modules M under
consideration and recall its (-function

1
C 1(F )= ————.
S (O
Definition 3. If M is a locally finite & = Gal(F,/F,)-module then the ratio
CCu(t)
P]w(t) —
Cpr(Fy) Gy (D)

of the (-function of M by the (-function of P!(F,) is called briefly the (-quotient
of M. We say that M has a polynomial (-quotient if Pys(t) € Z[t] is a polynomial
with integral coefficients.

A locally finite &-module M satisfies the Riemann Hypothesis Analogue with
respect to the projective line P!(F,) if M has a polynomial (-quotient

d d
:Zaitz H 1*0.)1 ﬂ
i=0 i1
with |w;| = /|wi]. .. |wa| = ¢laaql, V1 <i < d.

In order to explain the etymology of the notion, let us plug in ¢~°, s € C in

d
the ¢-function Car(t) = G () (¢) I] (1 — wit) of M and view
=1

Cv (¢7°) = @sd=25+1(1 — ¢5)(1 — g5~ 1)
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as a meromorphic function of s € C with poles 2miZ U (1 + 2miZ). If A =
log, v/ laq| € RZ0 then M satisfies the Riemann Hypothesis Analogue with respect
to P1(F,) exactly when the complex zeros s, € C of (yr (¢~%) have Re(s,) = A .
All smooth irreducible curves X/F, C IP’"LE) of genus g > 1 satisfy the Riemann
Hypothesis Analogue with respect to P!(F,) by the Hasse - Weil Theorem (cf. [1]
29
or [2]). Namely, Px(t) = c Cfi?(t) = ][ (1 —w;t) with |w;| = q%, V1 <4 < 2g, which
Pl (R i=1
is equivalent to Re(s,) = 3 for all the complex zeros s, € C of (x(¢~*). That
resembles the original Riemann Hypothesis Re(z,) = % for the non-trivial zeros
2z, € C\ (—2N) of Riemann’s (-function ((z) == Y L, 2 € C.

n=1

The present article translates Bombieri’s proof of the Hasse - Weil Theorem
from [1] in terms of the locally finite & = Gal(F,/F,)-action on X/F, C P"(F,)
and provides a sufficient condition for an abstract locally finite &-module M to sat-
isfy the Riemann Hypothesis Analogue with respect to P!(F,). Grothendieck has
classified the finite etale coverings of a connected scheme by the continuous action
of a profinite group on their generic fibre (see [3]). In analogy with his treatment,
we introduce the notion of a finite unramified covering of locally finite &-modules
and study the deck transformation group of such a covering. One can look for an
arithmetic objects A, whose reductions modulo prime integers p are locally finite
Gal(F,/F,)-modules and study the global (-functions of A. Another topic of in-
terest is the Grothendieck ring of a locally finite ® = Gal(F,/F,)-module and the
construction of a motivic (-function. Our study of the Riemann Hypothesis Ana-
logue for a locally finite & = Gal(F,/F,)-module is motivated also by Duursma’s
notion of a (-function (c(t) of a linear code C' C Fy; and the Riemann Hypothe-
sis Analogue for (¢ (t), discussed in [4]. Recently, (-functions have been used for
description of the subgroup growth or the representations of a group, as well as of
some properties of finite graphs.

The main result of the article is Theorem 29, which provides a criterion for
a locally finite & = Gal(F,/F,)-module M to satisfy the Riemann Hypothesis
Analogue with respect to P!(F,). The criterion is based on three assumptions,
which are shown to be satisfied by the smooth irreducible projective curves X/F, C
PN (IE'TQ) of genus ¢ > 1. The first assumption is the presence of a polynomial (-

d
quotient Pps(t) = qjl(v;i—q(];)(t) = %aiti € Z[t]. The second one is the existence of
i=
locally finite &,, = Gal(F,/F,m)-submodules M, C M, L, C P!(F,) for some
m € N with at most finite complements M \ M,, P1(F,) \ L,, which are related
by a finite unramified covering £ : M, — L, of &,,-modules with a Galois closure
(N,H, Hy), defined over Fym. This means that N is a locally finite &,,-module,
H is a finite fixed-point free subgroup of the automorphism group Aute, (N) of
N and H; is a subgroup of H, such that there are isomorphisms of &,,-modules
L, ~ Orby(N) = N/H, M, ~ Orby, (N) = N/H; and the finite unramified H-
Galois covering £y : N — N/H, {u(x) = Orby(x), Vz € N has factorization
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&n = &&p, through £ and the finite Hi-Galois covering &, : N — N/Hy, &u, (z) =
Orby, (z). Finally, we assume that A := log, {/[aq] € R=" is an upper bound of
the Hasse - Weil order ordg (M /P*(F,)) of M with respect to P*(F,) and the Hasse
- Weil H-order ordy (N/PY(F,)) of N with respect to P!(F,). We observe that
the Riemann Hypothesis Analogue for M with respect to P*(F,) implies a specific
functional equation for the ¢-polynomial Pj/(t). An explicit example, constructed
in Proposition 30 illustrates the existence of locally finite -modules M, which
are not isomorphic as ®-modules to a smooth irreducible curve X/F, C P*(F,) of
genus g > 1 and satisfy the assumptions of our criterion for the Riemann Hypothesis
Analogue with respect to P*(F,).

Here is a brief synopsis of the paper. The next section 2 collects some trivial
immediate properties of the locally finite & = Gal(F,/F,)-modules M and their
morphisms. Section 3 supplies several expressions of the (-function (ps(t) of M
and shows that (j/(¢) determines uniquely the structure of M as a B-module. It

studies the (-quotient Py(t) = Cf?i(fzt) € Z[[t]] of M and provides two neces-
Pl (Fq

sary and sufficient conditions for Py/(t) € Z[t] to be a polynomial. An arbitrary
smooth irreducible curve X/F, C P"(F,) of genus g > 1 is shown to contain a
®,, = Gal(F,/F,m)-submodule X, C X with |X \ X,| < oo, which admits a fi-
nite unramified covering f : X, — L, of &,,-modules and quasi-affine varieties
onto a &,,-submodule L, C P*(F,) with [P!(F,) \ Lo| < co. The fixed-point free
automorphisms h : M — M of &-modules, preserving the fibres of a finite un-
ramified covering £ : M — L are called deck transformations of £. If a deck
transformation group H < Autg(M) of € acts transitively on one and, there-
fore, on any fibre of £, then £ is said to be an H-Galois covering. In order to
explain the etymology of this notion, we show that if the finite separable exten-
sion Fy(X) = Fy(X,) D Fy(Lo) = Fy(PL(F,)) of function fields, induced from
f: X, — L, is Galois then f is an unramified Gal(F,(X)/F,(P*(F,)))-Galois cov-
ering of locally finite &,,-modules. For an arbitrary locally finite &-module M and
an arbitrary finite fixed-point free subgroup H < Aute (M) we establish that the
correspondence g : M — Orby (M) = M/H, associating to a point € M its
H-orbit Orby(z) is an H-Galois covering of locally finite &-modules. Moreover,
&u : M — Orby (M) turns to be equivariant with respect to the pro-finite comple-

tion (p) of the infinite cyclic subgroup of Aute (M), generated by ¢ := h®j for any
h € H, any r € N and the Frobenius automorphism ®,, which is a topological gen-
erator of & = Gal(F,/F,) = (6:) Our notion of a Galois closure (N, H, Hy) of a
finite unramified covering £ : M — L of locally finite -modules arises from the fact
that if the function field F,(Z) of an irreducible quasi-projective curve Z C P"(F,) is
the Galois closure of the finite separable extension F,(X,) D F,(L,), induced from
f:X,— L, then (Z,Gal(F,(Z)/F,(L,)), Gal(F,(Z)/F,(X,))) is a Galois closure
of the restriction f : X’ — L’ of f to some locally finite &,-submodules X’ C X,
L' C L, with | X,\ X'| < oo, |L'\ L,| < co. The final, fifth section is devoted to the
main result of the article. After reducing the Riemann Hypothesis Analogue with
respect to P1(F,) for a locally finite ® = Gal(F,/F,)-module M to lower and upper
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bounds on the number of rational points of M, we introduce the notion of a Hasse
- Weil order ordg (M/L) of a locally finite &-module M with respect to a locally
finite G-module L, as well as the notion of a Hasse - Weil H-order ordd (N/L) of
a locally finite &-module N with a finite fixed-point free subgroup H < Aute (V)
with respect to a locally finite -module L. These definitions are motivated by
the celebrated Hasse - Weil bound on the number of rational points of a smooth
irreducible curve X/F, C P"(F,), which can be stated as an upper bound 3 on the
Hasse - Weil order of X with respect to the projective line P*(F,). For an arbitrary
finite fixed-point free subgroup H < Aute (X ) we establish that the Hasse - Weil H-
order ordg (X/P(F,)) < 1. The Hasse - Weil order and the Hasse - Weil H-order
are shown to be preserved when passing to submodules with finite complements.
The existence of a finite unramified covering £ : M — L of locally finite &-modules
guarantees ordg (M /L) < 1, while the presence of an H-Galois covering £ : N — L
suffices for ord (N/L) < 1. Our main Theorem 29 provides a sufficient condition
for a locally finite &-module M to satisfy the Riemann Hypothesis Analogue with
respect to P! (I[Tq) By a specific example we establish that the assumptions of The-
orem 29 hold for a class of locally finite & = Gal(F,/F,)-modules, which contains
strictly the smooth irreducible curves X/F, C P"(F,) of genus g > 1. We observe
also that the Riemann Hypothesis Analogue for M with respect to IP’l(E) implies

a functional equation for the ¢-polynomial Py (t) := ; ff(”i(:z 7 € Z[t] of M.
Pl (Fq

2. PRELIMINARIES ON LOCALLY FINITE GAL(Fq/Fg)-MODULES AND
THEIR MORPHISMS

The algebraic and the separable closure of a finite field F, is Fy, = USS_ Fym.
The absolute Galois group & = Gal(F,/F,) = lim Gal(F,~ /F,) is the projective
“—
limit of the finite Galois groups Gal(Fym /Fy) = (®,) = {®}[0 < i < m — 1},
generated by the Frobenius automorphism &, : F, — F,, ®,(a) = a?, Va € F,,.
Namely,

6 = {(@f;n(mod m>)m€N € Tf[l(zm, +)

ln = ln(modm) for m/n}

is the pro-finite completion & = <</I>;> ~ (Z,+) of the infinite cyclic group (®,) ~
(Z,+). For an arbitrary n € N, note that
& x P"(Fy) — P"(F,),

ls ls .
(@fIS(mOdS))SeN[aO teeeta@ecap]=lad c..oial’] i oag,...,an € Fye

is a correctly defined action with finite orbits by Remark 2.1.10 (i) and Lemma
2.1.9 from [5]. By Lemma 2.1.11 from [5], the degree of Orbg (a) = Orbs,)(a), a €
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n

P"(F,) is the minimal m € N with {ag I aqm} =& (a) =a=ag:...:an].

n
m

If a; # 0 then ®*(a) = a amounts to (%)q _ ‘;47 Y0 < j < n and holds
exactly when Z—J € Fgm, V0 < j < n. Thus, Vm € N there are finitely many
Orbg(a) C P (E) of deg Orbg (a) = m and P*(F,) is a locally finite ®-module.

If X =V(fi,...,fi) C P"(F,) is a smooth irreducible curve, cut by homoge-
neous polynomials fi,..., fi € Fy[zo,...,x,] with coefficients from F,, X is said
to be defined over Fy and denoted by X/F, C P*(F;). The &-action on P"(F,)
restricts to a locally finite $-action on X, due to the &-invariance of f1,..., fi.

Here are some trivial properties of the locally finite Z-actions.

—

Lemma 4. Let = (p) be the profinite completion of an infinite cyclic group
(p) ~(Z,+), M be a locally finite &-module with closed stabilizers, Orbg(x) C M

be a G-orbit on M of degree m = degOrbg(z) and &, = <go/"T> be the profinite
completion of (p™) ~ (Z,+). Then:

(i) any y € Orbg () has stabilizer Stabg (y) = Stabg (z) = &,p;

(i) the orbits Orbg (x) = Orbey (z) = {z, o(x),..., " ! (x)} coincide;

(iii) Vr € N with greatest common divisor GCD(r,m) = d € N, the &-orbit

d
Orbg(z) = H Orbe, (¢ (7))

of x decomposes into a disjoint union of d orbits of degree my = 7 with respect to

the action of &, = (7).

Proof. If &' := Gal(F,/F,) = (6;) is the absolute Galois group of the finite
field Fy, then the group isomorphism f : (p) — (@), f(¢*) = @, Vs € N extends
uniquely to a group isomorphism

Fr®=(p) — (@) =6, (i 0m19) oy = (@0l e TT((@,)/(@5)
seN

of the corresponding pro-finite completions. That is why it suffices to prove the
lemma for & = (P,).

(i) By assumption, Stabg () is a closed subgroup of & of index

[& : Stabg ()] = deg Orbg (z) = m.
According to Gal(F,~ /F,) = Gal(F,/F,)/Gal(F,/Fym) = &' /& for & = @,
the closed subgroup &/, of & is of index m and the closed subgroup &,, of & is of
index [& : 8,,] = m. If H is a closed subgroup of & of [& : H] = m then &/H is an
abelian group of order m and ¢™ € H, Vo € &. Therefore the closure &,, = (™)

of (™) in & is contained in H and [H : &,,] = [?Q;:Q;_’[]L] = 1. Thus, H = &,, is the
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only closed subgroup of & of index m and Stabg(z) = &,,. Since & is an abelian
group, any y € Orbg () has the same stabilizer Stabe (y) = Stabe (z) = &,, as .

(ii) The inclusion (p) C </<p\> = & of groups implies the inclusion Orb,y(z) C
Orbg () of the corresponding orbits. It suffices to show that z, o(z), ..., ™ ()
are pairwise different, in order to conclude that deg Orb .y (x) > m = deg Orbe (),
whereas Orb ) (z) = Orbg (). Indeed, if ¢*(z) = ¢ (z) for some 0 < i < j <m—1
then x = 7 ~%(z) implies ¢/ ~% € Stabe (2)N{p) = Wﬂ(g@) = (¢™) and m divides
0 <j—14<m—1. This is an absurd, justifying Orb,(z) = Orbg(z).

(iii) It suffices to check that Vy € Orbg(x) has stabilizer Stabe, (y) = Spm,,
in order to apply (i) and to conclude that deg Orbg, (y) = mi. Bearing in mind
that Stabg, (y) = Stabg (y) N &, = G, N &, and the least common multiple of m
and r is LCM(m,r) = rm; = mry € N for r; = we reduce the statement to
G NG, = BronM(m,r). According to

r
a’

6, /(G N6,) ~6,.6,/6, <6/6,,,

the index s := [ : 8,, N G,] = [& : &,][&, : (&, N B,)] < rm is finite and
6B, NGB, =&,. By &, < &,, < & and &, < &, < & the integer s € N is a
common multiple of m,r, so that LCM(m,r) € N divides s. Since Sycn(m,ry) =
&rm, = 6, is contained in &,,, and &,., there follows G,omm,r) < NG, = B,
so that s divides LCM(m,r) and s = LCM(m,r). O

If M and L are modules over a group G then the G-equivariant maps
&M — L, g&(x)=¢&(gx) YVge G, Ve e M

are called morphisms of G-modules. Let £ : M — L be a morphism of locally finite
® = Gal(F,/F,)-modules. The next proposition provides a numerical description
of the restriction of £ on a preimage of a &-orbit, by the means of the inertia
indices of £&. Note that the image (M) is &-invariant and for any complete set
Yo (E(M)) CE(M) of B-orbit representatives on £(M), the -orbit decomposition

E&M) = 11 Orbg () pulls back to a disjoint &-module decomposition
€T (E(M))
M= ][] ¢ 'Orbg(a). (2.1)
r€X e (§(M))

Thus, the morphism & : M — L of &-modules is completely determined by the
surjective morphisms £ : €7 1O0rbg (z) — Orbg(z) of B-modules YV € X (E(M)).

Proposition 5. Let £ : M — L be a morphism of locally finite modules with
closed stabilizers over the pro-finite completion & = (¢) of an infinite cyclic group

(p) = (Z,+),

0 =degOrbg : L — N, d(z) = degOrbg(z) for Ve L and
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deg Orbe ()

. 0 =
ce: M— Q7 eely) = G5 )

Yy € M.

Then:

(i) Stabe (y) is a subgroup of Stabe(£(y)) for all the points y € M, so that
ee(y) = [Stabe ((y)) : Stabe (y)] € N takes natural values;

(ii) for any x € £(M) there is a subset S, C £~ 1(x), such that

¢ '0rbg (= H Orbe(y) with  deg Orbe (y) = d(x)es(y); (2.2)
yES,

(i) Y € E(M) the fibre £ (x) is a B4(y)-module with orbit decomposition

571(3:) = H Orb@s(z)(y) Of deg Orb@a(m) (y) = ei(y)' (23)
YESy

The correspondence e¢ : M — N s called the inertia map of § : M — L. The
values ec(y), y € M of e¢ are called inertia indices of €.

Proof. (1) The &-equivariance of £ implies that Stabe (y) < Stabe (&(y)) < 6.
Combining with Lemma 4 (i), one expresses

[6 : Stabg (y)]

ee(y) = [®  Stabo (C())] [Stabe (£(y)) : Stabe (y)] € N.

(i) We claim that Vo € (M) all &-orbits on £ 'Orbg () intersect the fibre
¢ 1(x). Indeed, assuming &(z) = ¢*(z) for some z € M and 0 < s < §(x) — 1, one
observes that £(p0(*)=52) = @@ =5¢(2) = 2, whereas y := @*@)=5(2) € £ 1(z)
with Orbg(z) = Orbg(y). That allows to choose a complete set S, C £~ 1(x) of
®-orbit representatives on £ 1Orbg(x) and to obtain (2.2) by the very definition
of eg(y) with y € S, C ().

(iit) If = € §(M), y € £ (z) then §(¢°y) = P*We(y) = ¢"(a) = o
implies ¢°@) (y) € £71(x), so that £~1(z) is acted by B4,y = (¢ 5(9”)) That justifies
the inclusion Uyes, Orbes, ., (y) € & Y(x). For any y,y’ € S, the assumption

y' € Orbg; ., (y) C Orbg(y) implies that y' = y, so that the union [[ Orbg,,, (v)
YyESy
is disjoint. By the very definition of .S,, any

z €& x) C € '0rbg(z) = H Orbe (y)

YyESy

is of the form z = ¢®(y) for some y € S, and 0 < s < d(x)es(y) — 1. Due to
= &) = €e'(1) = @'E(y) = (@), there Tollows ¢* € Stabe (x) N (p) =

(@Y N {(p) = 5(””)>, whereas s = §(z)r for some r € ZZ°. Thus, z = @*@)"(y) €
Orbg,,, (y) and ¢ (z) € [ Orbe,,, (y). That justifies the &g(,)-orbit decom-
YESy

position (2.3). By (ii) and the proof of Lemma 4 (iii), one has Stabe;  (y) =

106 Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 99-137.



Stab@ (y)ﬂﬁg(x) = @5(35)6&(1/) ﬂ(’ﬁgu) = 65(9:)65(31)7 as far as LCM((;(ZE)ef(y), 5(.23)) =
d(z)eg(y). Now, Lemma 4(i) applies to provide deg Orbg, ., (y) = e¢(y). O

3. LOCALLY FINITE MODULES WITH A POLYNOMIAL ¢-QUOTIENT

In order to provide two more expressions for the (-function of a locally fi-
nite module M over & = Gal(F,/F,), let us recall that on an arbitrary smooth

irreducible curve X/F, C P*(F,), defined over F,, the fixed points

X% = {z € X|®)(z) =2} = X(Fy)
of an arbitrary power ®7, r € N of the Frobenius automorphism ®, coincide with
the IF --rational ones. That is why, for an arbitrary locally finite module M over
the pro-finite completion & = () of an infinite cyclic group (p) ~ (Z, +), the fixed
points
M¢ ={x e M|¢"(z) =z}

of ¢" with r € N are called p"-rational. Note that if degOrbg(z) = m then
x € M¥" if and only if " € Stabg(z) = &,, = (¢™) and this holds exactly when
m divides r. Since any fixed » € N has finitely many natural divisors m and for
any m € N there are at most finitely many &-orbits on M of degree m, the sets
M¢" are finite.

Let us consider the free abelian group (Div(M), +), generated by the &-orbits
v € Orbg(M). Its elements are called divisors on M and are of the form D =
a1y + ...+ asvs for some v; € Orbg (M), a; € Z. The terminology arises from the
case of a smooth irreducible curve X/F, C P*(IF;), in which the ® = Gal(F,/F,)-
orbits v are in a bijective correspondence with the places v of the function field
F,(X) of X over Fy. If Ry is the discrete valuation ring, associated with the place
v then the residue field Ry /My of Ry is of degree [Ry/My : Fy] = degv.

Note that the degree of a G-orbit extends to a group homomorphism

deg: (Div(M),+) — (Z,+), deg Z a,v | = Z a, deg v.
v€Orbe (M) vE€Orbegs (M)

A divisor D = a1y + ...+ agvs > 0 is effective if all of its non-zero coefficients
are positive. Let Divso(M) be the set of the effective divisors on M. Note that
the effective divisors D = ajv1 4+ ... + asvs > 0 on M of fixed degree deg D =
aidegvy + ...+ asdegrvs = m € Z2° have bounded coefficients 1 < a; < m and
bounded degrees degv; < m of the ®-orbits from the support of D. Bearing in
mind that M has at most finitely many &-orbits v; of degree degr; < m, one
concludes that there are at most finitely many effective divisors on M of degree
m € ZZ° and denotes their number by A,,(M).
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The following statement generalizes two of the well known expressions of the
local Weil ¢-function (x(t) of a smooth irreducible curve X/F, C P*(F,) to the

(-function of any locally finite & = ( )-module M. The proofs are similar to the
ones for X/F, C P*(F,), given in [5] or in [2].

Proposition 6. Let & = @ be the pro-finite completion of an infinite cyclic
group (@) and M be a locally finite &-module. Then the {-function of M equals

Cu(t) = exp (Z ‘M“’T t;) =Y An(M)t

where ’M‘PT‘ is the number of ©"-rational points on M and Ay, (M) is the number
of the effective divisors on M of degree m € Z=°.

Proof. If By, (M) is the number of &-orbits on M of degree k then

= <1tdcg”) H(ltk>BK(M).

vEOTbe (M) k=1

Therefore

log Gur(t) = = 3 BelM)log(1 — 1) = ZBk M) (i #")

k=1
tT
-3 (Tmman)
r=1 k/r
according to the equality of formal power series
o0 Z,r
log(l—2)=— — . 3.1
os(1=2)= -3 € all] (31)
If M¥" = 11 Orbg () is the decomposition of M¥" into a disjoint union
deg Orbg (z)/r
of B-orbits then the number of the ¢"-rational points on M is
’MW =3 kBy(M), (3.2)
k/r

whereas log (pr(t) =
On the other hand, there is an equality of formal power series

O | (theg<w>) = ) P = A, (M. O
ve€Orbg (M) \n=0 DeDivso(M) m=0

For an arbitrary group G, the bijective morphisms £ : M — L of G-modules
are called isomorphisms of G-modules.
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Corollary 7. Locally finite & = @—modules M, L admit an isomorphism of
&-modules & : M — L if and only if their {-functions (pr(t) = (r(t) coincide.

Proof. Let & : M — L be an isomorphism of &-modules and z € L be a
point with degOrbeg(z) = d(z). Then (2.3) from Proposition-Definition 5 (iii)
provides a decomposition £ (x) = ] Orbe,,, (y) of the fibre £7'(z) in a dis-

YESy

joint union of &;(,)-orbits of deg Orbg, ,,(y) = e¢(y). Therefore |S,| =1, Vo €
L, ec(y) = 1, Yy € M and ¢ 'Orbg(z) = Orbef1(z) is of degree d(x) by
(2.2) from Proposition-Definition 5 (ii). As a result, (2.1) takes the form M =

[T Orbsé~1(x) for any complete set Yg(L) of B-orbit representatives on L
z€Te (L)
and Cu () =TT (i) = Gl®):

r€X e (L)

Conversely, assume that the locally finite &-modules M and L have one and a

same (-function (s (t) = (1 (). Then by Proposition 6, there follows the equality

; (MW‘ % — log Car(t) = log Co(t) = ; ]LW t? € Q[t]]

of formal power series of ¢, whereas the equalities

S dBa(M) = ’MW‘ - ‘LW’ =3 dBy(L)
d/r d/r

of their coefficients Vr € N. By an induction on r, one derives that By(M) = By(L),
Vd € N. For any k € N note that M (%) := {2 € M | deg Orbg (2) < k} is a finite
®-submodule of M and the locally finite &-module M = UF_, M (=% is exhausted
by M(ER) If L(EF) .= {y € L| deg Orbg (y) < k} then by an induction on k € N
one constructs isomorphisms & : M(SF) — L(=K) of G-modules and obtains an
isomorphism of &-modules £ : M = U?;lM(Sk) — U,;";lL(Sk) =1L (]

Lemma 8. If M is a locally finite & = Gal(F,/F,)-module with (-function
Cm(t) € Z[[t]] then the quotient

Pu(t) = cﬂjﬁﬁt) = ;aiti € Z[[t]]*

is a formal power series with integral coefficients a,, € Z, which is invertible in
Z[[t]). Its coefficients an, € Z satisfy the equality

m

A (M) = Za [P =(F,)|

and can be interpreted as “multiplicities” of the projective spaces P™*(F,), "ex-
hausting” the effective divisors on M of degree m.
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Proof. If Py (t) = Z amt™ € C[[t]] is a formal power series with complex

coefficients a,, € C then the comparison of the coefficients of

D amt™ = Py(t) = Cu(t)(1 — t)(1 — qt) = <Z A M)tm> [1— (g + 1)t +qt?
m=0 m=0
yields

am = An(M) = (¢ + D) Apn_1(M) + qAn_2(M) € Z Ym € Z2°, (3.3)
as far as A, (M) € Z=°, Ym € Z=° and A_1(M) = A_(M) = 0. In particular,
ap = Ag(M) = (p(0) = 1 and Py(t) = 1+ iaiti € Z[[t]]* is invertible by
a formal power series Py (t) = 1 + iojl by t™ € Z[[t]] with integral coefficients.

(The existence of b,, € Z with [1 4+ > ant™][1 + > b,t™] = 1 follows from

m=1 m=1

m—1
bm + > biaym—; + am = 0 by an induction on m € N.)
i=1
The comparison of the coefficients of

Z A (M)t™ = Cur(t) = Par (8)Cpr ) (1) = (Z amtm) (Z ts) (Z qrtr>
s=0 r=0

m=0
provides
m m—1 . m qm—i+1 _1 m )
An(M)=>"a;( D ¢ | =D ai (ql) = a; [P"THF,)|. (3.4)
i=0 j=0 i=0 i=0

O

According to the Riemann-Roch Theorem for a divisor D of degree deg D =
n > 2g — 1 on a smooth irreducible curve X/F, C P*(F,) of genus g > 0, the
linear equivalence class of D is isomorphic to P"~9(F,). For any n € Z=° there
exist one and a same number h of linear equivalence classes of divisors on X of
degree n. The natural number h = Px (1) equals the value of the {-polynomial
Px(t) = wai(?(t) = io a;jt! € Z[t] of X at 1 and is called the class number of X.

Thus, for any natural number n > 2g — 1 there are

n—g+1 _
Au(X) = P[P8 = P (T

effective divisors of X of degree n. Note that the {-function (x(t) = %

1
has residua Res:i(({x(t)) = Pﬂ; , Res1({x (1)) = %(11) at its simple poles 1 7
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respectively, 1. The (-polynomial Px(t) of X satisfies the functional equation
Px(t) = Px (i) q9t%9, according to Theorem 4.1.13 from [5] or to Theorem V.1.15

(b) from [2]. In particular, Px (%) = ¢ 9Px (1) and

A, (X) = —q”“Res%(CX(t)) —Res1(Cx(t)) Vn>2g—1.

Definition 9. A locally finite module M over & = Gal(F,/F,) satisfies the
Generic Riemann-Roch Conditions if M has

An(M) = —QTLHRQS%(CM@)) — Res1(Cm(t))
effective divisors of degree n for sufficiently large natural numbers n > n,.

One can compare the Generic Riemann-Roch Conditions with the Polarized
Riemann-Roch Conditions from [6], which are shown to be equivalent to Mac
Williams identities for linear codes over finite fields. A generalized version of [6],
concerning additive codes will appear elsewhere.

Here is a characterization of the locally finite ®-modules M with a polynomial

: _ _Cm(®)
¢-quotient Py (t) = #@(0 € ZIt).

Proposition 10. The following conditions are equivalent for the C-function
Cm(t) of a locally finite module M over & = Gal(F,/Fy):

(i) Pp(t) := CPE?;(:)(t) € Zl[t] is a polynomial of deg Pp(t) =d < 6 € N;

(i) M satisfies the Generic Riemann-Roch Conditions

Py (1) = Pu()

An (M) = *qn+1ReS%(<M(t)) — Res1(Cm(t)) = 1 (3.5)
foralln>6—1;
d
(ii) ]PI(E)‘PE - ‘M‘PZ =Y W for VreN (3.6)
j=1

d
and some w; € C*, which turn out to satisfy Pa(t) = [[ (1 — wjt).

Jj=1

d .
Proof. (i) = (#) If Py(t) = Cpfxi% = %ajtj € Z[t] is a polynomial of
q Jj=

deg Py(t) =d < § € N then (3.4) reduces to

: m+1 1) _
d <qmz+1_1>_q P]w (q) PM(l) Vm>6

Am(M):Zaz q—l q—l

i=0
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Moreover, (3.4) implies that

As_1(M) = ¢ {PM (%) qq_} : [Par(1) — as] _ @’ Py (5)_1 PM(].).

Now (3.5) follows from the fact that the residua of {(t) = % at its simple

poles are R651 (Cu(T)) = — (q ), respectively, Resy ((ar(¢)) = P;”(ll).
(i) = () Plugging (3.5) in (3.3), one obtains a,,(M) = 0, Vm > § + 1.
5

Therefore Pys(t) = 5 a;(M)t? € Z[t] is a polynomial of degree deg Pys(t) < 4.

=0

(i) = (i1) If Pr(t) = ¢ fj(”(jzt) € Z[t] is a polynomial of degree deg Py(t) =

d

d < 4, then Py (0) = Cuﬁ?;(?()o) =1 allows to express Py (t) = [] (1 — w;t) by some

complex numbers w; € C*. According to Proposition 6,

j=1

Cn(t) = exp (Z ‘M‘PZ t;) and  Gpa gy (1) = exp (Z ‘[pl(]l?q)@;‘) t;) , (3.7)
r=1 r=1

whereas
d e’}
> log(1-w;t) =log Pas (£) =1og Car(1)—10g G g (1) =D (| M| — [P () )
Jj=1 r=1
oS d r o0 e S r ”
Making use of (3.1), one obtains — > [ > wf | & = 3 (‘M‘ba —’IF’l(IFq)‘I’a )%
r=1 \j=1 r=1

The comparison of the coefficients of t%, Vr € N provides (3.6).
(#91) = (¢) Multiplying (3.6) by %7 summing Vr € N and making use of (3.1),

d
one obtains log Cpl(ﬁ)(t) —log ¢ (t) = — Z log(1 — wj;t). The change of the sign
d
and an exponentiation provides Py (t) = ¢ f](”(f)(t H (1 —wjt) € Z[t]. O
P*(Fq j=1

Corollary 11. Let M and L be locally finite & = Gal(F,/F,)-modules with

polynomial (-quotients Py(t) = C;X*(fzt)’ Pr(t) = cpf(;—(t))(t) € Z[t] of degree

deg Py (t) < 0, deg Pr(t) < 6. Then M and L are isomorphic (as G-modules)
if and only if they have one and the same number By (M) = Br(L) of B-orbits of
degree k for all 1 <k <9.

Proof. According to Corollary 7, it suffices to prove that By (M) = By(L) for
all 1 < k < § is equivalent to the coincidence (p(t) = (r(t) of the corresponding
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(-functions. The infinite product expressions

M(t):ﬁ<1_1ﬂ€>BK(M), CL(t):ﬁ<1_1tk>BK(L)

k=1 k=1
reveals that (y/(t) = (r(t) if and only if B(M) = Bi(L), Vk € N. There remains
to be shown that if deg Py (t) < § then By (M) with 1 < k < § determine uniquely
d
By (M) for Vk € N. Let Py (t) = [[ (1 — w;t) for some d < §, w; € C* and denote
j=1

d
Sy == Y wj, ¥r € N. By (3.6) from Proposition 10 and (3.2) from the proof of
j=1
Proposition 6 one has

Se=(a"+1) - |M"

=(¢"+1) =Y _kBi(M) for ¥reN.  (3.8)
k/r

Thus Bi(M) with 1 < k < § determine uniquely S,, V1 < r < §. Since Py(t)
is of deg Py (t) = d < 0, S, with 1 < r < ¢ determine uniquely S,, Vr € N by
Newton formulae. By an induction on r € N and making use of (3.8), S, with
r € N determine uniquely B,.(M), Vr € N. O

Proposition 12. Let M be a locally finite module over the pro/—]im'te com-
pletion & = (p) of (p) =~ (Z,+) and M, be the locally finite &, = (p")-module,
supported by M for some r € N. Then the (-functions of M and M, are related by
the equality

Cur, (t7) H Cm (GQTkt) : (3.9)

In particular, if M has polynomial (-quotient Ppy(t) = Cgl(w(fgt) = H (1 —wj;t) of
PL(F

deg Py (t) = d then M, has Py, (t) == %52;7)(0(” = H(l—w t) of deg Py, (t) = d

and M satisfies the Riemann Hypothesis Analogue wzth respect to PL(F,) as a &-
module if and only if M, satisfies the Riemann Hypothesis Analogue with respect
to PY(F,), as a &,-module.

Proof. According to (1.7) from subsection V.1 of [2], for any m,r € N with
greatest common divisor GCD(m,r) = d € N there holds the equality of polynomi-
als

— o m
(1—t7%) H{l—(e#t) }

By Lemma 4 (iii), any ®-orbit v of degrv = m splits in d orbits v = v, [] .. H Vg

over &, of degr; = %, V1 < j < d. The contribution of v to [ I ¢ (e Bk t)} is
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r—1 ) m d

1 {1 - (e 2 t) } =(1- t'r%)d = [T (1 —¢"9°&¥5) and equals the contribution
k=0 j
of v [[...[Iva to Car, (7). That justifies the equality of power series (3.9).

For any w € C* note that

ﬁ(l_ezﬁkwt) - (m)’“lHZ(ui—esz) = (wt)" [(C‘;)T —1} = 1-w"t". (3.10)

k=0

d
If Py(t) := Cf(wijfgt) = T1 (1 —w;t) € Z[t] with ag := LC(Pa(t)) = (—1)%w; ... wa
a j=1

for some w; € C* and P}(F,), is the &,-module, supported by P*(F,) = P! (F,-)
then (3.9) and (3.10) yield

o ane) ()
P, (t )%?;W;E)WIEPM (e rkt>

r—1 d ) d r—1 d
= HH(l—wjezwrlkt) :H (l—wje%?’kt) :H(l—w;tr).
k=0j=1 j=1k=0 j=1

d
Thus, Py, (t)= [] (1-wjt) is a polynomial of deg Py, (t) = d € N with [LC(Py, (t))|
j=1

= |wi...wq|" = laq|" and |w;| = ¢/]aq| if and only if |w; = {/|LC(Pas, (t))]. That
justifies the equivalence of the Riemann Hypothesis Analogue for M and M, with

respect to the projective line, whenever M has a polynomial ¢-quotient Py (t). O

4. FINITE UNRAMIFIED COVERING OF LOCALLY FINITE MODULES

Extracting some properties of the finite unramified coverings f : X — Y of
quasi-projective curves X, Y or topological spaces X, Y, we introduce the notion of
a finite unramified covering of locally finite & = Gal(F,/F,)-modules.

Definition 13. A surjective morphism ¢ : M — L of & = Gal(F,/F,)-modules
is an unramified covering of degree deg ¢ = k if all the fibres ¢ 71(z), 2 € L of £ are
of one and a same cardinality |{~!(z)| = k.

The inertia map e¢ : M — N of an unramified covering § : M — L of deg{ = k
takes values in {1,...,k}. This follows from Proposition-Definition 5 (iii), ac-

cording to which £7'(z) = [[,cq, Orbe,,, (v), Yo € M, d(z) = degOrbg (),
deg Orbe, ,, (y) = ec(y), whereas k = [¢7 (z)| = 3 ec(y) with e¢(y) € N.

YESs
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The next proposition establishes that an arbitrary irreducible quasi-projective
curve X C P*(F,) of genus g > 1 contains a locally finite &,, = Gal(F,/F,n)-
submodule X, with at most finite complement X \ X,, which admits a finite un-
ramified covering f : X, — f(X,) onto a &,,-submodule f(X,) C P(F,) with
P! (Fy) \ f(Xo)| < oo for some m € N.

Proposition 14. For any irreducible quasi-projective curve X C P*(F,) of
positive genus there exist m € N and locally finite &,, = Gal(F,/F,m)-submodules
X, C XNF," c P*(F,), L, CF, c P(F,) with at most finite complements X\ X,,
PY(F,) \ Lo, related by a finite unramified covering f : X, — L, of ®,,-modules
and quasi-affine curves, which induces the identical inclusion f* = 1d : E(Lo) =
F,(PL(F,)) — F (X) = F,(X,) of the corresponding function fields. Moreover,
there exist a plane quasi-affine curve Y, C EQ, which is a locally finite &,,-module,
as well as an isomorphism ¢ : X, — Y, of quasi-affine curves and &.,,-modules,
such that f factors through ¢ and the first canonical projection pry : Y, — Lo,
Pry(Uo, Vo) = Ug, V(Uo, Vo) € Y, along the commutative diagram

Xoi'yo
\

Proof. According to Proposition 1 from 4 of Algebraic Preliminaries of [7],
there exist such generators u,v of the function field F,(X) = F,(u,v) of X over
F, that u is transcendental over F, and v is separable over Fq(u). If g(z) =

pry

L,

Bi(u)
polynomial of v over F,(u) and g(u) € Fy[u] is a least common multiple of the
denominators f3;(u) of the coefficients of g(z) then

imxz € F,(u)[z] with a;(u), Bi(u) € Fylu], ag(u) = Br(u) =1 is the minimal

k
(i) = Y- L € B

is a polynomial in two variables u,x of positive degree k := deg,(q(u)g(x)) € N

with respect to x. Dividing by the greatest common divisor of the coefficients
% € Fylu], 0 < ¢ < k of g(u)g(x), one obtains a primitive and therefore

irreducible polynomial g(u,z) € F,[u,z]. The affine curve

Y = V(g(u, @) = {(to,ve) € Fy" | g(tiov,) = 0}

has function field Fy(Y) = Fy(u,v) = F4(X). That suffices for the existence of a
birational map ¢ : X —-> Y, inducing the identity ¢* = Id : Y = Fy(u,v) —
F,(u,v) = F,(X) of F,-algebras. In other words, there are quasi-affine curves
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X1CX, X C IFTL, respectively, Y1 CY C IETqQ with an isomorphism ¢ : X7 = V)
of quasi-affine varieties. For any 1 < j < 2 let pr; : EQ — F,, pr;(z1,72) = 2
be the canonical projection on the j-th component. Then ¢; := prjp : X; —
F,, 1 < j < 2 are regular functions on X; and there are such polynomials

G (@1, n), hi(T1, . an) € Fylza, ...z, that o, « = oo , after
1

i (T15s®n)
replacing X by its sufficiently small Zariski open subset. The proper Zaris)lg closed
subvarieties of curves are finite sets of points, so that | X \ X;| < oo, |V \ V1| < 0.
FY\Y:={y,...,ys} then Yo := Y \ pry {pr,(y1),...,pr;(ys)} C Y1 is a quasi-
affine curve, on which the fibres pr ! (u,) = { (0, vo) € IETQ2 | 9(to,v0) =0} ~ {v, €
F, | g(uo,v,) = 0} of pry : Y — pr;(Y2) coincide with the corresponding fibres of
pry : Y — F, and are of cardinality |pri'(u,)| < k. Note that X5 := ¢~ 1(Y2) is a
quasi-affine curve, | X7\ X2| < 0o, |Y1\Y2| < co and ¢ : X9 — Y5 is an isomorphism
of quasi-affine curves. The discriminant D, (g) € Fy[u] of g(u,z) with respect to
z is a polynomial of u and has a finite set of zeroes V(D;(g)) C pr;(Y2). All the
fibres of

pry : Yo =Y\ pry '(V(Da(g))) — Fy

are of cardinality k and ¢ : X, = ¢~ }(Y,) — Y, is an isomorphism of quasi-affine
varieties with | X7 \ X,| < o0, [Y1\ Y| <oo. If X, =V (¢i,...,95) \V(Ry,...,h))
consists of the common zeroes of the polynomials g.(x1,...,7,) € Fy[z1,..., 2],
which are not a common zero of by (z1,...,%n), ..., ho(T1, ..., 2,) € Fylz1, ..., 22],
then the minimal finite extension Fgu 2 F,, which contains the coefficients of
all gi(x1,...,2n), R} (21,...,2,) is called the definition field of X,. One sees im-
mediately that for any F,s O Fgu the quasi-affine curve X, is a locally finite
&, = Gal(F,/F,:)-module. The minimal finite extension F,. O F,, containing
the coefficients of the numerators g;(z1,...,7,) € Fy[z1,...,2,] and the denomi-
nators hj(x1,...,2,) € Fy[z1,...,2,] of the components ¢; of p = (¢1,¢2) : Xo —
Y, C EQ is said to be the definition field of ¢. We choose such m € N that Fgm
contains the definition fields of Xy, Yy, ¢ and observe that ¢ : Xy — Y is an
isomorphism of locally finite &,, = Gal(F,/F,=)-modules.

Moreover, L, := pr,(Y,) € F, C P*(F,) is a quasi-affine curve since |F, \ Lo| <
oo and pry : Y, = L, is an unramified covering of quasi-affine varieties. If Fym
contains the definition field of L, then pr; : Y, = L, is a finite unramified covering
of locally finite &,,-modules of degree k. We put f := pryp : X, — L, and note
that under the aforementioned choices f : X, — L, is a finite unramified covering of
locally finite &,,,-modules and quasi-affine varieties, inducing the identical inclusion
[T = pri = pri : Fo(Lo) = Fy(u) = Fo(u,v) = Fy(Xo). 0

An automorphism « of a &-module M is a self-isomorphism « : M — M of
®-modules. We denote by Auteg (M) the automorphism group of M. Since & is
an abelian group, any ¢ € & induces an automorphism ¢ : M — M. In such a
way there arises a group homomorphism ¥ : & — Aute (M). If U is injective, the
®-module M is said to be faithful and @& is identified with U(®) < Aute(M).
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Lemma 15. A locally finite module M over & = Gal(F,/F,) with closed
stabilizers is faithful if and only if M is an infinite set.

Proof. By the very definition of the homomorphism ¥ : & — Autg (M), its
kernel
ker U = N ensStabe (z)

is the intersection of the stabilizers of all the points of M. In the proof of Lemma
4 (iii) we have established that &,, N &, = Grommn). f M = {21,...,2,} is a
finite set then the map degOrbg : M — N has finitely many values mq,...,m,,
v <. As aresult, ker W = NY_;8,,, = Greni(m, |1<j<v) 7 10} and M is not a
faithful &-module.

Suppose that M is an infinite locally finite &-module and

o= (q)és(mods))seN € ker U = N;eprStabeg ()

_ mzel\/fﬁdeg Orbe (z) = Nwe {(I)Seg Orbg (z)ms(mod s) }SEN i
Then for any point x € M and any s € N the degree deg Orbg () of the &-orbit of
x divides l. For an infinite locally finite -module M the map deg Orbg : M — N
has an infinite image, so that any [, is divisible by infinitely many different natural
numbers deg Orbg (x), © € M. That implies I = 0, Vs € N, whereas ker ¥ = {0}.
Thus, any infinite locally finite &-module M is faithful. ]

Definition 16. If £ : M — L is a finite unramified covering of locally finite
®-modules then the fixed-point free automorphisms of B-modules o : M — M
with £ = £ are called deck transformations of .

Any subgroup H of Aute (M), which consists of deck transformations of
£: M — L is called a deck transformation group of &.

Note that an automorphism « : M — M of a locally finite &-module M and
a finite unramified covering £ : M — L of B-modules are subject to the equality
¢a = ¢ if and only if « restricts to a bijection o : £~ (z) — £~ 1(x) on any fibre
£ Yx), x € L of & Namely, y € ¢ (z) maps to a(y) € £ (z) exactly when
Ea(y) = x = &(y). Thus, for any deck transformation group H of £ : M — L and
any point x € L there arises a group homomorphism

U, o H — Sym(¢7 (2)) = Sym(k),

where k = deg(€). Due to the lack of fixed points of H, ¥, are injective and H is a
finite group, whose orbits on £€~!(z) are of one and a same cardinality |H| < k!. In
particular, H acts transitively on some fibre £~!(z,), z, € L of a finite unramified
covering £ : M — L exactly when |H| = k = deg(€). If so, then H acts transitively
on all the fibres £~1(z), # € L of &.
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Definition 17. A finite unramified covering & : M — L of locally finite
& = Gal(F,/F,)-modules is H-Galois if there is a deck transformation group
H < Autg(M), acting transitively on one and, therefore, on any fibre £7!(z),
z e Lofé&.

Proposition 18. In the notations from Proposition 14, the Galois group
H = Gal(F, (X)/F, (' (F,)))

of the finite separable function fields extension Fy(P1(F,)) C F,(X) is a deck trans-
formation group of the finite unramified covering f = prip : X, — L, of locally
finite &,,, = Gal(F,/Fym)-modules. If Fy(PL(F,)) C Fy(X) is a Galois extension
then f = prip : Xo — L, is an H-Galois covering. If f = pryp : X, — L, has
a deck transformation group H, which consists of birational maps h : X, ~——> X,

and acts transitively on the fibres of f : X, — L, then the finite separable extension
of function fields F,(P*(F,)) C Fy(X) is Galois and H ~ Gal(F,(X)/F,(P*(F,))).

Proof. As far as ¢ : X, — Y, is an isomorphism of locally finite &,,-modules,
inducing the identity ¢* = Id : F (Y,) = Fy(u,v) = Fy(X,) = F,(X) of the
corresponding function fields, it suffices to prove the corresponding statements for
pry; : Y, = L,. More precisely, we claim that H = Gal(F,(Y,)/F,(L,)) with
F,(PY(F,)) = F,(L,) = F,(u) is a deck transformation group of the finite unramified
covering pry : Y, — L, of locally finite ®,,-modules. If F,(u) C F,(u,v) is a Galois
extension then pr; : Y, — L, is a Galois covering. If pr; : Y, — L, has a deck
transformation group H, which consists of birational maps h : Y, - > Y, and
acts transitively on the fibres of pr; : Y, — L, then the finite separable extension
F,(u) C F,(u,v) of function fields is Galois.

Note that for any fixed u, € L, the Galois group H = Gal(F,(u,v)/F,(u))

acts without fixed points on the fibre pry*(u,) = {(to,v,) € EQ | (o, v,) = 0}
of the projection pr; : Y, — L,. That allows to view H as a fixed-point free
subgroup of the symmetric group Sym(Y,) of Y,. If deg, g(u,z) = k then F,(u,v)
is a k-dimensional vector space over F,(u) with basis 1,v,...,v*~1. The Frobenius
automorphism ®,m : Fy(u,v) — F,(u,v) acts on the coefficients of the rational

functions % € Fy(u) with g1 (u), g2(u) € Fylu], ga(u) # 0 and fixes v’ for VO < i <
k — 1. By their very definition, all h € H = Gal(F,(u,v)/F,(u)) act identically on
F,(u) and permute the roots x; € F, of g(u,x) = 0. That is why h®ym = ®ymh as
an automorphism of the function field F, (u,v) = F,(Y,) and of the affine coordinate
ring F,[Y,] = F,u, 2] /{g(u, x)) = Fylu,v] = Fy[u] + Fylu]v + ... + Fy[u]v*~! of Vs,
The affine closure Y = V(g(u, x)) C EZ of Y, in EQ has the same affine coordinate
ring F,[Y] = F,[Y,] as Y,. The F -algebra automorphisms of F,[Y] are in a bijective
correspondence with the automorphisms Y — Y of the affine curve Y, so that
h®gm = ®mh coincide as automorphisms of Y. By the very choice of m € N, the
quasi-affine curve Y, is ®,m-invariant. According to Y, =Y \ pr; Hug, ..., u,} for
some uy,...,u, € F,, the fibres of pr; : Y, — pr;(Y,) coincide with the fibres of
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pry : Y — F, over pr,(Y,). Since h acts on the fibres of pr; : Y — F, without fixed
points, the curve Y, is preserved by h and h®;» = ®,m h coincide as automorphisms
of Y,. In such a way we have justified that H is a deck transformation group of the
unramified covering pr; : Y, — L, of &,,-modules.

If the finite separable extension F,(u) C F,(u,v) is normal, i.e., Galois, then
its Galois group H = Gal(F,(u,v)/F,(u)) is of order |H| = [Fy(u,v) : Fy(u)] =
deg, g(u,z) = k = deg(pr;). Therefore H acts transitively on the fibres of pr; :
Y, = L, and pr; : Y, = L, is an H-Galois covering of locally finite &,,-modules.

Let H be a deck transformation group of pr; : Y, — L,, which consists of
birational maps h : Y, - > Y, and acts transitively on the fibres of pr;. After
replacing Y, by a non-empty Zariski open subset Y; C Y,, one can assume that all
h € H are injective morphisms h : Y7 — Y,. Any such h = (hy, hs) is a pair of
regular functions h; : Y1 — F,, 1 <4 < 2. The equality pryh = pry, Vh = (h1, he)
is equivalent to hi(u,v) = w, so that h; = pry;. Any birational map h : Y, — Y,
induces an isomorphism h* : Fy(Y,) = F,(u,v) = Fy(u,v) = F,(Y,) of F,-algebras.
According to u = pry (u,v) one has h*(u) = h*(pry)(u,v) = pryh(u,v) = hy(u,v) =
u, Yh € H. Moreover, h* acts identically on the constant field E and, therefore,
fixes any element of F,(u). That allows to view h* € Gal(F,(u,v)/F,(u)) as an
element of the Galois group of the finite separable extension Fy(u) C F,(u,v). The
group H, acting transitively on the fibres of pry : Y, — L, is of order |H| =
deg(pr,) = k = deg, g(u,z) = [Fy(u,v) : F,(u)] and the extension F,(u) C F,(u,v)
is Galois. d

Note that, in general, if the finite coverings pry : Y, = Lo, f =priv: Xo = Lo
of locally finite &,,-modules are H-Galois for some deck transformation group H of
pr; and f then the finite separable extension F,(L,) = Fy(u) C Fy(u,v) = Fy(Y,) =
F,(X,) is not supposed to be Galois. The reason is that the automorphisms h € H
of the &,,,-modules Y,, X, are not necessarily birational maps of Y,, X,.

Let £ : M — L be a finite unramified covering of locally finite &-modules.
Then any deck transformation group H of £ is a finite fixed-point free subgroup
of the automorphism group Aute (M) of M. The next lemma establishes that the
orbit space Orbg (M) of an arbitrary finite fixed-point free subgroup H < Aute (M)
has natural structure of a locally finite -module, with respect to which the map
&n : M — Orby (M), £u(x) = Orby(z), associating to a point € M its H-orbit
Orbg(z) is an H-Galois covering,.

Lemma 19. Let M be an infinite locally finite & = Gal(F,/F,)-module and
H be a finite fized-point free subgroup of Aute (M). Then:

(i) the product H® ~ H X & of the subgroups H and & of Aute (M) is direct;

(i) the set Orby (M) = {Orbg(z) |z € M} of the H-orbits on M is a locally

finite B-module with respect to the action
® x Orby (M) — Orby (M),

4.1
(¢,Orby(z)) — ¢Orby(z) = Orbye(x) Ve € &, Vz e M, (1)
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(i) the correspondence
g M — OI‘bH(M), fH(cc) = OrbH(x) Vee M
is a finite unramified H-Galois covering of degree deg &y = |H]|.

Proof. (i) According to Lemma 15, the infinite locally finite &-module M is
faithful and one can view & as a subgroup of Aute(M). By its very definition,
Auts (M) centralizes . In particular, hp = ph, Yh € H and Vo € &. The
isomorphism & ~ (Z,+) ~ [] (2p,+) with the direct product of the additive

prime p

groups (Zp, +) of the p-adic integers reveals that any ¢ € i\{O} is of infinite order.
As far as any entry h of the finite group H is of finite order in Aute (M), there
follows H N & = {Idys} and the product H® ~ H x & of subgroups of Aute (M)
is direct.

(ii) Note that the map (4.1) is correctly defined, as far as Vo € M, Vo € &,
Vh € H one has pOrby(hz) = Orbg(ph(z)) = Orby(hp(z)) = Orbg(p(z)) =
¢Orby (z). The axioms for a G-action on Orby (M) follow from the ones for the
®-action on M. Since H centralizes & the B-orbits Orbgly () = OrbgOrby (x) =
OrbgOrbg (x) = EgOrbg (z) on Orby (M) are the images of the -orbits on M un-
der &g, so that deg Orbg &y (v) < oo, Vo € M. If deg Orbsép () = |{uOrbe (x)| =
m then the restriction i |orbe (2) : Orbe (2) — Orbeéu (x) of £ : M — Orby (M)
is of degree deg(&x|orbe (»)) < deg(én) = |H|, so that

deg Orbg (z) = deg({x|orbg (2)) deg Orbeén (z) < m|H|.

By assumption, the ®-action on M is locally finite and there are finitely many &-
orbits Orbg (x) on M of degree < m|H|. Therefore, there are finitely many &-orbits
Orbe&p () on Orby (M) of degree m and Orby (M) is a locally finite &-module.

(iii) The B-equivariance of £y is an immediate consequence of the definition
of the G-action on Orbgy (M) O

Let M be an infinite locally finite & = Gal(F,/F,)-module. The next proposi-
tion describes the "twist” of the G-action on M by a fixed-point free automorphism
h € Aute (M) of finite order.

Proposition 20. Let M be an infinite locally finite & = &(®,) = (6;)—
module with closed stabilizers, H be a finite fized-point free subgroup of Aute (M)
and ¢ = h®; for some h € H and some natural number r € N. Then:

(i) the pro-finite completion &(p) = (Tp) of the infinite cyclic group (p) ~ (Z,+)
is a subgroup of H® ~ H x &;

(i1) M is a locally finite B(p) = (To)-module;
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(iii) the second canonical projection pry : H X & — &, pry(h/,y) =, VA € H,
Yy € & provides a locally finite &(p)-action

&(¢) X Orby (M) — Orby (M),
(7, Orby (x)) = pry(y)Orbp (x) = Orbp (pra(7)z);

(iv) the map
&u : M — Orby (M), &m(x)=Orbg(x) Ve e M
is an H-Galois covering of locally finite &(p)-modules.

Proof. (i) First of all, ¢ = h®j is of infinite order. Otherwise, for h of order
m and ¢ of order I, one has Idy = ¢™ = hm@gml = @Zml and the Frobenius
automorphism ®, : M — M turns to be of finite order. This is an absurd, justifying
(¢) = (Z,+). Note that ¢ = hd) € H& suffices for (p) to be a subgroup of the

compact group H®. The pro-finite completion &(p) = () is the closure of (p)
with respect to the discrete topology, so that & () = @ < H® since H® is closed
with respect to the discrete topology.

(ii) In order to show that all the &(p)-orbits on M are of finite degree, let us
consider a point z € M with degOrbg (z) = 6. If h € H < Autg (M) is of order m
then

&™) = (pmd) = (@mo7) = B(B770) < (D) = Stabe (z) < Stabre (¥),
whereas &(¢™) < &(p) N Stabyxe (x) = Stabe,) (z) < &(¢). Therefore
) - ® md
deg Ot () = 8(¢) St ()] = g O D
mad

= eN
[Stabes () () : S(™)]
and all the &(p)-orbits on M are finite. Let n € N and y € M be a point
with deg Orbe(,)(y) = n or, equivalently, with Stabe,)(y) = &(p™"). If § :=
deg Orbg (y) and h € H < Autg (M) is of order m then

B(p"™) = B(P,;™") < &N Stabyxe(y) = Stabe (z) = (’5(<I>§).

Therefore § is a natural divisor of nmr. By assumption, M contains finitely many
B-orbits of degree 6. For any fixed n € N there are finitely many natural divisors ¢
of nmr and, therefore, finitely many &(y)-orbits on M of degree n. In such a way
we have checked that the &(p)-action on M is locally finite.

(iii) is an immediate consequence of Lemma 19 (ii).

(iv) Towards the &(p)-equivariance of £ : M — Orby (M), £y (x) = Orby (z),
Vo € M, let us consider the first canonical projection pry : Hx® — &, pry(h/,v) =1/,
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VYh' € H, Vy € 6. An arbitrary p € &(¢) < HG ~ H x & has an unique
factorization p = pry(p)pry(p) into a product of pr;(p) € H and pry(p) € &. Then

Eu(pz) = Eu(pri(p)pra(p)z) = Eu(pra(p)z) = pro(p)éu(x), Vo € M verifies that
&n is an H-Galois covering of locally finite &(p)-modules. d

From now on, we identify the isomorphic locally finite & = Gal(F,/F,)-
modules, in order to avoid cumbersome notations.

Definition 21. A Galois closure of a finite unramified covering & : M — L
of locally finite & = Gal(F,/F,)-modules is a triple (N, H, Hy), which consists of
a locally finite &,, = Gal(F,/F,n)-module N for some m € N, a finite fixed-point
free subgroup H of Autg,, (N) and a subgroup H; of H, such that Orby, (N) is
isomorphic to M as a &,,-module, Orby (V) is isomorphic to L as a &,,-module
and the H-Galois covering £ : N — L, {g(x) = Orby(z), Vo € N factors through
the Hi-Galois covering €y, : N — M, &y, (x) = Orby, (z), Vo € N and £ along a
commutative diagram

EHy

N—M

DN

of finite unramified coverings of &,,,-modules.
We say that (N, H, Hy) is defined over Fym.

3

L

Proposition 22. For any irreducible quasi-projective curve X of positive
genus over Fy there exist s € N, locally finite &5 = Gal(F,/F,:)-submodules X' C X,
L C PY(F,) with at most finite complements X \ X', P(F,) \ L, a finite unramified
covering f : X' = L of &s-modules and a Galois closure (Z, H, Hy) of f, such that
Z is an irreducible quasi-projective curve Z C P"(F,), H = Gal(F,(Z) /F,(P*(F,))),
Hy = Gal(Fg(2)/Fy(X)).

Proof. Let f : X, — L, be the finite unramified covering of locally finite
®,,-modules from Proposition 14. The finite separable extension

Fy(X) =Fy(Xo) = Fy(u,v) O Fy(u) = Fy(Lo) = Fy (P (Fy))

of the corresponding function fields admits a Galois closure K 2 F,(u,v) 2 F,(u) of
finite degree [K : Fy(u)] < oo, i.e., K is normal over F,(u) and F,(u,v). Then there
is an irreducible quasi-projective curve Zy C P"(F,) with function field Fy(Zp) = K
and dominant rational maps fy : Zg > Lo, f1 : Zg ——> Xj, inducing the identical
inclusions f§ = Id : Fy(L,) = Fy(u) < Fy(Zo), respectively, fi = Id : Fy(X,) =
F,(u,v) < Fy(Zp) of the associated function fields. Bearing in mind that the finite

covering f : X, — L, induces the identity f* =1d : F(L,) = Fy(u) < Fy(u,v) =
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F,(X,), one obtains a commutative diagram

_ o
FQ(ZO) ~— Fq(XO)

=

Fy(Lo)

of identical inclusions of function fields over F,. Therefore, the composition f f;
coincides with the dominant rational map fy. Let Z] C IE'TQT be a quasi-affine curve,
contained in the regularity domains of fo and fi. Then fo : Z] — fo(Z}) is a finite
covering of affine curves. Removing from Z; the branch locus of fo|z;, one obtains a
quasi-affine curve Z{ C Z] C Zj. The finite set Zy\ Z has finite image f(Zy\ Z7),
so that Ly := L, \ fo(Zo \ Z7), X1 := f~ (L), Z1 := f3 " (L1) = f;(X0) € ZY

are quasi-affine curves, subject to a commutative diagram

Zli’Xl

BN

Ly

of finite unramified coverings of quasi-affine curves. In particular, Zy\ Z1, X, \ X1,
L, \ L; are finite sets.

The normal separable extension Fy(L,) C F,(Zp) is finite, so that its Galois
group H := Gal(F,(Zy)/F,(Lo)) = Gal(F,(Z1)/F,(L1)) is finite. Any h € H
transforms the affine coordinates z;, 1 < j < ron Z; C ]FT to rational functions
h(z;) € Fy(Z1). Let Z} be the intersection of the regularity domains of h(z;) :

Zy —> Fy, Vh € H and V1 < j < r. Then for any h € H the map
h:Zy — h(Z)CZ CF,,

E(ul, conuy) = (h(z)(ur), - h(ze) (ur)) Yu = (ug, ... uy) € Zb

is a morphism of quasi-affine varieties. Since H is a finite group, Z% := Npe H?L(Zé)

is a quasi-affine curve, so that |Z} \ ZJ| < co. Moreover, Vu € Z4 and Vh,,h € H
— 1~ P ~ —~ ~
one has u € h, h(Z3), whereas ho(u) € h(Z5). Thus, ho(u) € Nperh(Zy) = Z3,

Yu € ZY, Yh, € H and Z[ is H-invariant. Note that for any h € H the equation
h(u) = u has at most finitely many solutions on ZJ. Therefore H has at most
finitely many fixed points on Z4. After removing the H-orbits of the H-fixed
points on Z4, one obtains a quasi-affine curve Zo C Z4, acted by H without fixed
points.
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By the very construction of Zj, the function fields extensions
Fg(Zo) =Fq(Z1) = Fy(Z2) 2 Fy(X1) =F(Xo) and
Fq(Zo) = Fo(Z1) = Fg(Z2) D Fy(L1) = Fy(Lo)
are Galois. Therefore the Galois groups
H = Gal(Fy(Z2)/Fy(L1)) and Hy := Gal(Fy(Zo)/Fq(Xo)) = Gal(Fy(Z2)/Fq(X1))

have invariant fields F,(Z2)% = F,(L1), respectively, F,(Z2)1 = F,(X;). The
correspondence

fH 2y —> OI‘bH(ZQ) = ZQ/H, fH(Z) = OI“bH(Z) Vz € Zs,

associating to z € Zp its H-orbit is a surjective morphism of algebraic curves,
which induces an isomorphism f}; : Fy(Zo/H) — Fy(Z2)" =F,(L1) of F-algebras.
Therefore there is a birational map g : Ly > Zy/H with ¢} = f};. Similarly,

le 2 Ay —> OI‘le (Zg) = ZQ/Hl, le(Z) = Ol"le (Z) Vz € Zs

is a surjective morphism of algebraic curves, inducing an isomorphism of F,-algebras
T, i Fg(Zaf/Hy) — Fy(Z2)™ = Fy(X1). Let ¢y : Xy > Zy/H be the birational

map with ¢] = f7, . The commutative diagrams
\&

Fo(Ly) ~2— Fy(Z/H)  Fy(Xy) ~2— F,(Zo/H)

Fy(Z2) Fy(Z2)

I
1d , 1d

*

of embeddings Id, f;, f#, of Fy-algebras and isomorphisms ¢f, ¢} of Fy-algebras
induce commutative diagrams

Zg Z2

fu fHy
fo , N

L, —+ 7Z,/H X, 2 Z,/H,

of morphisms fy, fu, fi, fu, and birational maps g, ©1.

There is a quasi-affine curve L, C Ly, such that g : Ly > Zy/H restricts
to an isomorphism ¢g : Ly — @o(Ly) € Za/H of algebraic varieties. Similarly, one
can choose a quasi-affine curve X} C X, such that ¢ : X5 — ¢1(X}) C Z3/H; is
an isomorphism of algebraic curves. Since Ly \ L} and X; \ X} are finite sets and
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fo:Zy — Ly, fi : Zy — X, are finite coverings, S := fo ' (L1 \ Ly) U fy (X1 \ X3) is
a finite subset of Z5. Removing from Zs the H-orbit of S, one obtains a quasi-affine
curve Zs C Zy, acted by H without fixed points. The factorization fu|z, = ©ofolz,
with a biregular g : fo(Z3) — fu(Z3) implies the coincidence of the fibres of fg
and fo. Therefore, fg : Zs — fu(Zs) and fo : Zs — L3 := fo(Z3) are finite
unramified coverings of algebraic curves of degree |H|. Similarly, fu, |z, = ¢1./1]2,
with biregular ¢ : f1(Z3) — fu,(Z3) reveals that fg, : Z3s — fu,(Z3) and fi :
Zs — X3 := f1(Z3) are finite unramified coverings of algebraic curves of degree
|Hi|. There exists a sufficiently large s € N, such that Fys contains the definition
fields of the curves Zs, X3, L3, Z3/H, Z3/H;, as well as the coefficients of the
components of the regular maps f, fo, fi, fu, fr,. Then

Zs/H,

P1
fHy

Zs/H <fL Zs i, X5

©o fo I

L3

turns out to be a commutative diagram of finite unramified coverings of locally
finite &;-modules with bijective ¢g, ¢1, H-Galois covering frr, H1-Galois covering
fu,. Introducing Z := Z3, X' := X3, L := L3, one concludes that (Z, H, H,) is a
Galois closure of the finite unramified covering f : X’ — L. O

5. RIEMANN HYPOTHESIS ANALOGUE FOR LOCALLY FINITE
MODULES

The next proposition provides a numerical necessary and sufficient condition
for a locally finite & = Gal(F,/F,)-module with a polynomial {-quotient to satisfy
the Riemann Hypothesis Analogue with respect to the projective line P(F,).

Proposition 23. The following conditions are equivalent for a locally finite

module M over & = Gal(F,/F,) with a polynomial -quotient Py (t) = Cpff;(fzt)

Z[t] of degPn(t) = d € N with leading coefficient LC(Pap(t)) = aq € Z\ {0} and
for X :=1log, {/|aq| € R=:

(i) M satisfies the Riemann Hypothesis Analogue with respect to P1(F,) as a
&-module;

(i) ¢" +1—dg* < |M®| < q" +1+dg*, Vr e N;
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(iii) there exist constants C1,Co € RV, v, 1y, ro € N, such that
IM® | < ¢ +14+Ci¢™" VreN, r>r and

|M‘I’ZT| > ¢ +1—Coq™" VreN, r>rs.

d .
Proof. (i) = (i) If Py(t) = [[ (1 — ¢*e?it) for some ¢, € [0,27) then
j=1

[P (F)™

— ‘M‘I’E

d
= Z Qe for VreN
j=1
by (3.6) from Proposition 10. Therefore,

d
“M@g‘ _ (qr + 1)‘ _ ’Zq)\'rei'rgaj
=1

d d
< Z ’q)\reirgoj‘ — Zqz\r — dq)\'r7
j=1 j=1

hence (ii) holds.
(#4) = (44i) is trivial

d
(¢13) = (i) Let Pp(t) = ] (1 — wjt) € Z[t]. The formal power series
j=1

d v
wit
H(t) .= J
®) Z 1—w¥t
j=1 J
has radius of convergence p = min (W”"’W)’ ie., H(t) < oo converges

vt € C with |t| < p and H(t) = oo diverges V¢ € C with |¢| > p. Making use of the

formal series expansion = > wy't" and exchanging the summation order,

_1
1—w¥t
7 =0

one represents
) d )
H(t) = Z (Zw]y(wm)tm_
i=0  j=1

Let C := max(Cy,Cs), ro := max(ry,r2) and note that assumption (iii) implies

that
d
vr
’ >
j=1

:“M‘I’ZT‘—(q”T—I—l)‘ <CPVT VreN, >,

according to (3.6) from Proposition 10. Thus,

d . ,
D w;(2+1)‘ < OV v € Z,
j=1

i>rog—1and

HB) <Y ‘ Zw;’(i—H) B <0y PR = 03 (i
=0 j =0 =0

j=1 ; =
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As aresult, H(t) < oo, Vt € C with [t] < q%,,, whereas q% <p< ﬁ, V1l<j<d.
J

Bearing in mind that for any fixed v € N the function f(z) = z” is non-decreasing

on z € [0,00) C R, one concludes that ¢* > |w;|. Therefore, the leading coefficient
d d

aq :=LC(Py(t)) = T] (—w;) € Z\ {0} has modulus |aq| = [] |wj| < ¢ = |aql,
j=1 j=1

whereas |w;| = ¢*, V1 <j <dand M satisfies the Riemann Hypothesis Analogue

with respect to P*(F,) as a module over ® = Gal(F,/F,). O

In the case of a smooth irreducible projective curve X/F, C P*(FF,) of genus g,
defined over F,, condition (ii) from Proposition 23 reduces to the celebrated Hasse
- Weil bound

MX@Z‘ _(qr+1)‘ < 2gVq VreN (5.1)

on the number |X‘I’;| = |X(Fg)| = | X NP"(Fyr)| of the Fyr-rational points of X.
The equivalence of the conditions (i) and (iii) from Proposition (23) is well known
and shown by Theorem V.2.3 and Lemma V.2.5 from Stichtenoth’s monograph [2].
The proof of the Riemann Hypothesis Analogue for X with respect to P!(F,) from
[2] makes use of the bound

‘X‘bzr <@+ 1+ (2g+1)g" VreN, (5.2)

which is established in [2, Proposition V.2.6]. Bearing in mind that ‘Pl (Fiq)é?'
¢*" +1 > ¢*", we note that (5.2) implies

< 29+ D[P E)Y |

‘X‘I’?f VreN

- [P

and think of A :=log, X/LC(Px(t)) = log, %/q7 = § as of the Hasse - Weil order
of X with respect to P}(F,). That motivates the following

Definition 24. Let M and L be locally finite & = Gal(F,/F,)-modules. If
there exist constants p € RZ%, C € R>?, v, 7, € N, such that

‘M‘PZ"

e

v |P
<C ‘Léq

Vr e N, T2 To, (53)

M is said to be of finite Hasse - Weil order with respect to L.

The minimal p € R=Y subject to (5.3) for some C € R>Y, v,r, € N is called
the Hasse - Weil order of M with respect to L and denoted by orde (M/L).

The following simple lemma collects some properties of the Hasse - Weil order
of locally finite &-modules.

Lemma 25. (i) If M, L are infinite locally finite & = Gal(F,/F,)-modules
and My, C M, L, C L are &-submodules with at most finite complements M \ M,,
L\ L,, then

orde (M /L) = orde (M,/L,).
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(ii) If € : M — L is a finite unramified covering of locally finite & = Gal(F,/F,)-
modules, then ords(M/L) < 1.

(i) Let M be a locally finite & = Gal(F,/F,)-module such that (u(t) =
Prr(t)Cpr ) () for a polynomial Pu(t) € Z[t] of degPy(t) = d € N with
LC(Pum(t)) = aq and X := log, |aq|. If M satisfies the Riemann Hypothesis
Analogue with respect to P1(F,), then orde (M /PH(F,)) < A.

Proof. (i) It suffices to show that if there exist C € R>?, v, r’ € N with

‘M‘I’ZT < )L(DZT +C ‘Lq)zr " VreN, r>v (5.4)
then there exist C, € R>%, v, 7! € N with
M| < (255 .6 B8 v e N3 v 55)
and if there are C, € R>0, 7, 712, € N with
’Mf?r | |t wren, rea, (5.6)
then there are C € R>?, 7,7/ € N with
‘M‘I’T < IL‘PZT +C ’L‘I’ZT " VreN, r>r (5.7)

To this end, let us denote m := |[M \ M,|, s := |L \ L,| € Z=° and observe that

‘L‘I’Z“T =L +]L‘I’Z‘”\Lo <|rg |+,
’M‘PZT —‘qu +‘M<I’T\MO <|MZ | +m, VreN.

Since L, is an infinite locally finite ®-module, the map
degOrbg : L, — N, z — deg Orbg(x)

takes infinitely many values and there exists 0, € N with 0, > max (s, {/s) from
the image of deg Orbg : L, — N. In other words, the number B, (L,) > 1 of the
&-orbits on L, of degree o, is positive. If v, := vo, € N, then by (3.2) one has

Pror
Ly*

= > kBi(Lo) > 0,Bs,(Lo) > 0, > max (s, {/s) VreN.
k/vor

Similarly, there exists ¢ € N with o > ¢/m and B,(L,) > 1. Thus, for v := 7,0 € N
there holds

oo
Ly*

= Y kBi(Lo) > 0By(Lo) > 0 > {/m Vr € N.
k/vr
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Now (5.4) implies

vor vor vor vor |P vor vor p
R e e R e A S T R (D)
vor vor | P vor P vor vor | P
<L 4L o (2[R ) = L+ @+ 1) L3

vreN, r> ;—;, which is equivalent to (5.5) with C, = 2°C + 1 and some 7], € N,
> ;—/ Similarly, (5.6) yields

s oo oo — or |P oo |P
‘Mq < |MP | < L2 |+ O LS| 4 |12
U ~ a7 |? s —~ oor|P
= Loq +(Co+1) Loq S‘L q ‘+(Co+1)‘L 1

U

o

¥re N, r> "2 and hence (5.7) holds with C := C, + 1 and some 7/ € N, 7/ > ",

(ii) The &-equivariance of £ implies that f(M(b;) C L%, Vr € N. The cardi-
nalities of the fibres of {|, 7 do not exceed k := deg¢, so that

e

2% 2 e | 2 =

and , , )
‘M?’z —’L% g(k—l)‘L‘bfz .

That suffices for ordeg (M/L) < 1.

(iii) By Proposition 23, if M satisfies the Riemann Hypothesis Analogue with
respect to IP’l(IFq) as a &-module, then
A
_ 1)

‘M‘I’E

<q +1+4dg = ‘Pl(ﬁ)és

+d (‘Pl(ﬁq)és

— xr — & A
< ’Pl(lﬁq)% +d ’]Pl(ﬂ?q)% vr €N,

so that ordg (M /P*(F,)) < A. O

Definition 26. Let M and L be locally finite ® = Gal(F,/F,)-modules and H
be a finite fixed-point free subgroup of Aute (M). If there exist constants p € RZ,
C e R>° v,r, € N, such that

vr 14
|ag;

_ ’L‘PZT

<C ‘L‘I’ZT

for vreN, r>r, and VheH, (5.8)

then M is said to be of finite Hasse - Weil H-order with respect to L.

The minimal p € RZ%, subject to (5.8) for some C € R>Y, v,r, € N is called
the Hasse - Weil H-order of M with respect to L and denoted by ordg (M/L).
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Proposition 27. (i) If M is an infinite locally finite & = Gal(F,/F,)-module,
H < Auts(M) is a finite fized-point free subgroup and M, C M is an H X &-
submodule of M with |M \ M,| < oo, then

ordf (M/Orbg (M)) = ord (M, /Orby (M,)).
(ii) If M is a locally finite & = Gal(F,/F,)-module and H < Aute (M) is a
finite fized-point free subgroup, then ordd (M /Orbg (M)) < 1.
(iii) Let X/F, C P™(F,) be a smooth irreducible curve of genus g > 1 and H
be a finite fized-point free subgroup of Aute(X). Then ordg(X/IF’l(Fq)) <1

Proof. (i) As in the proof of Lemma 25 (i), one has to check that if there exist
p €RZ0 C e R0, v r' € N with

‘M}vbg" g Vhe H VreN, r>r/, (5.9)

< ’OrbH(M)‘I’ZT

+C (orbH(M)q’Z"

then there exist C, € R”%, v,,r! € N with

Yo™ vor |P
‘M:q)“ +C, [Otb g (M,)*5"|" Vh e H, ¥r e N, r > 1, (5.10)

< ]orbH(Mo)%“"

and if there are C, € R>9, 7,,7, € N with

Uor Tor ~ Tor |P ~
‘Mﬁ“’q ‘g ‘orbH(Mo)‘% +C, |Orby (M,)®"|” Vh e H, ¥r €N, r > 7, (5.11)

then there are C' € R>?, 7,7 € N with

‘th’T " VheH VreN r>F  (512)

< ‘OrbH(M)‘I)ZT ‘ +C ]orbH(M)@?

Note that if |M \ M,| = m, then Orby (M) \ Orby(M,) = Orby (M \ M,) is of
cardinality |Orbg (M \ M,)| = 7 and Orby (M,) is an infinite locally finite &-
module. As in the proof of Lemma 25 (i), one has

Ur

Orby (M)®a”" < ‘qu’q +m VreN.

< ]orbH(Mo)q’Z‘”

m o
+— and ’th’q
|H|

Further, there exist v, := vo, and v := v,0 with 0,,0 € N, such that

vor m m
OrbH(Mo)cbq ‘ > 0, > max (, ) ,
‘ |H| E/ |H|

>0><m VreN.

respectively, )
]orbH(MorbZ"
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Then from

‘MS‘I’?“ < ‘Mh‘I’Z”] < ‘OrbH(M)q’ZOT +c]orbH(M)‘1>Z"" ’
. vor L

o”

< ‘orbH(MO)‘PZ”‘ + \orbH(Mo)‘PZ

"¢ (2|orba(a,)

)P
VreN, r> I we deduce (5.10) with C, := 2°C'+ 1, and from

or Cb’jr
q q

‘Mhﬁi +m

h
"

< ‘orbH(Mo)q’T +C, |orby (0,)25 g

" |orbu (1,)7%
p

)

< ‘orbH(M)q’?

+(Co+1) ‘OrbH(M)q’ZT

Vr € N, r > = we obtain (5.12) with C := C, + 1.

(ii) For any h € H and r € N the map &y : M — Orby (M) is an H-Galois
covering of locally finite modules over &(h®;) = @ by Proposition 20. If
y € M"®: then the & (h®y)-equivariance of {g implies Ppér(y) = {u(Ppy) =
Eu(h®hy) = &u(y), so that &u(y) € Orby (M)®e and & (M"*a) € Orby (M)®a.
Bearing in mind that the restriction £ : M"®a — Orbg (M)®4 has fibres of cardi-

hxbg
> |en (M%)

M
> 7‘ i . Therefore

nality < |H|, one concludes that ‘OrbH(M)‘bZ yig

[

- ’OrbH(M)‘D;

< (JH| = 1)|Orby (M)

)

Vh e H,¥r € N and ord (M/Orbg (M)) < 1.

(iii) The argument is a slight modification of Grothedieck’s proof of the Hasse -
Weil Theorem (see Theorem 3.6 from Mustata’s book [8]). Namely, let S := X x X
be the Cartesian square of X, A := {(xz,z) € S|z € X} be the diagonal of S,
L; := X x {x2} be a generic fibre of the second canonical projection pry : S — X,
pro(z1,22) = a2 and Ly := {z1} X X be a generic fibre of the first canonical
projection pry : S — X, pry(x1,22) = 1. For arbitrary h € H and r € N put
¢ 1= h®} and denote by I'(p) := {(z,¢(x)) | € X} the graph of p : X — X. Then
the intersection number I'(¢).A = | X¥| equals the number of the ¢-rational points
of X. One checks immediately that L? = L2 =0, L1.Lo = 1, A.L; = A.Ly = 1,
[(¢).Lz = 1 and ['(p).L1 = ['(®}).L1 = ¢", as far as the equation hdj(z) = 22
is equivalent to ®;(z) = h~'(x) and has ¢" solutions on a smooth irreducible
projective curve X, defined over F,. The canonical class Kg of S is numerically
equivalent to (2g — 2)(L1 + L2) and the application of the Adjunction Formula to
A and T'(¢) provides

29 —2=A.(A+ Ks) = A? +2(29 — 2),
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29 —2="T(p).(T(¢) + Ks) =T(9)* + (¢" + 1)(29 — 2),

whereas A2 = —(2g — 2), I'(¢)? = —¢"(2g — 2). The Hodge Index Theorem on
S = X x X asserts that if a divisor £ C S has vanishing intersection number
E.H = 0 with an ample divisor H C S then E has non-positive self-intersection
E? < 0. For an arbitrary divisor D C S let us put E := D — (D.Ly)Ly — (D.L3) Ly,
H := L1 + Ly and note that H is an ample divisor on S with E.H = 0. Therefore

0> E? = D* — 2(D.Ly)(D.Ls). (5.13)
If D := aA+bI(¢p) for some a,b € Z, b # 0 and f(z2) := g22+(q¢"+1—|X?|)z+gq" €
Z|z], then (5.13) is equivalent to f (%) > 0, V4 € Q and holds exactly when the
discriminant D(f) = (¢" + 1 — | X%])? — 4¢"¢* < 0. Thus,
~29q% <|X¥|—(¢"+1) <29¢% VreN
and, in particular,

%
_1)

2r
‘thbq

<(¢*"+1)+29q" = ‘Pl(E)¢3T

+ 29 (‘Pl (E)‘qu

< P 7P vren.

+2g ‘IP’I(E)(I>

That establishes the inequality ord2 (X/P'(F,)) < z. O
The following simple lemma is crucial for the proof of the main Theorem 29.

Lemma 28. Let {g : N — L be an H-Galois covering of infinite locally
finite modules over & = Gal(F,/F,) for some finite fized-point free subgroup H <
Aut@(N). Then

Z |N"®a| = |H||L%].
heH

Proof. The lack of fixed points of H implies that N*1®« 0 N#2®s = () for all
hi,ha € H, hy # hs. Tt suffices to check that f;II(Lq’Q) =Ipen NP in order to

conclude that
[H||L%s| = |¢" (LP)| = > [N
heH

If y € &' (L®4), then & (y) = @€ (y) = Eu(P,(y)) implies the existence of
h € H with h(y) = ®,(y). Therefore y € N ®a and €' (L) C [[cpy NP
Conversely, for any y € N"®s one has h=1(y) = ®,(y), whereas

Ea(y) = Eua(h™1(y) = Eu(Pq(y) = Pyl (y).
That justifies N"®« C ¢5'(L®9) and &' (L%) = [[),c gy N0 O

Here is the main result of the article.
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Theorem 29. Let M be an infinite locally finite module over & = Gal(F,/F,)

EEETAION

Z[t] of deg Pys(t) = d € N with leading coefficient LC(Py(t)) = aq € Z \ {0} and
A = log, {/laq| € R>C. Suppose that there exist m € N and &,, = Gal(F,/Fym)-
submodules M, C M, L, C P*(Fy) with M \ M,| < oo, |P(Fy) \ Lo| < oo, which
are related by a finite unramified covering & : M, — L, of &,,-modules with a
Galois closure (N, H, Hy), defined over Fgm.

(i) If X > 1, then M satisfies the Riemann Hypothesis Analogue with respect
to the projective line P*(F,) as a &-module.

(i) If

d .
with closed stabilizers and a polynomial ¢-quotient Py(t) = ult) >oat! €
3=0

max (ord@(M/IP’l (E)),ordgm(N/Pl(E)) <A<,

then M satisfies the Riemann Hypothesis Analogue with respect to IP’l(I[Tq) as a
&-module.

Proof. Tt suffices to prove that if
max(ord@(M/Pl(E)),ordgm(N/IP’l(]ITq)) <A, (5.14)

then M satisfies the Riemann Hypothesis Analogue with respect to ]P’I(E) as a
®-module. Namely, if A > 1, then by Lemma 25 (i), (ii) one has

ordg (M/P(F,)) = ordg (M,/L,) <1< A,
while Proposition 27 (i), (ii) guarantee that
ordg (N/PY(F,)) =ordg, (N/L,) <1<\,

whence (5.14) holds.

Since f(x) = a® is an increasing function on « € R for ¢ € N, a > 2, the
assumption orde(M/P1(F,)) < X implies the existence of constants C; € R>°,
v1,r1 € N, such that

‘M(I)Z” S(qy1r+1)+01(qy1r+1))\<(qy1r+1)+cl(2qu1r))\:(qu1r+1)+(2)\cl)q)\u1r’

VYr € N, r > r;. Similarly, ordgm (N/PL(F,)) < A provides the presence of constants
Cy € R>Y, 1y, 15 € N with

‘Nhtbgw“ < (qyz’r + 1) +C2(qu2r + 1)>\ < (qu2r + 1) 4 (2)\02)(])\1/27“7

Vr € N, r > ro. For an arbitrary common multiple v € N of v; and 5, one has

< (¢ +1)+ (20" WreN, r> 4

‘M‘I’ZT (5.15)

v
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and
P19)

V' < (T 1)+ (2XCa)™ WrEeN, 72

v
If [P1(F,) \ Lo| = s, then the decomposition PY(F,)% = L;I)ZT [1(P'(F,) % \ L,)

T
into a disjoint union provides the inequality ¢*" + 1 < ‘Lo ? | 4+ s, whereas

’N’“PZ'” < ‘qu s (22C)gT < ‘qu (22 + 1), (5.16)
Vr € N, r > r, and a fixed natural number r, > max (%, log/\#) By Proposi-

tion 23, it suffices to show the existence of constants C' € R>?, r, € N with

‘M‘I’ZT

>(¢""+1)=C¢™" VYreN, r>r, (5.17)

and to combine with (5.15), in order to conclude that M satisfies the Riemann
Hypothesis Analogue with respect to P1(F,) as a module over & = Gal(F,/F,).
To this end, note that Lemma 28 implies

vr pYT vr
3 ‘Nh% — |H]| ’Lo “| and ‘Nh‘l’a
heH heH;

Vr € N.

o
= |H b

Putting together with (5.16), one obtains that

[ (Mo | = 37 || | - Y e
heH, heH
—(Hl|L |- Y |
he H\H;
<I>ZT ‘I>ZT A Avr
> [H||Lo" | — (H| — |H) [L" | — (1H| — [H))(2*Ca + 1)g
= [H||L3" | = (H| = [Hi)2)Ca + 1)@ Vr €N, 7>,

Denoting C3 := (%) (22Cy + 1) € RZ° and dividing by |H;|, one obtains

o
Mo® | = |Lo*

ovT X
‘ — ng)‘” VreN, r>r,.

vr

Bearing in mind qu > (¢""+1)—s5> (¢"" + 1) — ¢ for r > W, one

concludes that

)M:,b" Z(q”T—i—l)—(C;;—i-l)q)‘W VreN, r>r,.

Combining with ’M‘I’ZT > ’M(?ZT , one verifies (5.17) with C := C5 4+ 1 and con-
cludes the proof of the theorem. |
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According to Proposition 22, Lemma 25 (iv) and Proposition 27 (iii), any
smooth irreducible curve X/F, C P*(F,) of genus g > 1 satisfies the assumptions
of Theorem 29 with A = § as a locally finite & = Gal(F,/F,)-module. Here is an
example of a locally finite &-module M, which is subject to the assumptions of
Theorem 29 with A = 0. Therefore M satisfies the Riemann Hypothesis Analogue
with respect to P!*(F,) as a &-module and is not isomorphic (as a &-module) to a
smooth irreducible projective curve, defined over F,.

Proposition 30. For any finite field Fy and Va, € Fpe \ F, the quasi-affine
curve M :=Fy\{x1, 21}, defined overF 2 is a locally finite & = Gal(F,/F,)-module
with (1—8)(1+1)

—t)(1+1
= T
Cm(t) 1= gt

which satisfies the assumptions of Theorem 29. Thus, M is subject to the Riemann
Hypothesis Analogue with respect to P1(F,) as a module over & and M is not
isomorphic (as a &-module) to a smooth irreducible projective curve X /F, C P™(F,)
of genus g > 1, defined over IF,.

; (5.18)

Proof. The identical inclusion Id : M — PY(F,) = F, U {oc} is a finite un-
ramified covering of B-modules of degree 1 over its image. It has a Galois closure
(M, {Idas}, {Idas}). If Car(t) is given by (5.18) then

Py (t) = _ul) (1—1)%(1+1t) € Z[t]
S @) ()

is a polynomial of deg Py(t) = 3 with a3 = LC(Py(t)) = 1, so that A :=
log, {/|as] = 0. Since M is a B-submodule of P'(F,) with |P!(F, \M‘ =3 < oo,
the relative order orde (M/P!(F,)) = orde(M/M) =0 = X by Lemma 25 (i) and
M is subject to the assumptions of Theorem 29. If M were isomorphic to a smooth
irreducible curve X/F, C P"(F,) as a module over & then Py (t) = Px(t) € Z][t]
would have an even degree deg P (t) = 2g € N and A :=log, X/|LC(Py (1)) = 3,
which contradicts (5.18).

Towards the calculation of (y(t), let us note that F, is a locally finite & =
Gal(F,/F,)-module and Orbg(x1) = {z1,2%}, in - order to conclude that M is a

2r+1
locally finite ®-module. Moreover, z1,z! € F, T2 = = Fpr and 2q,2{ ¢ F, o =
” _ &2 .
F2r+1 for Vr € Z=9. Therefore ’M¢§ = ‘Fq(bq —2=¢*-2,Vr €N, ‘Méﬁ =
g2+l
F, ° = ¢¥ 1 vr € Z29, whereas
e | =, o tr oy £
1 t) = ‘M L T gyt r
ot = S| - S - S
o0 o0 -
tr t2r 1 1 1— ¢
= T— — — =1 — ) -1 — ) =1
Y =) e () v ()
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by (3.1). That suffices for(5.18). O

The next corollary establishes that the Riemann Hypothesis Analogue with
respect to the projective line P*(F,) for a locally finite & = Gal(F,/F,)-module M

implies a functional equation for the polynomial {-quotient Py (t) = c 61:1(”7(:% 7 € Zl[t].
Pl (Fq

Corollary 31. Let M be an infinite locally finite module over & = (LM(E/FQ),
which satisfies the Riemann Hypothesis Analogue with respect to P'(F,). Then

d .
the polynomial -quotient Py(t) = C?(”l:gt) = > a;t? € Z[t] of M satisfies the
P*(Fq 5=0

functional equation

. 1
Py (t) = sign(aq) P <q?>\t> AUt for N i= log, V/ladl.

d .
Proof. If Py(t) = [[(1 — ¢*e™it) for some ¢; € [0,27) then the leading
j=1

d
il Wj)
coefficient LC(Pas(t)) = ag = (—1)%g e (j:1 , whereas

d
1 ad A _—ip;
Py (qmt) = g 110 —a7emt).
=1

The polynomial Py (t) € Z[t] has real coefficients and is invariant under the complex
conjugation. Thus, the sets {€i |1 < j < d} = {e*i |1 < j < d} coincide when
d

counted with multiplicities and Pys(t) = [] (1 — ¢ e~%3t). That allows to express
j=1

1 ad —d

Making use of |ag| = ¢*? and a4 = sign(aq) |aq|, one concludes that

1 sign(aq) —d
i () = e Bt .
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