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1. INTRODUCTION

A set M with an action of a group G will be called a G-module. Most of the
time we consider modules over the absolute Galois group G = Gal(Fq/Fq) of a
finite field Fq.

Definition 1. A G = Gal(Fq/Fq)-module M is locally finite if all G-orbits on
M are finite and for any n ∈ N there are at most finitely many G-orbits on M of
cardinality n.
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The cardinality of a G-orbit OrbG(x), x ∈ M is referred to as its degree and
denoted by degOrbG(x).

The smooth irreducible projective curves X/Fq ⊆ Pn(Fq), defined over a Fq

are examples of locally finite G = Gal(Fq/Fq)-modules.

Definition 2. If M is a locally finite G = Gal(Fq/Fq)-module then the formal
power series

ζM (t) :=
∏

ν∈OrbG(M)

(
1

1− tdeg ν

)
∈ C[[t]]

is called the ζ-function of M .

By its very definition, ζM (0) = 1. In the case of a smooth irreducible curve
X/Fq ⊆ Pn(Fq), the ζ-function ζX(t) of X as a locally finite G = Gal(Fq/Fq)-
module coincides with the local Weil ζ-function of X. We fix the projective line
P1(Fq) as a basic model, to which we compare the locally finite G-modulesM under
consideration and recall its ζ-function

ζ
P1(Fq)

(t) =
1

(1− t)(1− qt)
.

Definition 3. If M is a locally finite G = Gal(Fq/Fq)-module then the ratio

PM (t) :=
ζM (t)

ζ
P1(Fq)

(t)

of the ζ-function of M by the ζ-function of P1(Fq) is called briefly the ζ-quotient
of M . We say that M has a polynomial ζ-quotient if PM (t) ∈ Z[t] is a polynomial
with integral coefficients.

A locally finite G-module M satisfies the Riemann Hypothesis Analogue with
respect to the projective line P1(Fq) if M has a polynomial ζ-quotient

PM (t) =
d∑

i=0

ait
i =

d∏

i=1

(1− ωit) ∈ C[t]

with |ωi| = d
√
|ω1| . . . |ωd| = d

√
|ad|, ∀1 ≤ i ≤ d.

In order to explain the etymology of the notion, let us plug in q−s, s ∈ C in

the ζ-function ζM (t) = ζ
P1(Fq)

(t)
d∏

i=1

(1− ωit) of M and view

ζM
(
q−s

)
=

d∏
i=1

(qs − ωi)

qsd−2s+1(1− qs)(1− qs−1)
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as a meromorphic function of s ∈ C with poles 2πiZ ∪ (1 + 2πiZ). If λ :=
logq

d
√
|ad| ∈ R≥0 then M satisfies the Riemann Hypothesis Analogue with respect

to P1(Fq) exactly when the complex zeros so ∈ C of ζM (q−s) have Re(so) = λ .
All smooth irreducible curves X/Fq ⊂ Pn(Fq) of genus g ≥ 1 satisfy the Riemann
Hypothesis Analogue with respect to P1(Fq) by the Hasse - Weil Theorem (cf. [1]

or [2]). Namely, PX(t) =
ζX(t)

ζ
P1(Fq)(t)

=
2g∏
i=1

(1−ωit) with |ωi| = q
1
2 , ∀1 ≤ i ≤ 2g, which

is equivalent to Re(so) =
1
2 for all the complex zeros so ∈ C of ζX(q

−s). That
resembles the original Riemann Hypothesis Re(zo) =

1
2 for the non-trivial zeros

zo ∈ C \ (−2N) of Riemann’s ζ-function ζ(z) :=
∞∑

n=1

1
nz , z ∈ C.

The present article translates Bombieri’s proof of the Hasse - Weil Theorem
from [1] in terms of the locally finite G = Gal(Fq/Fq)-action on X/Fq ⊂ Pn(Fq)
and provides a sufficient condition for an abstract locally finite G-moduleM to sat-
isfy the Riemann Hypothesis Analogue with respect to P1(Fq). Grothendieck has
classified the finite etale coverings of a connected scheme by the continuous action
of a profinite group on their generic fibre (see [3]). In analogy with his treatment,
we introduce the notion of a finite unramified covering of locally finite G-modules
and study the deck transformation group of such a covering. One can look for an
arithmetic objects A, whose reductions modulo prime integers p are locally finite
Gal(Fp/Fp)-modules and study the global ζ-functions of A. Another topic of in-
terest is the Grothendieck ring of a locally finite G = Gal(Fq/Fq)-module and the
construction of a motivic ζ-function. Our study of the Riemann Hypothesis Ana-
logue for a locally finite G = Gal(Fq/Fq)-module is motivated also by Duursma’s
notion of a ζ-function ζC(t) of a linear code C ⊂ Fn

q and the Riemann Hypothe-
sis Analogue for ζC(t), discussed in [4]. Recently, ζ-functions have been used for
description of the subgroup growth or the representations of a group, as well as of
some properties of finite graphs.

The main result of the article is Theorem 29, which provides a criterion for
a locally finite G = Gal(Fq/Fq)-module M to satisfy the Riemann Hypothesis
Analogue with respect to P1(Fq). The criterion is based on three assumptions,
which are shown to be satisfied by the smooth irreducible projective curves X/Fq ⊂
PN (Fq) of genus g ≥ 1. The first assumption is the presence of a polynomial ζ-

quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∑

i=0

ait
i ∈ Z[t]. The second one is the existence of

locally finite Gm = Gal(Fq/Fqm)-submodules Mo ⊆ M , Lo ⊆ P1(Fq) for some
m ∈ N with at most finite complements M \Mo, P1(Fq) \ Lo, which are related
by a finite unramified covering ξ : Mo → Lo of Gm-modules with a Galois closure
(N,H,H1), defined over Fqm . This means that N is a locally finite Gm-module,
H is a finite fixed-point free subgroup of the automorphism group AutGm

(N) of
N and H1 is a subgroup of H, such that there are isomorphisms of Gm-modules
Lo ≃ OrbH(N) = N/H, Mo ≃ OrbH1

(N) = N/H1 and the finite unramified H-
Galois covering ξH : N → N/H, ξH(x) = OrbH(x), ∀x ∈ N has factorization
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ξH = ξξH1
through ξ and the finite H1-Galois covering ξH1

: N → N/H1, ξH1
(x) =

OrbH1
(x). Finally, we assume that λ := logq

d
√
|ad| ∈ R≥0 is an upper bound of

the Hasse - Weil order ordG(M/P1(Fq)) of M with respect to P1(Fq) and the Hasse
- Weil H-order ordHGm

(N/P1(Fq)) of N with respect to P1(Fq). We observe that

the Riemann Hypothesis Analogue for M with respect to P1(Fq) implies a specific
functional equation for the ζ-polynomial PM (t). An explicit example, constructed
in Proposition 30 illustrates the existence of locally finite G-modules M , which
are not isomorphic as G-modules to a smooth irreducible curve X/Fq ⊂ Pn(Fq) of
genus g ≥ 1 and satisfy the assumptions of our criterion for the Riemann Hypothesis
Analogue with respect to P1(Fq).

Here is a brief synopsis of the paper. The next section 2 collects some trivial
immediate properties of the locally finite G = Gal(Fq/Fq)-modules M and their
morphisms. Section 3 supplies several expressions of the ζ-function ζM (t) of M
and shows that ζM (t) determines uniquely the structure of M as a G-module. It

studies the ζ-quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

∈ Z[[t]] of M and provides two neces-

sary and sufficient conditions for PM (t) ∈ Z[t] to be a polynomial. An arbitrary
smooth irreducible curve X/Fq ⊂ Pn(Fq) of genus g ≥ 1 is shown to contain a
Gm = Gal(Fq/Fqm)-submodule Xo ⊆ X with |X \ Xo| < ∞, which admits a fi-
nite unramified covering f : Xo → Lo of Gm-modules and quasi-affine varieties
onto a Gm-submodule Lo ⊆ P1(Fq) with

∣∣P1(Fq) \ Lo

∣∣ < ∞. The fixed-point free
automorphisms h : M → M of G-modules, preserving the fibres of a finite un-
ramified covering ξ : M → L are called deck transformations of ξ. If a deck
transformation group H < AutG(M) of ξ acts transitively on one and, there-
fore, on any fibre of ξ, then ξ is said to be an H-Galois covering. In order to
explain the etymology of this notion, we show that if the finite separable exten-
sion Fq(X) = Fq(Xo) ⊃ Fq(Lo) = Fq(P1(Fq)) of function fields, induced from
f : Xo → Lo is Galois then f is an unramified Gal(Fq(X)/Fq(P1(Fq)))-Galois cov-
ering of locally finite Gm-modules. For an arbitrary locally finite G-module M and
an arbitrary finite fixed-point free subgroup H < AutG(M) we establish that the
correspondence ξH : M → OrbH(M) = M/H, associating to a point x ∈ M its
H-orbit OrbH(x) is an H-Galois covering of locally finite G-modules. Moreover,
ξH :M → OrbH(M) turns to be equivariant with respect to the pro-finite comple-

tion 〈̂ϕ〉 of the infinite cyclic subgroup of AutG(M), generated by ϕ := hΦr
q for any

h ∈ H, any r ∈ N and the Frobenius automorphism Φq, which is a topological gen-

erator of G = Gal(Fq/Fq) = 〈̂Φq〉. Our notion of a Galois closure (N,H,H1) of a
finite unramified covering ξ :M → L of locally finite G-modules arises from the fact
that if the function field Fq(Z) of an irreducible quasi-projective curve Z ⊂ Pr(Fq) is
the Galois closure of the finite separable extension Fq(Xo) ⊃ Fq(Lo), induced from
f : Xo → Lo then (Z,Gal(Fq(Z)/Fq(Lo)),Gal(Fq(Z)/Fq(Xo))) is a Galois closure
of the restriction f : X ′ → L′ of f to some locally finite Gs-submodules X

′ ⊆ Xo,
L′ ⊆ Lo with |Xo \X ′| <∞, |L′ \Lo| <∞. The final, fifth section is devoted to the
main result of the article. After reducing the Riemann Hypothesis Analogue with
respect to P1(Fq) for a locally finite G = Gal(Fq/Fq)-moduleM to lower and upper
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bounds on the number of rational points of M , we introduce the notion of a Hasse
- Weil order ordG(M/L) of a locally finite G-module M with respect to a locally
finite G-module L, as well as the notion of a Hasse - Weil H-order ordHG (N/L) of
a locally finite G-module N with a finite fixed-point free subgroup H < AutG(N)
with respect to a locally finite G-module L. These definitions are motivated by
the celebrated Hasse - Weil bound on the number of rational points of a smooth
irreducible curve X/Fq ⊂ Pn(Fq), which can be stated as an upper bound

1
2 on the

Hasse - Weil order of X with respect to the projective line P1(Fq). For an arbitrary
finite fixed-point free subgroupH < AutG(X) we establish that the Hasse - WeilH-
order ordHG (X/P1(Fq)) ≤ 1

2 . The Hasse - Weil order and the Hasse - Weil H-order
are shown to be preserved when passing to submodules with finite complements.
The existence of a finite unramified covering ξ :M → L of locally finite G-modules
guarantees ordG(M/L) ≤ 1, while the presence of an H-Galois covering ξ : N → L
suffices for ordHG (N/L) ≤ 1. Our main Theorem 29 provides a sufficient condition
for a locally finite G-module M to satisfy the Riemann Hypothesis Analogue with
respect to P1(Fq). By a specific example we establish that the assumptions of The-
orem 29 hold for a class of locally finite G = Gal(Fq/Fq)-modules, which contains
strictly the smooth irreducible curves X/Fq ⊂ Pn(Fq) of genus g ≥ 1. We observe
also that the Riemann Hypothesis Analogue for M with respect to P1(Fq) implies

a functional equation for the ζ-polynomial PM (t) := ζM (t)
ζ
P1(Fq)(t)

∈ Z[t] of M .

2. PRELIMINARIES ON LOCALLY FINITE GAL(FQ/FQ)-MODULES AND
THEIR MORPHISMS

The algebraic and the separable closure of a finite field Fq is Fq = ∪∞m=1Fqm .
The absolute Galois group G = Gal(Fq/Fq) = lim

←
Gal(Fqm/Fq) is the projective

limit of the finite Galois groups Gal(Fqm/Fq) = 〈Φq〉 = {Φi
q | 0 ≤ i ≤ m − 1},

generated by the Frobenius automorphism Φq : Fq → Fq, Φq(a) = aq, ∀a ∈ Fq.
Namely,

G =

{(
Φlm(modm)

q

)
m∈N

∈
∞∏

m=1

(Zm,+)
∣∣∣ ln ≡ lm(modm) for m/n

}

is the pro-finite completion G = 〈̂Φq〉 ≃ (Ẑ,+) of the infinite cyclic group 〈Φq〉 ≃
(Z,+). For an arbitrary n ∈ N, note that

G× Pn(Fq) −→ Pn(Fq),

(Φls(mod s)
q )s∈N[a0 : . . . : ai : . . . an] = [aq

ls

0 : . . . : aq
ls

n ] if a0, . . . , an ∈ Fqs

is a correctly defined action with finite orbits by Remark 2.1.10 (i) and Lemma
2.1.9 from [5]. By Lemma 2.1.11 from [5], the degree of OrbG(a) = Orb〈Φq〉(a), a ∈
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Pn(Fq) is the minimal m ∈ N with
[
aq

m

0 : . . . : aq
m

n

]
= Φm

q (a) = a = [a0 : . . . : an] .

If ai 6= 0 then Φm
q (a) = a amounts to

(
aj

ai

)qm

=
aj

ai
, ∀0 ≤ j ≤ n and holds

exactly when
aj

ai
∈ Fqm , ∀0 ≤ j ≤ n. Thus, ∀m ∈ N there are finitely many

OrbG(a) ⊂ Pn(Fq) of degOrbG(a) = m and Pn(Fq) is a locally finite G-module.

If X = V (f1, . . . , fl) ⊂ Pn(Fq) is a smooth irreducible curve, cut by homoge-
neous polynomials f1, . . . , fl ∈ Fq[x0, . . . , xn] with coefficients from Fq, X is said
to be defined over Fq and denoted by X/Fq ⊂ Pn(Fq). The G-action on Pn(Fq)
restricts to a locally finite G-action on X, due to the G-invariance of f1, . . . , fl.

Here are some trivial properties of the locally finite Ẑ-actions.

Lemma 4. Let G = 〈̂ϕ〉 be the profinite completion of an infinite cyclic group
〈ϕ〉 ≃ (Z,+), M be a locally finite G-module with closed stabilizers, OrbG(x) ⊆M

be a G-orbit on M of degree m = degOrbG(x) and Gm = 〈̂ϕm〉 be the profinite
completion of 〈ϕm〉 ≃ (Z,+). Then:

(i) any y ∈ OrbG(x) has stabilizer StabG(y) = StabG(x) = Gm;

(ii) the orbits OrbG(x) = Orb〈ϕ〉(x) = {x, ϕ(x), . . . , ϕm−1(x)} coincide;

(iii) ∀r ∈ N with greatest common divisor GCD(r,m) = d ∈ N, the G-orbit

OrbG(x) =

d∐

j=1

OrbGr
(ϕij (x))

of x decomposes into a disjoint union of d orbits of degree m1 =
m
d with respect to

the action of Gr = 〈̂ϕr〉.

Proof. If G′ := Gal(Fq/Fq) = 〈̂Φq〉 is the absolute Galois group of the finite
field Fq, then the group isomorphism f : 〈ϕ〉 −→ 〈Φq〉, f(ϕs) = Φs

q, ∀s ∈ N extends
uniquely to a group isomorphism

f : G = 〈̂ϕ〉 −→ 〈̂Φq〉 = G
′, f(ϕls(mod s))s∈N = (Φls(mod s)

q )s∈N ∈
∏

s∈N

(〈Φq〉/〈Φs
q〉)

of the corresponding pro-finite completions. That is why it suffices to prove the

lemma for G′ = 〈̂Φq〉.
(i) By assumption, StabG(x) is a closed subgroup of G of index

[G : StabG(x)] = degOrbG(x) = m.

According to Gal(Fqm/Fq) = Gal(Fq/Fq)/Gal(Fq/Fqm) = G
′/G′m for G′m = 〈̂Φm

q 〉,
the closed subgroup G

′
m of G′ is of index m and the closed subgroup Gm of G is of

index [G : Gm] = m. If H is a closed subgroup of G of [G : H] = m then G/H is an

abelian group of order m and ϕm ∈ H, ∀ϕ ∈ G. Therefore the closure Gm = 〈̂ϕm〉
of 〈ϕm〉 in G is contained in H and [H : Gm] =

[G:Gm]
[G:H] = 1. Thus, H = Gm is the
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only closed subgroup of G of index m and StabG(x) = Gm. Since G is an abelian
group, any y ∈ OrbG(x) has the same stabilizer StabG(y) = StabG(x) = Gm as x.

(ii) The inclusion 〈ϕ〉 ⊂ 〈̂ϕ〉 = G of groups implies the inclusion Orb〈ϕ〉(x) ⊆
OrbG(x) of the corresponding orbits. It suffices to show that x, ϕ(x), . . . , ϕm−1(x)
are pairwise different, in order to conclude that degOrb〈ϕ〉(x) ≥ m = degOrbG(x),
whereas Orb〈ϕ〉(x) = OrbG(x). Indeed, if ϕ

i(x) = ϕj(x) for some 0 ≤ i < j ≤ m−1
then x = ϕj−i(x) implies ϕj−i ∈ StabG(x)∩〈ϕ〉 = 〈̂ϕm〉∩〈ϕ〉 = 〈ϕm〉 andm divides
0 < j − i ≤ m− 1. This is an absurd, justifying Orb〈ϕ〉(x) = OrbG(x).

(iii) It suffices to check that ∀y ∈ OrbG(x) has stabilizer StabGr
(y) = Grm1 ,

in order to apply (i) and to conclude that degOrbGr
(y) = m1. Bearing in mind

that StabGr
(y) = StabG(y) ∩Gr = Gm ∩Gr and the least common multiple of m

and r is LCM(m, r) = rm1 = mr1 ∈ N for r1 =
r
d , we reduce the statement to

Gm ∩Gr = GLCM(m,r). According to

Gr/(Gm ∩Gr) ≃ GrGm/Gm < G/Gm,

the index s := [G : Gm ∩ Gr] = [G : Gr][Gr : (Gm ∩ Gr)] ≤ rm is finite and
Gm ∩ Gr = Gs. By Gs < Gm < G and Gs < Gr < G the integer s ∈ N is a
common multiple of m, r, so that LCM(m, r) ∈ N divides s. Since GLCM(m,r) =
Grm1

= Gr1m is contained in Gm and Gr, there follows GLCM(m,r) ≤ Gm∩Gr = Gs,
so that s divides LCM(m, r) and s = LCM(m, r). �

If M and L are modules over a group G then the G-equivariant maps

ξ :M −→ L, gξ(x) = ξ(gx) ∀g ∈ G, ∀x ∈M

are called morphisms of G-modules. Let ξ :M → L be a morphism of locally finite
G = Gal(Fq/Fq)-modules. The next proposition provides a numerical description
of the restriction of ξ on a preimage of a G-orbit, by the means of the inertia
indices of ξ. Note that the image ξ(M) is G-invariant and for any complete set
ΣG(ξ(M)) ⊆ ξ(M) of G-orbit representatives on ξ(M), the G-orbit decomposition
ξ(M) =

∐
x∈ΣG(ξ(M))

OrbG(x) pulls back to a disjoint G-module decomposition

M =
∐

x∈ΣG(ξ(M))

ξ−1OrbG(x). (2.1)

Thus, the morphism ξ : M → L of G-modules is completely determined by the
surjective morphisms ξ : ξ−1OrbG(x) −→ OrbG(x) of G-modules ∀x ∈ ΣG(ξ(M)).

Proposition 5. Let ξ : M → L be a morphism of locally finite modules with

closed stabilizers over the pro-finite completion G = 〈̂ϕ〉 of an infinite cyclic group
〈ϕ〉 ≃ (Z,+),

δ = degOrbG : L −→ N, δ(x) = degOrbG(x) for ∀x ∈ L and
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eξ :M −→ Q>0, eξ(y) =
degOrbG(y)

degOrbG(ξ(y))
∀y ∈M.

Then:

(i) StabG(y) is a subgroup of StabG(ξ(y)) for all the points y ∈ M , so that
eξ(y) = [StabG(ξ(y)) : StabG(y)] ∈ N takes natural values;

(ii) for any x ∈ ξ(M) there is a subset Sx ⊆ ξ−1(x), such that

ξ−1OrbG(x) =
∐

y∈Sx

OrbG(y) with degOrbG(y) = δ(x)eξ(y); (2.2)

(iii) ∀x ∈ ξ(M) the fibre ξ−1(x) is a Gδ(x)-module with orbit decomposition

ξ−1(x) =
∐

y∈Sx

OrbGδ(x)
(y) of degOrbGδ(x)

(y) = eξ(y). (2.3)

The correspondence eξ : M → N is called the inertia map of ξ : M → L. The
values eξ(y), y ∈M of eξ are called inertia indices of ξ.

Proof. (i) The G-equivariance of ξ implies that StabG(y) ≤ StabG(ξ(y)) ≤ G.
Combining with Lemma 4 (i), one expresses

eξ(y) =
[G : StabG(y)]

[G : StabG(ξ(y))]
= [StabG(ξ(y)) : StabG(y)] ∈ N.

(ii) We claim that ∀x ∈ ξ(M) all G-orbits on ξ−1OrbG(x) intersect the fibre
ξ−1(x). Indeed, assuming ξ(z) = ϕs(x) for some z ∈M and 0 ≤ s ≤ δ(x)− 1, one
observes that ξ(ϕδ(x)−sz) = ϕδ(x)−sξ(z) = x, whereas y := ϕδ(x)−s(z) ∈ ξ−1(x)
with OrbG(z) = OrbG(y). That allows to choose a complete set Sx ⊆ ξ−1(x) of
G-orbit representatives on ξ−1OrbG(x) and to obtain (2.2) by the very definition
of eξ(y) with y ∈ Sx ⊆ ξ−1(x).

(iii) If x ∈ ξ(M), y ∈ ξ−1(x) then ξ(ϕδ(x)y) = ϕδ(x)ξ(y) = ϕδ(x)(x) = x

implies ϕδ(x)(y) ∈ ξ−1(x), so that ξ−1(x) is acted by Gδ(x) = 〈̂ϕδ(x)〉. That justifies
the inclusion ∪y∈Sx

OrbGδ(x)
(y) ⊆ ξ−1(x). For any y, y′ ∈ Sx the assumption

y′ ∈ OrbGδ(x)
(y) ⊆ OrbG(y) implies that y

′ = y, so that the union
∐

y∈Sx

OrbGδ(x)
(y)

is disjoint. By the very definition of Sx, any

z ∈ ξ−1(x) ⊂ ξ−1OrbG(x) =
∐

y∈Sx

OrbG(y)

is of the form z = ϕs(y) for some y ∈ Sx and 0 ≤ s < δ(x)eξ(y) − 1. Due to
x = ξ(z) = ξ(ϕs(y)) = ϕsξ(y) = ϕs(x), there follows ϕs ∈ StabG(x) ∩ 〈ϕ〉 =
〈̂ϕδ(x)〉∩ 〈ϕ〉 = 〈ϕδ(x)〉, whereas s = δ(x)r for some r ∈ Z≥0. Thus, z = ϕδ(x)r(y) ∈
OrbGδ(x)

(y) and ξ−1(x) ⊆ ∐
y∈Sx

OrbGδ(x)
(y). That justifies the Gδ(x)-orbit decom-

position (2.3). By (ii) and the proof of Lemma 4 (iii), one has StabGδ(x)
(y) =
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StabG(y)∩Gδ(x) = Gδ(x)eξ(y)∩Gδ(x) = Gδ(x)eξ(y), as far as LCM(δ(x)eξ(y), δ(x)) =
δ(x)eξ(y). Now, Lemma 4(i) applies to provide degOrbGδ(x)

(y) = eξ(y). �

3. LOCALLY FINITE MODULES WITH A POLYNOMIAL ζ-QUOTIENT

In order to provide two more expressions for the ζ-function of a locally fi-
nite module M over G = Gal(Fq/Fq), let us recall that on an arbitrary smooth
irreducible curve X/Fq ⊆ Pn(Fq), defined over Fq, the fixed points

XΦr
q := {x ∈ X |Φr

q(x) = x} = X(Fqr )

of an arbitrary power Φr
q, r ∈ N of the Frobenius automorphism Φq coincide with

the Fqr -rational ones. That is why, for an arbitrary locally finite module M over

the pro-finite completion G = 〈̂ϕ〉 of an infinite cyclic group 〈ϕ〉 ≃ (Z,+), the fixed
points

Mϕr

:= {x ∈M |ϕr(x) = x}
of ϕr with r ∈ N are called ϕr-rational. Note that if degOrbG(x) = m then

x ∈ Mϕr

if and only if ϕr ∈ StabG(x) = Gm = 〈̂ϕm〉 and this holds exactly when
m divides r. Since any fixed r ∈ N has finitely many natural divisors m and for
any m ∈ N there are at most finitely many G-orbits on M of degree m, the sets
Mϕr

are finite.

Let us consider the free abelian group (Div(M),+), generated by the G-orbits
ν ∈ OrbG(M). Its elements are called divisors on M and are of the form D =
a1ν1+ . . .+ asνs for some νj ∈ OrbG(M), aj ∈ Z. The terminology arises from the
case of a smooth irreducible curve X/Fq ⊆ Pn(Fq), in which the G = Gal(Fq/Fq)-
orbits ν are in a bijective correspondence with the places ν̃ of the function field
Fq(X) of X over Fq. If Rν̃ is the discrete valuation ring, associated with the place
ν̃ then the residue field Rν̃/Mν̃ of Rν̃ is of degree [Rν̃/Mν̃ : Fq] = deg ν.

Note that the degree of a G-orbit extends to a group homomorphism

deg : (Div(M),+) −→ (Z,+), deg


 ∑

ν∈OrbG(M)

aνν


 =

∑

ν∈OrbG(M)

aν deg ν.

A divisor D = a1ν1 + . . . + asνs ≥ 0 is effective if all of its non-zero coefficients
are positive. Let Div≥0(M) be the set of the effective divisors on M . Note that
the effective divisors D = a1ν1 + . . . + asνs ≥ 0 on M of fixed degree degD =
a1 deg ν1 + . . . + as deg νs = m ∈ Z≥0 have bounded coefficients 1 ≤ aj ≤ m and
bounded degrees deg νj ≤ m of the G-orbits from the support of D. Bearing in
mind that M has at most finitely many G-orbits νj of degree deg νj ≤ m, one
concludes that there are at most finitely many effective divisors on M of degree
m ∈ Z≥0 and denotes their number by Am(M).
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The following statement generalizes two of the well known expressions of the
local Weil ζ-function ζX(t) of a smooth irreducible curve X/Fq ⊂ Pn(Fq) to the

ζ-function of any locally finite G = 〈̂ϕ〉-module M . The proofs are similar to the
ones for X/Fq ⊂ Pn(Fq), given in [5] or in [2].

Proposition 6. Let G = 〈̂ϕ〉 be the pro-finite completion of an infinite cyclic
group 〈ϕ〉 and M be a locally finite G-module. Then the ζ-function of M equals

ζM (t) = exp

(
∞∑

r=1

∣∣∣Mϕr
∣∣∣ t

r

r

)
=

∞∑

m=0

Am(M)tm,

where
∣∣Mϕr ∣∣ is the number of ϕr-rational points on M and Am(M) is the number

of the effective divisors on M of degree m ∈ Z≥0.

Proof. If Bk(M) is the number of G-orbits on M of degree k then

ζM (t) :=
∏

ν∈OrbG(M)

(
1

1− tdeg ν

)
=

∞∏

k=1

(
1

1− tk

)Bk(M)

.

Therefore

log ζM (t) = −
∞∑

k=1

Bk(M) log(1− tk) =
∞∑

k=1

Bk(M)

(
∞∑

n=1

tkn

n

)

=

∞∑

r=1

(∑

k/r

kBk(M)

)
tr

r
,

according to the equality of formal power series

log(1− z) = −
∞∑

r=1

zr

r
∈ Q[[z]]. (3.1)

If Mϕr

=
∐

degOrbG(x)/r

OrbG(x) is the decomposition of M
ϕr

into a disjoint union

of G-orbits then the number of the ϕr-rational points on M is
∣∣∣Mϕr

∣∣∣ =
∑

k/r

kBk(M), (3.2)

whereas log ζM (t) =
∞∑
r=1

∣∣Mϕr ∣∣ tr
r .

On the other hand, there is an equality of formal power series

ζM (t) =
∏

ν∈OrbG(M)

(
∞∑

n=0

tdeg(nν)

)
=

∑

D∈Div≥0(M)

tdegD =
∞∑

m=0

Am(M)tm. �

For an arbitrary group G, the bijective morphisms ξ : M → L of G-modules
are called isomorphisms of G-modules.
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Corollary 7. Locally finite G = 〈̂ϕ〉-modules M , L admit an isomorphism of
G-modules ξ :M → L if and only if their ζ-functions ζM (t) = ζL(t) coincide.

Proof. Let ξ : M → L be an isomorphism of G-modules and x ∈ L be a
point with degOrbG(x) = δ(x). Then (2.3) from Proposition-Definition 5 (iii)
provides a decomposition ξ−1(x) =

∐
y∈Sx

OrbGδ(x)
(y) of the fibre ξ−1(x) in a dis-

joint union of Gδ(x)-orbits of degOrbGδ(x)
(y) = eξ(y). Therefore |Sx| = 1, ∀x ∈

L, eξ(y) = 1, ∀y ∈ M and ξ−1OrbG(x) = OrbGξ
−1(x) is of degree δ(x) by

(2.2) from Proposition-Definition 5 (ii). As a result, (2.1) takes the form M =∐
x∈ΣG(L)

OrbGξ
−1(x) for any complete set ΣG(L) of G-orbit representatives on L

and ζM (t) =
∏

x∈ΣG(L)

(
1

1−tδ(x)

)
= ζL(t).

Conversely, assume that the locally finite G-modules M and L have one and a
same ζ-function ζM (t) = ζL(t). Then by Proposition 6, there follows the equality

∞∑

r=1

∣∣∣Mϕr
∣∣∣ t

r

r
= log ζM (t) = log ζL(t) =

∞∑

r=1

∣∣∣Lϕr
∣∣∣ t

r

r
∈ Q[[t]]

of formal power series of t, whereas the equalities

∑

d/r

dBd(M) =
∣∣∣Mϕr

∣∣∣ =
∣∣∣Lϕr

∣∣∣ =
∑

d/r

dBd(L)

of their coefficients ∀r ∈ N. By an induction on r, one derives that Bd(M) = Bd(L),
∀d ∈ N. For any k ∈ N note that M (≤k) := {x ∈ M | degOrbG(x) ≤ k} is a finite
G-submodule of M and the locally finite G-module M = ∪k

k=1M
(≤k) is exhausted

by M (≤k). If L(≤k) := {y ∈ L | degOrbG(y) ≤ k} then by an induction on k ∈ N
one constructs isomorphisms ξ : M (≤k) → L(≤k) of G-modules and obtains an
isomorphism of G-modules ξ :M = ∪∞k=1M

(≤k) → ∪∞k=1L
(≤k) = L. �

Lemma 8. If M is a locally finite G = Gal(Fq/Fq)-module with ζ-function
ζM (t) ∈ Z[[t]] then the quotient

PM (t) =
ζM (t)

ζ
P1(Fq)

(t)
=

∞∑

i=0

ait
i ∈ Z[[t]]∗

is a formal power series with integral coefficients am ∈ Z, which is invertible in
Z[[t]]. Its coefficients am ∈ Z satisfy the equality

Am(M) =

m∑

i=0

ai
∣∣Pm−i(Fq)

∣∣

and can be interpreted as ”multiplicities” of the projective spaces Pm−i(Fq), ”ex-
hausting” the effective divisors on M of degree m.
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Proof. If PM (t) =
∞∑

m=0
amtm ∈ C[[t]] is a formal power series with complex

coefficients am ∈ C then the comparison of the coefficients of

∞∑

m=0

amtm = PM (t) = ζM (t)(1− t)(1− qt) =

(
∞∑

m=0

Am(M)tm

)
[1− (q + 1)t+ qt2]

yields

am = Am(M)− (q + 1)Am−1(M) + qAm−2(M) ∈ Z ∀m ∈ Z≥0, (3.3)

as far as Am(M) ∈ Z≥0, ∀m ∈ Z≥0 and A−1(M) = A−2(M) = 0. In particular,

a0 = A0(M) = ζM (0) = 1 and PM (t) = 1 +
∞∑
i=1

ait
i ∈ Z[[t]]∗ is invertible by

a formal power series P−1
M (t) = 1 +

∞∑
m=1

bmtm ∈ Z[[t]] with integral coefficients.

(The existence of bm ∈ Z with [1 +
∞∑

m=1
amtm][1 +

∞∑
m=1

bmtm] = 1 follows from

bm +
m−1∑
i=1

biam−i + am = 0 by an induction on m ∈ N.)

The comparison of the coefficients of

∞∑

m=0

Am(M)tm = ζM (t) = PM (t)ζ
P1(Fq)

(t) =

(
∞∑

m=0

amtm

)(
∞∑

s=0

ts

)(
∞∑

r=0

qrtr

)

provides

Am(M) =
m∑

i=0

ai

(
m−i∑

j=0

qj

)
=

m∑

i=0

ai

(
qm−i+1 − 1

q − 1

)
=

m∑

i=0

ai
∣∣Pm−i(Fq)

∣∣ . (3.4)

�

According to the Riemann-Roch Theorem for a divisor D of degree degD =
n ≥ 2g − 1 on a smooth irreducible curve X/Fq ⊆ Pn(Fq) of genus g ≥ 0, the
linear equivalence class of D is isomorphic to Pn−g(Fq). For any n ∈ Z≥0 there
exist one and a same number h of linear equivalence classes of divisors on X of
degree n. The natural number h = PX(1) equals the value of the ζ-polynomial

PX(t) =
ζX(t)

ζ
P1(Fq)(t)

=
2g∑
j=0

ajt
j ∈ Z[t] of X at 1 and is called the class number of X.

Thus, for any natural number n ≥ 2g − 1 there are

An(X) = PX(1)
∣∣Pn−g(Fq)

∣∣ = PX(1)

(
qn−g+1 − 1

q − 1

)

effective divisors of X of degree n. Note that the ζ-function ζX(t) =
PX(t)

(1−t)(1−qt)

has residua Res 1
q
(ζX(t)) =

PX( 1
q )

1−q , Res1(ζX(t)) =
PX(1)
q−1 at its simple poles 1

q ,
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respectively, 1. The ζ-polynomial PX(t) of X satisfies the functional equation

PX(t) = PX

(
1
qt

)
qgt2g, according to Theorem 4.1.13 from [5] or to Theorem V.1.15

(b) from [2]. In particular, PX

(
1
q

)
= q−gPX(1) and

An(X) = −qn+1Res 1
q
(ζX(t))− Res1(ζX(t)) ∀n ≥ 2g − 1.

Definition 9. A locally finite module M over G = Gal(Fq/Fq) satisfies the
Generic Riemann-Roch Conditions if M has

An(M) = −qn+1Res 1
q
(ζM (t))− Res1(ζM (t))

effective divisors of degree n for sufficiently large natural numbers n ≥ no.

One can compare the Generic Riemann-Roch Conditions with the Polarized
Riemann-Roch Conditions from [6], which are shown to be equivalent to Mac
Williams identities for linear codes over finite fields. A generalized version of [6],
concerning additive codes will appear elsewhere.

Here is a characterization of the locally finite G-modules M with a polynomial
ζ-quotient PM (t) = ζM (t)

ζ
P1(Fq)(t)

∈ Z[t].

Proposition 10. The following conditions are equivalent for the ζ-function
ζM (t) of a locally finite module M over G = Gal(Fq/Fq):

(i) PM (t) := ζM (t)
ζ
P1(Fq)(t)

∈ Z[t] is a polynomial of degPM (t) = d ≤ δ ∈ N;

(ii) M satisfies the Generic Riemann-Roch Conditions

An(M) = −qn+1Res 1
q
(ζM (t))− Res1(ζM (t)) =

qn+1PM

(
1
q

)
− PM (1)

q − 1
(3.5)

for all n ≥ δ − 1;

(iii)
∣∣∣P1(Fq)

Φr
q

∣∣∣−
∣∣∣MΦr

q

∣∣∣ =
d∑

j=1

ωr
j for ∀r ∈ N (3.6)

and some ωj ∈ C∗, which turn out to satisfy PM (t) =
d∏

j=1

(1− ωjt).

Proof. (i) ⇒ (ii) If PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∑

j=0

ajt
j ∈ Z[t] is a polynomial of

degPM (t) = d ≤ δ ∈ N then (3.4) reduces to

Am(M) =
d∑

i=0

ai

(
qm−i+1 − 1

q − 1

)
=

qm+1PM

(
1
q

)
− PM (1)

q − 1
∀m ≥ δ.
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Moreover, (3.4) implies that

Aδ−1(M) =
qδ
[
PM

(
1
q

)
− aδ

qδ

]
− [PM (1)− aδ]

q − 1
=

qδPM

(
1
q

)
− PM (1)

q − 1
.

Now (3.5) follows from the fact that the residua of ζM (t) = PM (t)
(1−t)(1−qt) at its simple

poles are Res 1
q
(ζM (T )) =

PM( 1
q )

1−q , respectively, Res1 (ζM (t)) = PM (1)
q−1 .

(ii) ⇒ (i) Plugging (3.5) in (3.3), one obtains am(M) = 0, ∀m ≥ δ + 1.

Therefore PM (t) =
δ∑

i=0

ai(M)ti ∈ Z[t] is a polynomial of degree degPM (t) ≤ δ.

(i) ⇒ (iii) If PM (t) = ζM (t)
ζ
P1(Fq)(t)

∈ Z[t] is a polynomial of degree degPM (t) =

d ≤ δ, then PM (0) = ζM (0)
ζ
P1(Fq)(0)

= 1 allows to express PM (t) =
d∏

j=1

(1− ωjt) by some

complex numbers ωj ∈ C∗. According to Proposition 6,

ζM (t) = exp

(
∞∑

r=1

∣∣∣MΦr
q

∣∣∣ t
r

r

)
and ζ

P1(Fq)
(t) = exp

(
∞∑

r=1

∣∣∣P1(Fq)
Φr

q

∣∣∣ t
r

r

)
, (3.7)

whereas

d∑

j=1

log(1−ωjt)=logPM (t)=log ζM (t)−log ζ
P1(Fq)

(t)=
∞∑

r=1

(∣∣∣MΦr
q

∣∣∣−
∣∣∣P1(Fq)

Φr
q

∣∣∣
) tr

r
.

Making use of (3.1), one obtains −
∞∑
r=1

(
d∑

j=1

ωr
j

)
tr

r =
∞∑
r=1

(∣∣∣MΦr
q

∣∣∣−
∣∣∣P1(Fq)

Φr
q

∣∣∣
)

tr

r .

The comparison of the coefficients of tr

r , ∀r ∈ N provides (3.6).

(iii)⇒ (i) Multiplying (3.6) by tr

r , summing ∀r ∈ N and making use of (3.1),

one obtains log ζ
P1(Fq)

(t) − log ζM (t) = −
d∑

j=1

log(1 − ωjt). The change of the sign

and an exponentiation provides PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∏

j=1

(1− ωjt) ∈ Z[t]. �

Corollary 11. Let M and L be locally finite G = Gal(Fq/Fq)-modules with

polynomial ζ-quotients PM (t) = ζM (t)
ζ
P1(Fq)(t)

, PL(t) = ζL(t)
ζ
P1(Fq)(t)

∈ Z[t] of degree

degPM (t) ≤ δ, degPL(t) ≤ δ. Then M and L are isomorphic (as G-modules)
if and only if they have one and the same number Bk(M) = Bk(L) of G-orbits of
degree k for all 1 ≤ k ≤ δ.

Proof. According to Corollary 7, it suffices to prove that Bk(M) = Bk(L) for
all 1 ≤ k ≤ δ is equivalent to the coincidence ζM (t) = ζL(t) of the corresponding
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ζ-functions. The infinite product expressions

ζM (t) =
∞∏

k=1

(
1

1− tk

)BK(M)

, ζL(t) =
∞∏

k=1

(
1

1− tk

)BK(L)

reveals that ζM (t) = ζL(t) if and only if Bk(M) = Bk(L), ∀k ∈ N. There remains
to be shown that if degPM (t) ≤ δ then Bk(M) with 1 ≤ k ≤ δ determine uniquely

Bk(M) for ∀k ∈ N. Let PM (t) =
d∏

j=1

(1− ωjt) for some d ≤ δ, ωj ∈ C∗ and denote

Sr :=
d∑

j=1

ωr
j , ∀r ∈ N. By (3.6) from Proposition 10 and (3.2) from the proof of

Proposition 6 one has

Sr = (qr + 1)−
∣∣∣MΦr

q

∣∣∣ = (qr + 1)−
∑

k/r

kBk(M) for ∀r ∈ N. (3.8)

Thus Bk(M) with 1 ≤ k ≤ δ determine uniquely Sr, ∀1 ≤ r ≤ δ. Since PM (t)
is of degPM (t) = d ≤ δ, Sr with 1 ≤ r ≤ δ determine uniquely Sr, ∀r ∈ N by
Newton formulae. By an induction on r ∈ N and making use of (3.8), Sr with
r ∈ N determine uniquely Br(M), ∀r ∈ N. �

Proposition 12. Let M be a locally finite module over the pro-finite com-

pletion G = 〈̂ϕ〉 of 〈ϕ〉 ≃ (Z,+) and Mr be the locally finite Gr = 〈̂ϕr〉-module,
supported by M for some r ∈ N. Then the ζ-functions of M and Mr are related by
the equality

ζMr
(tr) =

r−1∏

k=0

ζM

(
e

2πik
r t
)
. (3.9)

In particular, if M has polynomial ζ-quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∏

j=1

(1 − ωjt) of

degPM (t) = d then Mr has PMr
(t) :=

ζMr (t)
ζ
P1(Fq)r

(t) =
d∏

j=1

(1 − ωr
j t) of degPMr

(t) = d

and M satisfies the Riemann Hypothesis Analogue with respect to P1(Fq) as a G-
module if and only if Mr satisfies the Riemann Hypothesis Analogue with respect
to P1(Fq)r as a Gr-module.

Proof. According to (1.7) from subsection V.1 of [2], for any m, r ∈ N with
greatest common divisor GCD(m, r) = d ∈ N there holds the equality of polynomi-
als

(
1− tr

m
d

)d
=

r−1∏

k=0

[
1−

(
e

2πik
r t
)m]

.

By Lemma 4 (iii), any G-orbit ν of deg ν = m splits in d orbits ν = ν1
∐

. . .
∐

νd

over Gr of deg νj =
m
d , ∀1 ≤ j ≤ d. The contribution of ν to

[
r−1∏
k=0

ζM

(
e

2πik
r t
)]−1

is
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r−1∏
k=0

[
1−

(
e

2πik
r t
)m]

=
(
1− tr

m
d

)d
=

d∏
j=1

(
1− tr deg νj

)
and equals the contribution

of ν1
∐

. . .
∐

νd to ζMr
(tr)−1. That justifies the equality of power series (3.9).

For any ω ∈ C∗ note that

r−1∏

k=0

(
1−e

2πik
r ωt

)
= (ωt)r

r−1∏

k=0

(
1

ωt
−e

2πik
r

)
= (ωt)r

[
1

(ωt)r
−1
]
= 1−ωrtr. (3.10)

If PM (t) := ζM (t)
ζ
P1(Fq)(t)

=
d∏

j=1

(1− ωjt) ∈ Z[t] with ad := LC(PM (t)) = (−1)dω1 . . . ωd

for some ωj ∈ C∗ and P1(Fq)r is the Gr-module, supported by P1(Fq) = P1(Fqr )
then (3.9) and (3.10) yield

PMr
(tr) =

ζMr
(tr)

ζ
P1(Fq)r

(tr)
=

r−1∏

k=0

ζM

(
e

2πik
r t
)

ζ
P1(Fq)

(
e

2πik
r t
) =

r−1∏

k=0

PM

(
e

2πik
r t
)

=
r−1∏

k=0

d∏

j=1

(
1− ωje

2πik
r t
)
=

d∏

j=1

r−1∏

k=0

(
1− ωje

2πik
r t
)
=

d∏

j=1

(
1− ωr

j t
r
)
.

Thus, PMr
(t)=

d∏
j=1

(1−ωr
j t) is a polynomial of degPMr

(t) = d ∈N with |LC(PMr
(t))|

= |ω1 . . . ωd|r = |ad|r and |ωj | = d
√
|ad| if and only if

∣∣ωr
j

∣∣ = d
√
|LC(PMr

(t))|. That
justifies the equivalence of the Riemann Hypothesis Analogue for M and Mr with
respect to the projective line, whenever M has a polynomial ζ-quotient PM (t). �

4. FINITE UNRAMIFIED COVERING OF LOCALLY FINITE MODULES

Extracting some properties of the finite unramified coverings f : X → Y of
quasi-projective curves X,Y or topological spaces X,Y , we introduce the notion of
a finite unramified covering of locally finite G = Gal(Fq/Fq)-modules.

Definition 13. A surjective morphism ξ :M → L ofG = Gal(Fq/Fq)-modules
is an unramified covering of degree deg ξ = k if all the fibres ξ−1(x), x ∈ L of ξ are
of one and a same cardinality

∣∣ξ−1(x)
∣∣ = k.

The inertia map eξ :M → N of an unramified covering ξ :M → L of deg ξ = k
takes values in {1, . . . , k}. This follows from Proposition-Definition 5 (iii), ac-
cording to which ξ−1(x) =

∐
y∈Sx

OrbGδ(x)
(y), ∀x ∈ M , δ(x) = degOrbG(x),

degOrbGδ(x)
(y) = eξ(y), whereas k =

∣∣ξ−1(x)
∣∣ = ∑

y∈Sx

eξ(y) with eξ(y) ∈ N.
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The next proposition establishes that an arbitrary irreducible quasi-projective
curve X ⊂ Pn(Fq) of genus g ≥ 1 contains a locally finite Gm = Gal(Fq/Fqm)-
submodule Xo with at most finite complement X \Xo, which admits a finite un-
ramified covering f : Xo → f(Xo) onto a Gm-submodule f(Xo) ⊆ P1(Fq) with∣∣P1(Fq) \ f(Xo)

∣∣ <∞ for some m ∈ N.

Proposition 14. For any irreducible quasi-projective curve X ⊂ Pn(Fq) of
positive genus there exist m ∈ N and locally finite Gm = Gal(Fq/Fqm)-submodules
Xo ⊆ X∩Fq

n ⊂ Pn(Fq), Lo ⊆ Fq ⊂ P1(Fq) with at most finite complements X \Xo,
P1(Fq) \ Lo, related by a finite unramified covering f : Xo → Lo of Gm-modules
and quasi-affine curves, which induces the identical inclusion f∗ = Id : Fq(Lo) =
Fq(P1(Fq)) →֒ Fq(X) = Fq(Xo) of the corresponding function fields. Moreover,

there exist a plane quasi-affine curve Yo ⊂ Fq
2
, which is a locally finite Gm-module,

as well as an isomorphism ϕ : Xo → Yo of quasi-affine curves and Gm-modules,
such that f factors through ϕ and the first canonical projection pr1 : Yo → Lo,
pr1(uo, vo) = uo, ∀(uo, vo) ∈ Yo along the commutative diagram

Xo Yo

Lo

@
@
@R

f

-ϕ

?
pr1.

Proof. According to Proposition 1 from 4 of Algebraic Preliminaries of [7],
there exist such generators u, v of the function field Fq(X) = Fq(u, v) of X over
Fq that u is transcendental over Fq and v is separable over Fq(u). If g̃(x) =
k∑

i=0

αi(u)
βi(u)

xi ∈ Fq(u)[x] with αi(u), βi(u) ∈ Fq[u], αk(u) = βk(u) ≡ 1 is the minimal

polynomial of v over Fq(u) and q(u) ∈ Fq[u] is a least common multiple of the
denominators βi(u) of the coefficients of g̃(x) then

q(u)g̃(x) =

k∑

i=0

q(u)αi(u)

βi(u)
xi ∈ Fq[u, x]

is a polynomial in two variables u, x of positive degree k := degx(q(u)g̃(x)) ∈ N
with respect to x. Dividing by the greatest common divisor of the coefficients
q(u)αi(u)

βi(u)
∈ Fq[u], 0 ≤ i ≤ k of q(u)g̃(x), one obtains a primitive and therefore

irreducible polynomial g(u, x) ∈ Fq[u, x]. The affine curve

Y := V (g(u, x)) = {(uo, vo) ∈ Fq
2 | g(uo, vo) = 0}

has function field Fq(Y ) = Fq(u, v) = Fq(X). That suffices for the existence of a
birational map ϕ : X > Y , inducing the identity ϕ∗ = Id : Y = Fq(u, v) →
Fq(u, v) = Fq(X) of Fq-algebras. In other words, there are quasi-affine curves
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X1 ⊆ X, X1 ⊆ Fq
n
, respectively, Y1 ⊆ Y ⊂ Fq

2
with an isomorphism ϕ : X1 → Y1

of quasi-affine varieties. For any 1 ≤ j ≤ 2 let prj : Fq
2 → Fq, prj(x1, x2) = xj

be the canonical projection on the j-th component. Then ϕj := prjϕ : X1 −→
Fq, 1 ≤ j ≤ 2 are regular functions on X1 and there are such polynomials

gj(x1, . . . , xn), hj(x1, . . . , xn) ∈ Fq[x1, . . . , xn] that ϕj

∣∣∣
X1

=
gj(x1,...,xn)
hj(x1,...,xn)

∣∣∣
X1

, after

replacing X1 by its sufficiently small Zariski open subset. The proper Zariski closed
subvarieties of curves are finite sets of points, so that |X \X1| <∞, |Y \ Y1| <∞.
If Y \ Y1 = {y1, . . . , ys} then Y2 := Y \ pr−1

1 {pr1(y1), . . . , pr1(ys)} ⊆ Y1 is a quasi-

affine curve, on which the fibres pr−1
1 (uo) = {(uo, vo) ∈ Fq

2 | g(uo, vo) = 0} ≃ {vo ∈
Fq | g(uo, vo) = 0} of pr1 : Y2 → pr1(Y2) coincide with the corresponding fibres of
pr1 : Y → Fq and are of cardinality

∣∣pr−1
1 (uo)

∣∣ ≤ k. Note that X2 := ϕ−1(Y2) is a
quasi-affine curve, |X1\X2| <∞, |Y1\Y2| <∞ and ϕ : X2 → Y2 is an isomorphism
of quasi-affine curves. The discriminant Dx(g) ∈ Fq[u] of g(u, x) with respect to
x is a polynomial of u and has a finite set of zeroes V (Dx(g)) ⊂ pr1(Y2). All the
fibres of

pr1 : Yo = Y2 \ pr−1
1 (V (Dx(g))) −→ Fq

are of cardinality k and ϕ : Xo = ϕ−1(Yo) → Yo is an isomorphism of quasi-affine
varieties with |X1 \Xo| <∞, |Y1 \ Yo| <∞. If Xo = V (g′1, . . . , g

′
s) \ V (h′1, . . . , h′r)

consists of the common zeroes of the polynomials g′i(x1, . . . , xn) ∈ Fq[x1, . . . , xn],
which are not a common zero of h′1(x1, . . . , xn), . . . , h

′
r(x1, . . . , xn) ∈ Fq[x1, . . . , xn],

then the minimal finite extension Fqµ ⊇ Fq, which contains the coefficients of
all g′i(x1, . . . , xn), h

′
j(x1, . . . , xn) is called the definition field of Xo. One sees im-

mediately that for any Fqs ⊇ Fqµ the quasi-affine curve Xo is a locally finite
Gs = Gal(Fq/Fqs)-module. The minimal finite extension Fqν ⊇ Fq, containing
the coefficients of the numerators gj(x1, . . . , xn) ∈ Fq[x1, . . . , xn] and the denomi-
nators hj(x1, . . . , xn) ∈ Fq[x1, . . . , xn] of the components ϕj of ϕ = (ϕ1, ϕ2) : Xo →
Yo ⊂ Fq

2
is said to be the definition field of ϕ. We choose such m ∈ N that Fqm

contains the definition fields of X0, Y0, ϕ and observe that ϕ : X0 → Y0 is an
isomorphism of locally finite Gm = Gal(Fq/Fqm)-modules.

Moreover, Lo := pr1(Yo) ⊆ Fq ⊂ P1(Fq) is a quasi-affine curve since
∣∣Fq \ Lo

∣∣ <
∞ and pr1 : Yo → Lo is an unramified covering of quasi-affine varieties. If Fqm

contains the definition field of Lo then pr1 : Yo → Lo is a finite unramified covering
of locally finite Gm-modules of degree k. We put f := pr1ϕ : Xo → Lo and note
that under the aforementioned choices f : Xo → Lo is a finite unramified covering of
locally finite Gm-modules and quasi-affine varieties, inducing the identical inclusion
f∗ = ϕ∗pr∗1 = pr∗1 : Fq(Lo) = Fq(u) →֒ Fq(u, v) = Fq(Xo). �

An automorphism α of a G-module M is a self-isomorphism α : M → M of
G-modules. We denote by AutG(M) the automorphism group of M . Since G is
an abelian group, any ϕ ∈ G induces an automorphism ϕ : M → M . In such a
way there arises a group homomorphism Ψ : G→ AutG(M). If Ψ is injective, the
G-module M is said to be faithful and G is identified with Ψ(G) ≤ AutG(M).
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Lemma 15. A locally finite module M over G = Gal(Fq/Fq) with closed
stabilizers is faithful if and only if M is an infinite set.

Proof. By the very definition of the homomorphism Ψ : G → AutG(M), its
kernel

kerΨ = ∩x∈MStabG(x)

is the intersection of the stabilizers of all the points of M . In the proof of Lemma
4 (iii) we have established that Gm ∩ Gn = GLCM(m,n). If M = {x1, . . . , xr} is a
finite set then the map degOrbG : M → N has finitely many values m1, . . . ,mν ,
ν ≤ r. As a result, kerΨ = ∩ν

j=1Gmj
= GLCM(mj | 1≤j≤ν) 6= {0} and M is not a

faithful G-module.

Suppose that M is an infinite locally finite G-module and

α = (Φls(mod s)
q )s∈N ∈ kerΨ = ∩x∈MStabG(x)

= ∩x∈MGdegOrbG(x) = ∩x∈M

{
ΦdegOrbG(x)ms(mod s)

q

}
s∈N

.

Then for any point x ∈M and any s ∈ N the degree degOrbG(x) of the G-orbit of
x divides ls. For an infinite locally finite G-module M the map degOrbG :M → N
has an infinite image, so that any ls is divisible by infinitely many different natural
numbers degOrbG(x), x ∈ M . That implies ls = 0, ∀s ∈ N, whereas kerΨ = {0}.
Thus, any infinite locally finite G-module M is faithful. �

Definition 16. If ξ : M → L is a finite unramified covering of locally finite
G-modules then the fixed-point free automorphisms of G-modules α : M → M
with ξα = ξ are called deck transformations of ξ.

Any subgroup H of AutG(M), which consists of deck transformations of
ξ :M → L is called a deck transformation group of ξ.

Note that an automorphism α : M → M of a locally finite G-module M and
a finite unramified covering ξ : M → L of G-modules are subject to the equality
ξα = ξ if and only if α restricts to a bijection α : ξ−1(x) → ξ−1(x) on any fibre
ξ−1(x), x ∈ L of ξ. Namely, y ∈ ξ−1(x) maps to α(y) ∈ ξ−1(x) exactly when
ξα(y) = x = ξ(y). Thus, for any deck transformation group H of ξ : M → L and
any point x ∈ L there arises a group homomorphism

Ψx : H → Sym(ξ−1(x)) = Sym(k),

where k = deg(ξ). Due to the lack of fixed points of H, Ψx are injective and H is a
finite group, whose orbits on ξ−1(x) are of one and a same cardinality |H| ≤ k!. In
particular, H acts transitively on some fibre ξ−1(xo), xo ∈ L of a finite unramified
covering ξ :M → L exactly when |H| = k = deg(ξ). If so, then H acts transitively
on all the fibres ξ−1(x), x ∈ L of ξ.
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Definition 17. A finite unramified covering ξ : M → L of locally finite
G = Gal(Fq/Fq)-modules is H-Galois if there is a deck transformation group
H < AutG(M), acting transitively on one and, therefore, on any fibre ξ−1(x),
x ∈ L of ξ.

Proposition 18. In the notations from Proposition 14, the Galois group

H = Gal(Fq(X)/Fq(P
1(Fq)))

of the finite separable function fields extension Fq(P1(Fq)) ⊂ Fq(X) is a deck trans-
formation group of the finite unramified covering f = pr1ϕ : Xo → Lo of locally
finite Gm = Gal(Fq/Fqm)-modules. If Fq(P1(Fq)) ⊂ Fq(X) is a Galois extension
then f = pr1ϕ : Xo → Lo is an H-Galois covering. If f = pr1ϕ : Xo → Lo has
a deck transformation group H, which consists of birational maps h : Xo > Xo

and acts transitively on the fibres of f : Xo → Lo then the finite separable extension
of function fields Fq(P1(Fq)) ⊂ Fq(X) is Galois and H ≃ Gal(Fq(X)/Fq(P1(Fq))).

Proof. As far as ϕ : Xo → Yo is an isomorphism of locally finite Gm-modules,
inducing the identity ϕ∗ = Id : Fq(Yo) = Fq(u, v) → Fq(Xo) = Fq(X) of the
corresponding function fields, it suffices to prove the corresponding statements for
pr1 : Yo → Lo. More precisely, we claim that H = Gal(Fq(Yo)/Fq(Lo)) with
Fq(P1(Fq)) = Fq(Lo) = Fq(u) is a deck transformation group of the finite unramified
covering pr1 : Yo → Lo of locally finite Gm-modules. If Fq(u) ⊂ Fq(u, v) is a Galois
extension then pr1 : Yo → Lo is a Galois covering. If pr1 : Yo → Lo has a deck
transformation group H, which consists of birational maps h : Yo > Yo and
acts transitively on the fibres of pr1 : Yo → Lo then the finite separable extension
Fq(u) ⊂ Fq(u, v) of function fields is Galois.

Note that for any fixed uo ∈ Lo the Galois group H = Gal(Fq(u, v)/Fq(u))

acts without fixed points on the fibre pr−1
1 (uo) = {(uo, vo) ∈ Fq

2 | g(uo, vo) = 0}
of the projection pr1 : Yo → Lo. That allows to view H as a fixed-point free
subgroup of the symmetric group Sym(Yo) of Yo. If degx g(u, x) = k then Fq(u, v)
is a k-dimensional vector space over Fq(u) with basis 1, v, . . . , v

k−1. The Frobenius
automorphism Φqm : Fq(u, v) → Fq(u, v) acts on the coefficients of the rational

functions g1(u)
g2(u)

∈ Fq(u) with g1(u), g2(u) ∈ Fq[u], g2(u) 6≡ 0 and fixes vi for ∀0 ≤ i ≤
k − 1. By their very definition, all h ∈ H = Gal(Fq(u, v)/Fq(u)) act identically on
Fq(u) and permute the roots xi ∈ Fq of g(u, x) = 0. That is why hΦqm = Φqmh as
an automorphism of the function field Fq(u, v) = Fq(Yo) and of the affine coordinate
ring Fq[Yo] = Fq[u, x]/〈g(u, x)〉 = Fq[u, v] = Fq[u] + Fq[u]v + . . .+ Fq[u]v

k−1 of Yo.

The affine closure Y = V (g(u, x)) ⊂ Fq
2
of Yo in Fq

2
has the same affine coordinate

ring Fq[Y ] = Fq[Yo] as Yo. The Fq-algebra automorphisms of Fq[Y ] are in a bijective
correspondence with the automorphisms Y → Y of the affine curve Y , so that
hΦqm = Φqmh coincide as automorphisms of Y . By the very choice of m ∈ N, the
quasi-affine curve Yo is Φqm -invariant. According to Yo = Y \ pr−1

1 {u1, . . . , ur} for
some u1, . . . , ur ∈ Fq, the fibres of pr1 : Yo → pr1(Yo) coincide with the fibres of
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pr1 : Y → Fq over pr1(Yo). Since h acts on the fibres of pr1 : Y → Fq without fixed
points, the curve Yo is preserved by h and hΦqm = Φqmh coincide as automorphisms
of Yo. In such a way we have justified that H is a deck transformation group of the
unramified covering pr1 : Yo → Lo of Gm-modules.

If the finite separable extension Fq(u) ⊂ Fq(u, v) is normal, i.e., Galois, then
its Galois group H = Gal(Fq(u, v)/Fq(u)) is of order |H| = [Fq(u, v) : Fq(u)] =
degx g(u, x) = k = deg(pr1). Therefore H acts transitively on the fibres of pr1 :
Yo → Lo and pr1 : Yo → Lo is an H-Galois covering of locally finite Gm-modules.

Let H be a deck transformation group of pr1 : Yo → Lo, which consists of
birational maps h : Yo > Yo and acts transitively on the fibres of pr1. After
replacing Yo by a non-empty Zariski open subset Y1 ⊆ Yo, one can assume that all
h ∈ H are injective morphisms h : Y1 → Yo. Any such h = (h1, h2) is a pair of
regular functions hi : Y1 → Fq, 1 ≤ i ≤ 2. The equality pr1h = pr1, ∀h = (h1, h2)
is equivalent to h1(u, v) = u, so that h1 = pr1. Any birational map h : Yo → Yo

induces an isomorphism h∗ : Fq(Yo) = Fq(u, v)→ Fq(u, v) = Fq(Yo) of Fq-algebras.
According to u = pr1(u, v) one has h

∗(u) = h∗(pr1)(u, v) = pr1h(u, v) = h1(u, v) =
u, ∀h ∈ H. Moreover, h∗ acts identically on the constant field Fq and, therefore,
fixes any element of Fq(u). That allows to view h∗ ∈ Gal(Fq(u, v)/Fq(u)) as an
element of the Galois group of the finite separable extension Fq(u) ⊂ Fq(u, v). The
group H, acting transitively on the fibres of pr1 : Yo → Lo is of order |H| =
deg(pr1) = k = degx g(u, x) = [Fq(u, v) : Fq(u)] and the extension Fq(u) ⊂ Fq(u, v)
is Galois. �

Note that, in general, if the finite coverings pr1 : Yo → Lo, f = pr1ϕ : Xo → Lo

of locally finite Gm-modules are H-Galois for some deck transformation group H of
pr1 and f then the finite separable extension Fq(Lo) = Fq(u) ⊂ Fq(u, v) = Fq(Yo) =
Fq(Xo) is not supposed to be Galois. The reason is that the automorphisms h ∈ H
of the Gm-modules Yo, Xo are not necessarily birational maps of Yo, Xo.

Let ξ : M → L be a finite unramified covering of locally finite G-modules.
Then any deck transformation group H of ξ is a finite fixed-point free subgroup
of the automorphism group AutG(M) of M . The next lemma establishes that the
orbit space OrbH(M) of an arbitrary finite fixed-point free subgroupH < AutG(M)
has natural structure of a locally finite G-module, with respect to which the map
ξH : M → OrbH(M), ξH(x) = OrbH(x), associating to a point x ∈ M its H-orbit
OrbH(x) is an H-Galois covering.

Lemma 19. Let M be an infinite locally finite G = Gal(Fq/Fq)-module and
H be a finite fixed-point free subgroup of AutG(M). Then:

(i) the product HG ≃ H ×G of the subgroups H and G of AutG(M) is direct;

(ii) the set OrbH(M) = {OrbH(x) |x ∈ M} of the H-orbits on M is a locally
finite G-module with respect to the action

G×OrbH(M) −→ OrbH(M),

(ϕ,OrbH(x)) 7→ ϕOrbH(x) = OrbHϕ(x) ∀ϕ ∈ G, ∀x ∈M ;
(4.1)
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(iii) the correspondence

ξH :M → OrbH(M), ξH(x) = OrbH(x) ∀x ∈M

is a finite unramified H-Galois covering of degree deg ξH = |H|.

Proof. (i) According to Lemma 15, the infinite locally finite G-module M is
faithful and one can view G as a subgroup of AutG(M). By its very definition,
AutG(M) centralizes G. In particular, hϕ = ϕh, ∀h ∈ H and ∀ϕ ∈ G. The

isomorphism G ≃ (Ẑ,+) ≃ ∏
prime p

(Ẑp,+) with the direct product of the additive

groups (Ẑp,+) of the p-adic integers reveals that any ϕ ∈ Ẑ\{0} is of infinite order.
As far as any entry h of the finite group H is of finite order in AutG(M), there
follows H ∩ G = {IdM} and the product HG ≃ H × G of subgroups of AutG(M)
is direct.

(ii) Note that the map (4.1) is correctly defined, as far as ∀x ∈ M , ∀ϕ ∈ G,
∀h ∈ H one has ϕOrbH(hx) = OrbH(ϕh(x)) = OrbH(hϕ(x)) = OrbH(ϕ(x)) =
ϕOrbH(x). The axioms for a G-action on OrbH(M) follow from the ones for the
G-action onM . Since H centralizes G the G-orbits OrbGξH(x) = OrbGOrbH(x) =
OrbHOrbG(x) = ξHOrbG(x) on OrbH(M) are the images of the G-orbits onM un-
der ξH , so that degOrbGξH(x) <∞, ∀x ∈M . If degOrbGξH(x) = |ξHOrbG(x)| =
m then the restriction ξH |OrbG(x) : OrbG(x)→ OrbGξH(x) of ξH :M → OrbH(M)
is of degree deg(ξH |OrbG(x)) ≤ deg(ξH) = |H|, so that

degOrbG(x) = deg(ξH |OrbG(x)) degOrbGξH(x) ≤ m|H|.

By assumption, the G-action on M is locally finite and there are finitely many G-
orbits OrbG(x) onM of degree ≤ m|H|. Therefore, there are finitely many G-orbits
OrbGξH(x) on OrbH(M) of degree m and OrbH(M) is a locally finite G-module.

(iii) The G-equivariance of ξH is an immediate consequence of the definition
of the G-action on OrbH(M) �

Let M be an infinite locally finite G = Gal(Fq/Fq)-module. The next proposi-
tion describes the ”twist” of the G-action onM by a fixed-point free automorphism
h ∈ AutG(M) of finite order.

Proposition 20. Let M be an infinite locally finite G = G(Φq) = 〈̂Φq〉-
module with closed stabilizers, H be a finite fixed-point free subgroup of AutG(M)
and ϕ = hΦr

q for some h ∈ H and some natural number r ∈ N. Then:

(i) the pro-finite completion G(ϕ) = 〈̂ϕ〉 of the infinite cyclic group 〈ϕ〉 ≃ (Z,+)
is a subgroup of HG ≃ H ×G;

(ii) M is a locally finite G(ϕ) = 〈̂ϕ〉-module;
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(iii) the second canonical projection pr2 : H × G → G, pr2(h
′, γ) = γ, ∀h′ ∈ H,

∀γ ∈ G provides a locally finite G(ϕ)-action

G(ϕ)×OrbH(M) −→ OrbH(M),

(γ,OrbH(x)) 7→ pr2(γ)OrbH(x) = OrbH(pr2(γ)x);

(iv) the map

ξH :M −→ OrbH(M), ξH(x) = OrbH(x) ∀x ∈M

is an H-Galois covering of locally finite G(ϕ)-modules.

Proof. (i) First of all, ϕ = hΦr
q is of infinite order. Otherwise, for h of order

m and ϕ of order l, one has IdN = ϕml = hmΦrml
q = Φrml

q and the Frobenius
automorphism Φq :M →M turns to be of finite order. This is an absurd, justifying
〈ϕ〉 ≃ (Z,+). Note that ϕ = hΦr

q ∈ HG suffices for 〈ϕ〉 to be a subgroup of the

compact group HG. The pro-finite completion G(ϕ) = 〈̂ϕ〉 is the closure of 〈ϕ〉
with respect to the discrete topology, so that G(ϕ) = 〈̂ϕ〉 ≤ HG since HG is closed
with respect to the discrete topology.

(ii) In order to show that all the G(ϕ)-orbits on M are of finite degree, let us
consider a point x ∈M with degOrbG(x) = δ. If h ∈ H < AutG(M) is of order m
then

G(ϕmδ) := 〈̂ϕmδ〉 = ̂〈Φmδr
q 〉 = G(Φmrδ

q ) ≤ G(Φδ
q) = StabG(x) ≤ StabH×G(x),

whereas G(ϕmδ) ≤ G(ϕ) ∩ StabH×G(x) = StabG(ϕ)(x) ≤ G(ϕ). Therefore

degOrbG(ϕ)(x) = [G(ϕ) : StabG(ϕ)(x)] =
[G(ϕ) : G(ϕmδ)]

[StabG(ϕ)(x) : G(ϕmδ)]

=
mδ

[StabG(ϕ)(x) : G(ϕmδ)]
∈ N

and all the G(ϕ)-orbits on M are finite. Let n ∈ N and y ∈ M be a point
with degOrbG(ϕ)(y) = n or, equivalently, with StabG(ϕ)(y) = G(ϕn). If δ :=
degOrbG(y) and h ∈ H < AutG(M) is of order m then

G(ϕnm) = G(Φnmr
q ) < G ∩ StabH×G(y) = StabG(x) = G(Φδ

q).

Therefore δ is a natural divisor of nmr. By assumption, M contains finitely many
G-orbits of degree δ. For any fixed n ∈ N there are finitely many natural divisors δ
of nmr and, therefore, finitely many G(ϕ)-orbits on M of degree n. In such a way
we have checked that the G(ϕ)-action on M is locally finite.

(iii) is an immediate consequence of Lemma 19 (ii).

(iv) Towards theG(ϕ)-equivariance of ξH :M → OrbH(M), ξH(x) = OrbH(x),
∀x∈M , let us consider the first canonical projection pr1 : H×G→G, pr1(h

′, γ)=h′,

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 99–137. 121



∀h′ ∈ H, ∀γ ∈ G. An arbitrary ρ ∈ G(ϕ) < HG ≃ H × G has an unique
factorization ρ = pr1(ρ)pr2(ρ) into a product of pr1(ρ) ∈ H and pr2(ρ) ∈ G. Then
ξH(ρx) = ξH(pr1(ρ)pr2(ρ)x) = ξH(pr2(ρ)x) = pr2(ρ)ξH(x), ∀x ∈ M verifies that
ξH is an H-Galois covering of locally finite G(ϕ)-modules. �

From now on, we identify the isomorphic locally finite G = Gal(Fq/Fq)-
modules, in order to avoid cumbersome notations.

Definition 21. A Galois closure of a finite unramified covering ξ : M → L
of locally finite G = Gal(Fq/Fq)-modules is a triple (N,H,H1), which consists of
a locally finite Gm = Gal(Fq/Fqm)-module N for some m ∈ N, a finite fixed-point
free subgroup H of AutGm

(N) and a subgroup H1 of H, such that OrbH1(N) is
isomorphic to M as a Gm-module, OrbH(N) is isomorphic to L as a Gm-module
and the H-Galois covering ξH : N → L, ξH(x) = OrbH(x), ∀x ∈ N factors through
the H1-Galois covering ξH1 : N → M , ξH1(x) = OrbH1(x), ∀x ∈ N and ξ along a
commutative diagram

N M

L

@
@
@R

ξH

-ξH1

?
ξ

of finite unramified coverings of Gm-modules.

We say that (N,H,H1) is defined over Fqm .

Proposition 22. For any irreducible quasi-projective curve X of positive
genus over Fq there exist s ∈ N, locally finite Gs = Gal(Fq/Fqs)-submodules X ′⊆X,
L ⊆ P1(Fq) with at most finite complements X \X ′, P1(Fq) \L, a finite unramified
covering f : X ′ → L of Gs-modules and a Galois closure (Z,H,H1) of f , such that
Z is an irreducible quasi-projective curve Z ⊆ Pr(Fq), H = Gal(Fq(Z)/Fq(P1(Fq))),
H1 = Gal(Fq(Z)/Fq(X)).

Proof. Let f : Xo → Lo be the finite unramified covering of locally finite
Gm-modules from Proposition 14. The finite separable extension

Fq(X) = Fq(Xo) = Fq(u, v) ⊃ Fq(u) = Fq(Lo) = Fq(P
1(Fq))

of the corresponding function fields admits a Galois closureK ⊇ Fq(u, v) ⊇ Fq(u) of
finite degree [K : Fq(u)] <∞, i.e., K is normal over Fq(u) and Fq(u, v). Then there
is an irreducible quasi-projective curve Z0 ⊂ Pr(Fq) with function field Fq(Z0) = K
and dominant rational maps f0 : Z0 > L0, f1 : Z0 > X0, inducing the identical
inclusions f∗0 = Id : Fq(Lo) = Fq(u) →֒ Fq(Z0), respectively, f

∗
1 = Id : Fq(Xo) =

Fq(u, v) →֒ Fq(Z0) of the associated function fields. Bearing in mind that the finite
covering f : Xo → Lo induces the identity f∗ = Id : Fq(Lo) = Fq(u) →֒ Fq(u, v) =
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Fq(Xo), one obtains a commutative diagram

Fq(Z0) Fq(Xo)

Fq(Lo)

�f∗1

@
@

@
@@I

f∗0

6
f∗

of identical inclusions of function fields over Fq. Therefore, the composition ff1
coincides with the dominant rational map f0. Let Z

′
1 ⊂ Fq

r
be a quasi-affine curve,

contained in the regularity domains of f0 and f1. Then f0 : Z
′
1 → f0(Z

′
1) is a finite

covering of affine curves. Removing from Z ′1 the branch locus of f0|Z′1 , one obtains a
quasi-affine curve Z ′′1 ⊆ Z ′1 ⊆ Z0. The finite set Z0 \Z ′′1 has finite image f(Z0 \Z ′′1 ),
so that L1 := Lo \ f0(Z0 \ Z ′′1 ), X1 := f−1(L1), Z1 := f−1

0 (L1) = f−1
1 (X1) ⊆ Z ′′1

are quasi-affine curves, subject to a commutative diagram

Z1 X1

L1

-f1

@
@
@@R

f0
?
f

of finite unramified coverings of quasi-affine curves. In particular, Z0 \Z1, Xo \X1,
Lo \ L1 are finite sets.

The normal separable extension Fq(Lo) ⊂ Fq(Z0) is finite, so that its Galois
group H := Gal(Fq(Z0)/Fq(Lo)) = Gal(Fq(Z1)/Fq(L1)) is finite. Any h ∈ H
transforms the affine coordinates zj , 1 ≤ j ≤ r on Z1 ⊂ Fq

r
to rational functions

h(zj) ∈ Fq(Z1). Let Z ′2 be the intersection of the regularity domains of h(zj) :
Z1 > Fq, ∀h ∈ H and ∀1 ≤ j ≤ r. Then for any h ∈ H the map

h̃ : Z ′2 −→ h̃(Z ′2) ⊆ Z1 ⊂ Fq
r
,

h̃(u1, . . . , ur) := (h(z1)(u1), . . . , h(zr)(ur)) ∀u = (u1, . . . , ur) ∈ Z ′2

is a morphism of quasi-affine varieties. Since H is a finite group, Z ′′2 := ∩h∈H h̃(Z ′2)
is a quasi-affine curve, so that |Z ′2 \ Z ′′2 | <∞. Moreover, ∀u ∈ Z ′′2 and ∀ho, h ∈ H

one has u ∈ h̃o

−1
h̃(Z ′2), whereas h̃o(u) ∈ h̃(Z ′2). Thus, h̃o(u) ∈ ∩h∈H h̃(Z ′2) = Z ′′2 ,

∀u ∈ Z ′′2 , ∀ho ∈ H and Z ′′2 is H-invariant. Note that for any h ∈ H the equation

h̃(u) = u has at most finitely many solutions on Z ′′2 . Therefore H has at most
finitely many fixed points on Z ′′2 . After removing the H-orbits of the H-fixed
points on Z ′′2 , one obtains a quasi-affine curve Z2 ⊆ Z ′′2 , acted by H without fixed
points.
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By the very construction of Z0, the function fields extensions

Fq(Z0) = Fq(Z1) = Fq(Z2) ⊇ Fq(X1) = Fq(Xo) and

Fq(Z0) = Fq(Z1) = Fq(Z2) ⊃ Fq(L1) = Fq(Lo)

are Galois. Therefore the Galois groups

H = Gal(Fq(Z2)/Fq(L1)) and H1 := Gal(Fq(Z0)/Fq(Xo)) = Gal(Fq(Z2)/Fq(X1))

have invariant fields Fq(Z2)
H = Fq(L1), respectively, Fq(Z2)

H1 = Fq(X1). The
correspondence

fH : Z2 −→ OrbH(Z2) = Z2/H, fH(z) = OrbH(z) ∀z ∈ Z2,

associating to z ∈ Z2 its H-orbit is a surjective morphism of algebraic curves,
which induces an isomorphism f∗H : Fq(Z2/H)→ Fq(Z2)

H = Fq(L1) of Fq-algebras.
Therefore there is a birational map ϕ0 : L1 > Z2/H with ϕ∗0 = f∗H . Similarly,

fH1 : Z2 −→ OrbH1(Z2) = Z2/H1, fH1(z) = OrbH1(z) ∀z ∈ Z2

is a surjective morphism of algebraic curves, inducing an isomorphism of Fq-algebras
f∗H1

: Fq(Z2/H1)→ Fq(Z2)
H1 = Fq(X1). Let ϕ1 : X1 > Z2/H1 be the birational

map with ϕ∗1 = f∗H1
. The commutative diagrams

Fq(Z2)

Fq(L1) Fq(Z2/H)

6
Id

Q
Q
Q

QQk f∗H

�ϕ∗0

,

Fq(Z2)

Fq(X1) Fq(Z2/H1)

6
Id

Q
Q
Q

QQk f∗H1

�ϕ∗1

of embeddings Id, f∗H , f
∗
H1

of Fq-algebras and isomorphisms ϕ
∗
0, ϕ

∗
1 of Fq-algebras

induce commutative diagrams

Z2

L1 Z2/H
?

f0

@
@
@@R

fH

-ϕ0

,

Z2

X1 Z2/H1

?

f1

@
@
@
@R

fH1

-ϕ1

of morphisms f0, fH , f1, fH1 and birational maps ϕ0, ϕ1.

There is a quasi-affine curve L′2 ⊆ L1, such that ϕ0 : L1 > Z2/H restricts
to an isomorphism ϕ0 : L

′
2 → ϕ0(L

′
2) ⊆ Z2/H of algebraic varieties. Similarly, one

can choose a quasi-affine curve X ′
2 ⊆ X1, such that ϕ1 : X

′
2 → ϕ1(X

′
2) ⊆ Z2/H1 is

an isomorphism of algebraic curves. Since L1 \ L′2 and X1 \X ′
2 are finite sets and
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f0 : Z1 → L1, f1 : Z1 → X1 are finite coverings, S := f−1
0 (L1\L′2)∪f−1

1 (X1\X ′
2) is

a finite subset of Z2. Removing from Z2 the H-orbit of S, one obtains a quasi-affine
curve Z3 ⊆ Z2, acted by H without fixed points. The factorization fH |Z3 = ϕ0f0|Z3

with a biregular ϕ0 : f0(Z3) → fH(Z3) implies the coincidence of the fibres of fH
and f0. Therefore, fH : Z3 → fH(Z3) and f0 : Z3 → L3 := f0(Z3) are finite
unramified coverings of algebraic curves of degree |H|. Similarly, fH1 |Z3 = ϕ1f1|Z3

with biregular ϕ1 : f1(Z3) → fH1(Z3) reveals that fH1 : Z3 → fH1(Z3) and f1 :
Z3 → X3 := f1(Z3) are finite unramified coverings of algebraic curves of degree
|H1|. There exists a sufficiently large s ∈ N, such that Fqs contains the definition
fields of the curves Z3, X3, L3, Z3/H, Z3/H1, as well as the coefficients of the
components of the regular maps f , f0, f1, fH , fH1

. Then

Z3/H1

Z3/H Z3 X3

L3

�fH

6
fH1

-f1

?

f0

 
 

 
 	

f

@
@

@@I ϕ1

@
@
@@I
ϕ0

turns out to be a commutative diagram of finite unramified coverings of locally
finite Gs-modules with bijective ϕ0, ϕ1, H-Galois covering fH , H1-Galois covering
fH1

. Introducing Z := Z3, X
′ := X3, L := L3, one concludes that (Z,H,H1) is a

Galois closure of the finite unramified covering f : X ′ → L. �

5. RIEMANN HYPOTHESIS ANALOGUE FOR LOCALLY FINITE
MODULES

The next proposition provides a numerical necessary and sufficient condition
for a locally finite G = Gal(Fq/Fq)-module with a polynomial ζ-quotient to satisfy
the Riemann Hypothesis Analogue with respect to the projective line P1(Fq).

Proposition 23. The following conditions are equivalent for a locally finite
module M over G = Gal(Fq/Fq) with a polynomial ζ-quotient PM (t) = ζM (t)

ζ
P1(Fq)(t)

∈
Z[t] of degPM (t) = d ∈ N with leading coefficient LC(PM (t)) = ad ∈ Z \ {0} and
for λ := logq

d
√
|ad| ∈ R≥0:

(i) M satisfies the Riemann Hypothesis Analogue with respect to P1(Fq) as a
G-module;

(ii) qr + 1− dqλr ≤ |MΦr
q | ≤ qr + 1 + dqλr, ∀r ∈ N;
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(iii) there exist constants C1, C2 ∈ R>0, ν, r1, r2 ∈ N, such that

|MΦνr
q | ≤ qνr + 1 + C1q

λνr ∀r ∈ N, r ≥ r1 and

|MΦνr
q | ≥ qνr + 1− C2q

λνr ∀r ∈ N, r ≥ r2.

Proof. (i)⇒ (ii) If PM (t) =
d∏

j=1

(1− qλeiϕj t) for some ϕj ∈ [0, 2π) then

∣∣∣P1(Fq)
Φr

q

∣∣∣−
∣∣∣MΦr

q

∣∣∣ =
d∑

j=1

qλreirϕj for ∀r ∈ N

by (3.6) from Proposition 10. Therefore,

∣∣∣
∣∣MΦr

q

∣∣− (qr + 1)
∣∣∣ =

∣∣∣
d∑

j=1

qλreirϕj

∣∣∣ ≤
d∑

j=1

∣∣qλreirϕj
∣∣ =

d∑

j=1

qλr = dqλr,

hence (ii) holds.

(ii)⇒ (iii) is trivial

(iii)⇒ (i) Let PM (t) =
d∏

j=1

(1− ωjt) ∈ Z[t]. The formal power series

H(t) :=
d∑

j=1

ων
j t

1− ων
j t

has radius of convergence ρ = min
(

1
|ω1|

ν , . . . , 1
|ωd|

ν

)
, i.e., H(t) < ∞ converges

∀t ∈ C with |t| < ρ and H(t) =∞ diverges ∀t ∈ C with |t| > ρ. Making use of the

formal series expansion 1
1−ων

j t
=

∞∑
i=0

ωνi
j ti and exchanging the summation order,

one represents

H(t) =
∞∑

i=0

( d∑

j=1

ω
ν(i+1)
j

)
ti+1.

Let C := max(C1, C2), r0 := max(r1, r2) and note that assumption (iii) implies
that

∣∣∣
d∑

j=1

ωνr
j

∣∣∣ =
∣∣∣
∣∣MΦνr

q

∣∣− (qνr + 1)
∣∣∣ ≤ Cqλνr ∀r ∈ N, r ≥ r0,

according to (3.6) from Proposition 10. Thus,
∣∣∣

d∑
j=1

ω
ν(i+1)
j

∣∣∣ ≤ Cqλν(i+1), ∀i ∈ Z,

i ≥ r0 − 1 and

|H(t)| ≤
∞∑

i=0

∣∣∣
d∑

j=1

ω
ν(i+1)
j

∣∣∣ti+1 ≤ C

∞∑

i=0

qλν(i+1)ti+1 = C

∞∑

i=0

(qλνt)i+1.
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As a result, H(t) <∞, ∀t ∈ C with |t| < 1
qλν , whereas

1
qλν ≤ ρ ≤ 1

|ωj |
ν , ∀1 ≤ j ≤ d.

Bearing in mind that for any fixed ν ∈ N the function f(x) = xν is non-decreasing
on x ∈ [0,∞) ⊂ R, one concludes that qλ ≥ |ωj |. Therefore, the leading coefficient
ad := LC(PM (t)) =

d∏
j=1

(−ωj) ∈ Z \ {0} has modulus |ad| =
d∏

j=1

|ωj | ≤ qλd = |ad| ,

whereas |ωj | = qλ, ∀1 ≤ j ≤ d and M satisfies the Riemann Hypothesis Analogue
with respect to P1(Fq) as a module over G = Gal(Fq/Fq). �

In the case of a smooth irreducible projective curve X/Fq ⊂ Pn(Fq) of genus g,
defined over Fq, condition (ii) from Proposition 23 reduces to the celebrated Hasse
- Weil bound ∣∣∣

∣∣XΦr
q

∣∣− (qr + 1)
∣∣∣ ≤ 2g

√
qr ∀r ∈ N (5.1)

on the number
∣∣XΦr

q

∣∣ = |X(Fqr )| = |X ∩ Pn(Fqr )| of the Fqr -rational points of X.
The equivalence of the conditions (i) and (iii) from Proposition (23) is well known
and shown by Theorem V.2.3 and Lemma V.2.5 from Stichtenoth’s monograph [2].
The proof of the Riemann Hypothesis Analogue for X with respect to P1(Fq) from
[2] makes use of the bound

∣∣∣XΦ2r
q

∣∣∣ < q2r + 1 + (2g + 1)qr ∀r ∈ N, (5.2)

which is established in [2, Proposition V.2.6]. Bearing in mind that
∣∣∣P1(Fq)

Φ2r
q

∣∣∣ =
q2r + 1 > q2r, we note that (5.2) implies

∣∣∣XΦ2r
q

∣∣∣−
∣∣∣P1(Fq)

Φ2r
q

∣∣∣ < (2g + 1)
∣∣∣P1(Fq)

Φ2r
q

∣∣∣
1
2 ∀r ∈ N

and think of λ := logq
2g
√
LC(PX(t)) = logq

2g
√
qg = 1

2 as of the Hasse - Weil order

of X with respect to P1(Fq). That motivates the following

Definition 24. Let M and L be locally finite G = Gal(Fq/Fq)-modules. If
there exist constants ρ ∈ R≥0, C ∈ R>0, ν, ro ∈ N, such that

∣∣∣MΦνr
q

∣∣∣−
∣∣∣LΦνr

q

∣∣∣ ≤ C
∣∣∣LΦνr

q

∣∣∣
ρ

∀r ∈ N, r ≥ ro, (5.3)

M is said to be of finite Hasse - Weil order with respect to L.

The minimal ρ ∈ R≥0, subject to (5.3) for some C ∈ R>0, ν, ro ∈ N is called
the Hasse - Weil order of M with respect to L and denoted by ordG(M/L).

The following simple lemma collects some properties of the Hasse - Weil order
of locally finite G-modules.

Lemma 25. (i) If M , L are infinite locally finite G = Gal(Fq/Fq)-modules
and Mo ⊆M , Lo ⊆ L are G-submodules with at most finite complements M \Mo,
L \ Lo, then

ordG(M/L) = ordG(Mo/Lo).
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(ii) If ξ :M → L is a finite unramified covering of locally finite G = Gal(Fq/Fq)-
modules, then ordG(M/L) ≤ 1.

(iii) Let M be a locally finite G = Gal(Fq/Fq)-module such that ζM (t) =
PM (t)ζ

P1(Fq)
(t) for a polynomial PM (t) ∈ Z[t] of degPM (t) = d ∈ N with

LC(PM (t)) = ad and λ := logq
d
√
|ad|. If M satisfies the Riemann Hypothesis

Analogue with respect to P1(Fq), then ordG(M/P1(Fq)) ≤ λ.

Proof. (i) It suffices to show that if there exist C ∈ R>0, ν, r′ ∈ N with
∣∣∣MΦνr

q

∣∣∣ ≤
∣∣∣LΦνr

q

∣∣∣+ C
∣∣∣LΦνr

q

∣∣∣
ρ

∀r ∈ N, r ≥ r′, (5.4)

then there exist Co ∈ R>0, νo, r
′
o ∈ N with

∣∣∣MΦνor
q

o

∣∣∣ ≤
∣∣∣LΦνor

q
o

∣∣∣+ Co

∣∣∣LΦνor
q

o

∣∣∣
ρ

∀r ∈ N, r ≥ r′o (5.5)

and if there are C̃o ∈ R>0, ν̃o, r̃′o ∈ N with
∣∣∣∣M

Φν̃or
q

o

∣∣∣∣ ≤
∣∣∣∣L

Φν̃or
q

o

∣∣∣∣+ C̃o

∣∣∣∣L
Φν̃or

q
o

∣∣∣∣
ρ

∀r ∈ N, r ≥ r̃′o, (5.6)

then there are C̃ ∈ R>0, ν̃, r̃′ ∈ N with
∣∣∣MΦν̃r

q

∣∣∣ ≤
∣∣∣LΦν̃r

q

∣∣∣+ C̃
∣∣∣LΦν̃r

q

∣∣∣
ρ

∀r ∈ N, r ≥ r̃′. (5.7)

To this end, let us denote m := |M \Mo|, s := |L \ Lo| ∈ Z≥0 and observe that
∣∣∣LΦνor

q

∣∣∣ =
∣∣∣LΦνor

q
o

∣∣∣+
∣∣∣LΦνor

q \ Lo

∣∣∣ ≤
∣∣∣LΦνor

q
o

∣∣∣+ s,

∣∣∣MΦν̃r
q

∣∣∣ =
∣∣∣∣M

Φν̃r
q

o

∣∣∣∣+
∣∣∣MΦνr

q \Mo

∣∣∣ ≤
∣∣∣∣M

Φν̃r
q

o

∣∣∣∣+m, ∀r ∈ N.

Since Lo is an infinite locally finite G-module, the map

degOrbG : Lo → N, x 7→ degOrbG(x)

takes infinitely many values and there exists σo ∈ N with σo ≥ max (s, ρ
√
s) from

the image of degOrbG : Lo → N. In other words, the number Bσo
(Lo) ≥ 1 of the

G-orbits on Lo of degree σo is positive. If νo := νσo ∈ N, then by (3.2) one has
∣∣∣LΦνor

q
o

∣∣∣ =
∑

k/νor

kBk(Lo) ≥ σoBσo
(Lo) ≥ σo ≥ max

(
s, ρ
√
s
)
∀r ∈ N.

Similarly, there exists σ ∈ N with σ > ρ
√
m and Bσ(Lo) ≥ 1. Thus, for ν̃ := ν̃oσ ∈ N

there holds
∣∣∣LΦν̃r

q
o

∣∣∣ =
∑

k/ν̃r

kBk(Lo) ≥ σBσ(Lo) ≥ σ ≥ ρ
√
m ∀r ∈ N.
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Now (5.4) implies

∣∣∣MΦνor
q

o

∣∣∣ ≤
∣∣∣MΦνor

q

∣∣∣ ≤
∣∣∣LΦνor

q

∣∣∣+ C
∣∣∣LΦνor

q

∣∣∣
ρ

≤
∣∣∣LΦνor

q
o

∣∣∣+ s+ C
(∣∣∣LΦνor

q
o

∣∣∣+ s
)ρ

≤
∣∣∣LΦνor

q
o

∣∣∣+
∣∣∣LΦνor

q
o

∣∣∣
ρ

+ C
(
2
∣∣∣LΦνor

q
o

∣∣∣
)ρ

=
∣∣∣LΦνor

q
o

∣∣∣+ (2ρC + 1)
∣∣∣LΦνor

q
o

∣∣∣
ρ

∀r ∈ N, r ≥ r′

σo
, which is equivalent to (5.5) with Co = 2ρC + 1 and some r′o ∈ N,

r′o ≥ r′

σo
. Similarly, (5.6) yields

∣∣∣MΦν̃r
q

∣∣∣ ≤
∣∣∣∣M

Φν̃r
q

o

∣∣∣∣+m ≤
∣∣∣∣L

Φν̃r
q

o

∣∣∣∣+ C̃o

∣∣∣∣L
Φν̃r

q
o

∣∣∣∣
ρ

+

∣∣∣∣L
Φν̃r

q
o

∣∣∣∣
ρ

=

∣∣∣∣L
Φν̃r

q
o

∣∣∣∣+ (C̃o + 1)

∣∣∣∣L
Φν̃r

q
o

∣∣∣∣
ρ

≤
∣∣∣LΦν̃r

q

∣∣∣+ (C̃o + 1)
∣∣∣LΦν̃r

q

∣∣∣
ρ

∀r ∈ N, r ≥ r̃′o
σ , and hence (5.7) holds with C̃ := C̃o + 1 and some r̃′ ∈ N, r̃′ ≥ r̃′o

σ .

(ii) The G-equivariance of ξ implies that ξ(MΦr
q ) ⊆ LΦr

q , ∀r ∈ N. The cardi-
nalities of the fibres of ξ|

M
Φr
q do not exceed k := deg ξ, so that

∣∣∣LΦr
q

∣∣∣ ≥
∣∣∣ξ(MΦr

q )
∣∣∣ ≥

∣∣∣MΦr
q

∣∣∣
k

and ∣∣∣MΦr
q

∣∣∣−
∣∣∣LΦr

q

∣∣∣ ≤ (k − 1)
∣∣∣LΦr

q

∣∣∣ .

That suffices for ordG(M/L) ≤ 1.

(iii) By Proposition 23, if M satisfies the Riemann Hypothesis Analogue with
respect to P1(Fq) as a G-module, then

∣∣∣MΦr
q

∣∣∣ ≤ qr + 1 + dqλr =
∣∣∣P1(Fq)

Φr
q

∣∣∣+ d
(∣∣∣P1(Fq)

Φr
q

∣∣∣− 1
)λ

<
∣∣∣P1(Fq)

Φr
q

∣∣∣+ d
∣∣∣P1(Fq)

Φr
q

∣∣∣
λ

∀r ∈ N,

so that ordG(M/P1(Fq)) ≤ λ. �

Definition 26. LetM and L be locally finite G = Gal(Fq/Fq)-modules and H
be a finite fixed-point free subgroup of AutG(M). If there exist constants ρ ∈ R≥0,
C ∈ R>0, ν, ro ∈ N, such that

∣∣∣MhΦνr
q

∣∣∣−
∣∣∣LΦνr

q

∣∣∣ ≤ C
∣∣∣LΦνr

q

∣∣∣
ρ

for ∀r ∈ N, r ≥ ro and ∀h ∈ H, (5.8)

then M is said to be of finite Hasse - Weil H-order with respect to L.

The minimal ρ ∈ R≥0, subject to (5.8) for some C ∈ R>0, ν, ro ∈ N is called
the Hasse - Weil H-order of M with respect to L and denoted by ordHG (M/L).
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Proposition 27. (i) If M is an infinite locally finite G = Gal(Fq/Fq)-module,
H < AutG(M) is a finite fixed-point free subgroup and Mo ⊂ M is an H × G-
submodule of M with |M \Mo| <∞, then

ordHG (M/OrbH(M)) = ordHG (Mo/OrbH(Mo)).

(ii) If M is a locally finite G = Gal(Fq/Fq)-module and H < AutG(M) is a
finite fixed-point free subgroup, then ordHG (M/OrbH(M)) ≤ 1.

(iii) Let X/Fq ⊂ Pn(Fq) be a smooth irreducible curve of genus g ≥ 1 and H
be a finite fixed-point free subgroup of AutG(X). Then ordHG (X/P1(Fq)) ≤ 1

2 .

Proof. (i) As in the proof of Lemma 25 (i), one has to check that if there exist
ρ ∈ R≥0, C ∈ R>0, ν, r′ ∈ N with

∣∣∣MhΦνr
q

∣∣∣ ≤
∣∣∣OrbH(M)Φ

νr
q

∣∣∣+ C
∣∣∣OrbH(M)Φ

νr
q

∣∣∣
ρ

∀h ∈ H, ∀r ∈ N, r ≥ r′, (5.9)

then there exist Co ∈ R>0, νo, r
′
o ∈ N with

∣∣∣MhΦνor
q

o

∣∣∣≤
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣+Co

∣∣∣OrbH(Mo)
Φνor

q

∣∣∣
ρ

∀h ∈ H, ∀r ∈ N, r ≥ r′o (5.10)

and if there are C̃o ∈ R>0, ν̃o, r̃o ∈ N with

∣∣∣∣M
hΦν̃or

q
o

∣∣∣∣ ≤
∣∣∣OrbH(Mo)

Φν̃or
q

∣∣∣+C̃o

∣∣∣OrbH(Mo)
Φν̃or

q

∣∣∣
ρ

∀h ∈H, ∀r ∈N, r ≥ r̃o (5.11)

then there are C̃ ∈ R>0, ν̃, r̃ ∈ N with

∣∣∣MhΦν̃r
q

∣∣∣≤
∣∣∣OrbH(M)Φ

ν̃r
q

∣∣∣+C̃
∣∣∣OrbH(M)Φ

ν̃r
q

∣∣∣
ρ

∀h ∈ H, ∀r ∈ N, r ≥ r̃. (5.12)

Note that if |M \Mo| = m, then OrbH(M) \ OrbH(Mo) = OrbH(M \Mo) is of
cardinality |OrbH(M \Mo)| = m

|H| and OrbH(Mo) is an infinite locally finite G-

module. As in the proof of Lemma 25 (i), one has

∣∣∣OrbH(M)Φ
νor
q

∣∣∣ ≤
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣+ m

|H| and
∣∣∣MhΦν̃r

q

∣∣∣ ≤
∣∣∣∣M

hΦν̃r
q

o

∣∣∣∣+m ∀r ∈ N.

Further, there exist νo := νσo and ν̃ := ν̃oσ with σo, σ ∈ N, such that

∣∣∣OrbH(Mo)
Φνor

q

∣∣∣ ≥ σo ≥ max

(
m

|H| ,
ρ

√
m

|H|

)
,

respectively, ∣∣∣OrbH(Mo)
Φν̃r

q

∣∣∣ ≥ σ ≥ ρ
√
m ∀r ∈ N.
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Then from
∣∣∣MhΦνor

q
o

∣∣∣ ≤
∣∣∣MhΦνor

q

∣∣∣ ≤
∣∣∣OrbH(M)Φ

νor
q

∣∣∣+ C
∣∣∣OrbH(M)Φ

νor
q

∣∣∣
ρ

≤
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣+ m

|H| + C

(∣∣∣OrbH(Mo)
Φνor

q

∣∣∣+ m

|H|

)ρ

≤
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣+
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣
ρ

+ C
(
2
∣∣∣OrbH(Mo)

Φνor
q

∣∣∣
)ρ

,

∀r ∈ N, r ≥ r′

σo
, we deduce (5.10) with Co := 2ρC + 1, and from

∣∣∣MhΦν̃r
q

∣∣∣ ≤
∣∣∣∣M

hΦν̃r
q

o

∣∣∣∣+m

≤
∣∣∣OrbH(Mo)

Φν̃r
q

∣∣∣+ C̃o

∣∣∣OrbH(Mo)
Φν̃r

q

∣∣∣
ρ

+
∣∣∣OrbH(Mo)

Φν̃r
q

∣∣∣
ρ

≤
∣∣∣OrbH(M)Φ

ν̃r
q

∣∣∣+ (C̃o + 1)
∣∣∣OrbH(M)Φ

ν̃r
q

∣∣∣
ρ

,

∀r ∈ N, r ≥ r̃o
σ , we obtain (5.12) with C̃ := C̃o + 1.

(ii) For any h ∈ H and r ∈ N the map ξH : M → OrbH(M) is an H-Galois

covering of locally finite modules over G(hΦr
q) = 〈̂hΦr

q〉 by Proposition 20. If

y ∈ MhΦr
q , then the G(hΦr

q)-equivariance of ξH implies Φr
qξH(y) = ξH(Φ

r
qy) =

ξH(hΦ
r
qy) = ξH(y), so that ξH(y) ∈ OrbH(M)Φ

r
q and ξH(M

hΦr
q ) ⊆ OrbH(M)Φ

r
q .

Bearing in mind that the restriction ξH :MhΦr
q → OrbH(M)Φ

r
q has fibres of cardi-

nality ≤ |H|, one concludes that
∣∣∣OrbH(M)Φ

r
q

∣∣∣ ≥
∣∣∣ξH(MhΦr

q )
∣∣∣ ≥

∣∣∣MhΦr
q

∣∣∣
|H| . Therefore

∣∣∣MhΦr
q

∣∣∣−
∣∣∣OrbH(M)Φ

r
q

∣∣∣ ≤ (|H| − 1)
∣∣∣OrbH(M)Φ

r
q

∣∣∣ ,

∀h ∈ H, ∀r ∈ N and ordHG (M/OrbH(M)) ≤ 1.

(iii) The argument is a slight modification of Grothedieck’s proof of the Hasse -
Weil Theorem (see Theorem 3.6 from Mustaţă’s book [8]). Namely, let S := X×X
be the Cartesian square of X, ∆ := {(x, x) ∈ S |x ∈ X} be the diagonal of S,
L1 := X × {x2} be a generic fibre of the second canonical projection pr2 : S → X,
pr2(x1, x2) = x2 and L2 := {x1} × X be a generic fibre of the first canonical
projection pr1 : S → X, pr1(x1, x2) = x1. For arbitrary h ∈ H and r ∈ N put
ϕ := hΦr

q and denote by Γ(ϕ) := {(x, ϕ(x)) |x ∈ X} the graph of ϕ : X → X. Then
the intersection number Γ(ϕ).∆ = |Xϕ| equals the number of the ϕ-rational points
of X. One checks immediately that L2

1 = L2
2 = 0, L1.L2 = 1, ∆.L1 = ∆.L2 = 1,

Γ(ϕ).L2 = 1 and Γ(ϕ).L1 = Γ(Φr
q).L1 = qr, as far as the equation hΦr

q(x) = x2

is equivalent to Φr
q(x) = h−1(x2) and has qr solutions on a smooth irreducible

projective curve X, defined over Fq. The canonical class KS of S is numerically
equivalent to (2g − 2)(L1 + L2) and the application of the Adjunction Formula to
∆ and Γ(ϕ) provides

2g − 2 = ∆.(∆ +KS) = ∆2 + 2(2g − 2),
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2g − 2 = Γ(ϕ).(Γ(ϕ) +KS) = Γ(ϕ)2 + (qr + 1)(2g − 2),

whereas ∆2 = −(2g − 2), Γ(ϕ)2 = −qr(2g − 2). The Hodge Index Theorem on
S = X × X asserts that if a divisor E ⊂ S has vanishing intersection number
E.H = 0 with an ample divisor H ⊂ S then E has non-positive self-intersection
E2 ≤ 0. For an arbitrary divisor D ⊂ S let us put E := D− (D.L1)L2− (D.L2)L1,
H := L1 + L2 and note that H is an ample divisor on S with E.H = 0. Therefore

0 ≥ E2 = D2 − 2(D.L1)(D.L2). (5.13)

IfD := a∆+bΓ(ϕ) for some a, b ∈ Z, b 6= 0 and f(z) := gz2+(qr+1−|Xϕ|)z+gqr ∈
Z[z], then (5.13) is equivalent to f

(
a
b

)
≥ 0, ∀a

b ∈ Q and holds exactly when the
discriminant D(f) = (qr + 1− |Xϕ|)2 − 4qrg2 ≤ 0. Thus,

−2gq r
2 ≤ |Xϕ| − (qr + 1) ≤ 2gq

r
2 ∀r ∈ N

and, in particular,

∣∣∣XhΦ2r
q

∣∣∣ ≤ (q2r + 1) + 2gqr =
∣∣∣P1(Fq)

Φ2r
q

∣∣∣+ 2g
(∣∣∣P1(Fq)

Φ2r
q

∣∣∣− 1
) 1

2

≤
∣∣∣P1(Fq)

Φ2r
q

∣∣∣+ 2g
∣∣∣P1(Fq)

Φ2r
q

∣∣∣
1
2 ∀r ∈ N.

That establishes the inequality ordHG (X/P1(Fq)) ≤ 1
2 . �

The following simple lemma is crucial for the proof of the main Theorem 29.

Lemma 28. Let ξH : N → L be an H-Galois covering of infinite locally
finite modules over G = Gal(Fq/Fq) for some finite fixed-point free subgroup H <
AutG(N). Then ∑

h∈H

∣∣NhΦq
∣∣ = |H|

∣∣LΦq
∣∣ .

Proof. The lack of fixed points of H implies that Nh1Φq ∩ Nh2Φq = ∅ for all
h1, h2 ∈ H, h1 6= h2. It suffices to check that ξ

−1
H (LΦq ) =

∐
h∈H NhΦq , in order to

conclude that
|H||LΦq | =

∣∣ξ−1
H (LΦq )

∣∣ =
∑

h∈H

∣∣NhΦq
∣∣ .

If y ∈ ξ−1
H (LΦq ), then ξH(y) = ΦqξH(y) = ξH(Φq(y)) implies the existence of

h ∈ H with h(y) = Φq(y). Therefore y ∈ Nh−1Φq and ξ−1
H (LΦq ) ⊆∐

h∈H NhΦq .

Conversely, for any y ∈ NhΦq one has h−1(y) = Φq(y), whereas

ξH(y) = ξH(h
−1(y)) = ξH(Φq(y)) = ΦqξH(y).

That justifies NhΦq ⊆ ξ−1
H (LΦq ) and ξ−1

H (LΦq ) =
∐

h∈H NhΦq . �

Here is the main result of the article.
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Theorem 29. Let M be an infinite locally finite module over G = Gal(Fq/Fq)

with closed stabilizers and a polynomial ζ-quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∑

j=0

ajt
j ∈

Z[t] of degPM (t) = d ∈ N with leading coefficient LC(PM (t)) = ad ∈ Z \ {0} and
λ := logq

d
√
|ad| ∈ R>0. Suppose that there exist m ∈ N and Gm = Gal(Fq/Fqm)-

submodules Mo ⊆ M , Lo ⊆ P1(Fq) with |M \Mo| < ∞,
∣∣P1(Fq) \ Lo

∣∣ < ∞, which
are related by a finite unramified covering ξ : Mo → Lo of Gm-modules with a
Galois closure (N,H,H1), defined over Fqm .

(i) If λ ≥ 1, then M satisfies the Riemann Hypothesis Analogue with respect
to the projective line P1(Fq) as a G-module.

(ii) If

max
(
ordG(M/P1(Fq)), ord

H
Gm

(N/P1(Fq)
)
≤ λ < 1,

then M satisfies the Riemann Hypothesis Analogue with respect to P1(Fq) as a
G-module.

Proof. It suffices to prove that if

max(ordG(M/P1(Fq)), ord
H
Gm

(N/P1(Fq)) ≤ λ, (5.14)

then M satisfies the Riemann Hypothesis Analogue with respect to P1(Fq) as a
G-module. Namely, if λ ≥ 1, then by Lemma 25 (i), (ii) one has

ordG(M/P1(Fq)) = ordG(Mo/Lo) ≤ 1 ≤ λ,

while Proposition 27 (i), (ii) guarantee that

ordHGm
(N/P1(Fq)) = ordHGm

(N/Lo) ≤ 1 ≤ λ,

whence (5.14) holds.

Since f(x) = ax is an increasing function on x ∈ R for a ∈ N, a ≥ 2, the
assumption ordG(M/P1(Fq)) ≤ λ implies the existence of constants C1 ∈ R>0,
ν1, r1 ∈ N, such that

∣∣∣MΦν1r
q

∣∣∣≤(qν1r+1)+C1(q
ν1r+1)λ<(qν1r+1)+C1(2q

ν1r)λ=(qν1r+1)+(2λC1)q
λν1r,

∀r ∈ N, r ≥ r1. Similarly, ord
H
Gm

(N/P1(Fq)) ≤ λ provides the presence of constants
C2 ∈ R>0, ν2, r2 ∈ N with

∣∣∣NhΦν2r
q

∣∣∣ ≤ (qν2r + 1) + C2(q
ν2r + 1)λ < (qν2r + 1) + (2λC2)q

λν2r,

∀r ∈ N, r ≥ r2. For an arbitrary common multiple ν ∈ N of ν1 and ν2, one has

∣∣∣MΦνr
q

∣∣∣ < (qνr + 1) + (2λC1)q
λνr ∀r ∈ N, r ≥ r1ν1

ν
(5.15)
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and ∣∣∣NhΦνr
q

∣∣∣ < (qνr + 1) + (2λC2)q
λνr ∀r ∈ N, r ≥ r2ν2

ν
.

If
∣∣P1(Fq) \ Lo

∣∣ = s, then the decomposition P1(Fq)
Φνr

q = L
Φνr

q
o

∐
(P1(Fq)

Φνr
q \ Lo)

into a disjoint union provides the inequality qνr + 1 ≤
∣∣∣LΦνr

q
o

∣∣∣+ s, whereas

∣∣∣NhΦνr
q

∣∣∣ <
∣∣∣LΦνr

q
o

∣∣∣+ s+ (2λC2)q
λνr ≤

∣∣∣LΦνr
q

o

∣∣∣+ (2λC2 + 1)qλνr, (5.16)

∀r ∈ N, r ≥ ro and a fixed natural number ro ≥ max
(

r2ν2

ν ,
logq(s)

λν

)
. By Proposi-

tion 23, it suffices to show the existence of constants C ∈ R>0, ro ∈ N with
∣∣∣MΦνr

q

∣∣∣ ≥ (qνr + 1)− Cqλνr ∀r ∈ N, r ≥ ro (5.17)

and to combine with (5.15), in order to conclude that M satisfies the Riemann
Hypothesis Analogue with respect to P1(Fq) as a module over G = Gal(Fq/Fq).

To this end, note that Lemma 28 implies

∑

h∈H

∣∣∣NhΦνr
q

∣∣∣ = |H|
∣∣∣LΦνr

q
o

∣∣∣ and
∑

h∈H1

∣∣∣NhΦνr
q

∣∣∣ = |H1|
∣∣∣MΦνr

q
o

∣∣∣ ∀r ∈ N.

Putting together with (5.16), one obtains that

|H1|
∣∣∣MΦνr

q
o

∣∣∣ =
∑

h∈H1

∣∣∣NhΦνr
q

∣∣∣+ |H|
∣∣∣LΦνr

q
o

∣∣∣−
∑

h∈H

∣∣∣NhΦνr
q

∣∣∣

= |H|
∣∣∣LΦνr

q
o

∣∣∣−
∑

h∈H\H1

∣∣∣NhΦνr
q

∣∣∣

≥ |H|
∣∣∣LΦνr

q
o

∣∣∣− (|H| − |H1|)
∣∣∣LΦνr

q
o

∣∣∣− (|H| − |H1|)(2λC2 + 1)qλνr

= |H1|
∣∣∣LΦνr

q
o

∣∣∣− (|H| − |H1|)(2λC2 + 1)qλνr ∀r ∈ N, r ≥ ro.

Denoting C3 :=
(
|H|−|H1|
|H1|

)
(2λC2 + 1) ∈ R≥0 and dividing by |H1|, one obtains

∣∣∣MΦνr
q

o

∣∣∣ ≥
∣∣∣LΦνr

q
o

∣∣∣− C3q
λνr ∀r ∈ N, r ≥ ro.

Bearing in mind
∣∣∣LΦνr

q
o

∣∣∣ ≥ (qνr + 1) − s ≥ (qνr + 1) − qλνr for r ≥ logq(s)

λν , one

concludes that
∣∣∣MΦνr

q
o

∣∣∣ ≥ (qνr + 1)− (C3 + 1)qλνr ∀r ∈ N, r ≥ ro.

Combining with
∣∣∣MΦνr

q

∣∣∣ ≥
∣∣∣MΦνr

q
o

∣∣∣, one verifies (5.17) with C := C3 + 1 and con-

cludes the proof of the theorem. �
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According to Proposition 22, Lemma 25 (iv) and Proposition 27 (iii), any
smooth irreducible curve X/Fq ⊂ Pn(Fq) of genus g ≥ 1 satisfies the assumptions
of Theorem 29 with λ = 1

2 as a locally finite G = Gal(Fq/Fq)-module. Here is an
example of a locally finite G-module M , which is subject to the assumptions of
Theorem 29 with λ = 0. Therefore M satisfies the Riemann Hypothesis Analogue
with respect to P1(Fq) as a G-module and is not isomorphic (as a G-module) to a
smooth irreducible projective curve, defined over Fq.

Proposition 30. For any finite field Fq and ∀x1 ∈ Fq2 \ Fq the quasi-affine
curve M := Fq\{x1, x

q
1}, defined over Fq2 is a locally finite G = Gal(Fq/Fq)-module

with

ζM (t) =
(1− t)(1 + t)

1− qt
, (5.18)

which satisfies the assumptions of Theorem 29. Thus, M is subject to the Riemann
Hypothesis Analogue with respect to P1(Fq) as a module over G and M is not
isomorphic (as a G-module) to a smooth irreducible projective curve X/Fq ⊂ Pn(Fq)
of genus g ≥ 1, defined over Fq.

Proof. The identical inclusion Id : M →֒ P1(Fq) = Fq ∪ {∞} is a finite un-
ramified covering of G-modules of degree 1 over its image. It has a Galois closure
(M, {IdM}, {IdM}). If ζM (t) is given by (5.18) then

PM (t) :=
ζM (t)

ζ
P1(Fq)

(t)
= (1− t)2(1 + t) ∈ Z[t]

is a polynomial of degPM (t) = 3 with a3 = LC(PM (t)) = 1, so that λ :=
logq

3
√
|a3| = 0. Since M is a G-submodule of P1(Fq) with

∣∣P1(Fq) \M
∣∣ = 3 <∞,

the relative order ordG(M/P1(Fq)) = ordG(M/M) = 0 = λ by Lemma 25 (i) and
M is subject to the assumptions of Theorem 29. If M were isomorphic to a smooth
irreducible curve X/Fq ⊂ Pn(Fq) as a module over G then PM (t) = PX(t) ∈ Z[t]
would have an even degree degPM (t) = 2g ∈ N and λ := logq

2g
√
|LC(PM (t))| = 1

2 ,
which contradicts (5.18).

Towards the calculation of ζM (t), let us note that Fq is a locally finite G =
Gal(Fq/Fq)-module and OrbG(x1) = {x1, x

q
1}, in order to conclude that M is a

locally finite G-module. Moreover, x1, x
q
1 ∈ Fq

Φ2r
q = Fq2r and x1, x

q
1 6∈ Fq

Φ2r+1
q =

Fq2r+1 for ∀r ∈ Z≥0. Therefore
∣∣∣MΦ2r

q

∣∣∣ =
∣∣∣∣Fq

Φ2r
q

∣∣∣∣−2 = q2r−2, ∀r ∈ N,
∣∣∣MΦ2r+1

q

∣∣∣ =
∣∣∣∣Fq

Φ2r+1
q

∣∣∣∣ = q2r+1, ∀r ∈ Z≥0, whereas

log ζM (t) =
∞∑

r=1

∣∣∣MΦr
q

∣∣∣ t
r

r
=

∞∑

r=1

(q2r − 2)
t2r

2r
+

∞∑

r=0

q2r+1 t2r+1

2r + 1

=
∞∑

r=1

qr
tr

r
−

∞∑

r=1

t2r

r
= log

(
1

1− qt

)
− log

(
1

1− t2

)
= log

(
1− t2

1− qt

)
,
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by (3.1). That suffices for(5.18). �

The next corollary establishes that the Riemann Hypothesis Analogue with
respect to the projective line P1(Fq) for a locally finite G = Gal(Fq/Fq)-module M

implies a functional equation for the polynomial ζ-quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

∈ Z[t].

Corollary 31. Let M be an infinite locally finite module over G = Gal(Fq/Fq),
which satisfies the Riemann Hypothesis Analogue with respect to P1(Fq). Then

the polynomial ζ-quotient PM (t) = ζM (t)
ζ
P1(Fq)(t)

=
d∑

j=0

ajt
j ∈ Z[t] of M satisfies the

functional equation

PM (t) = sign(ad)PM

(
1

q2λt

)
qλdtd for λ := logq

d
√
|ad|.

Proof. If PM (t) =
d∏

j=1

(1 − qλeiϕj t) for some ϕj ∈ [0, 2π) then the leading

coefficient LC(PM (t)) = ad = (−1)dqλde
i

(
d∑

j=1
ϕj

)

, whereas

PM

(
1

q2λt

)
=

ad
q2λdtd

d∏

j=1

(1− qλe−iϕj t).

The polynomial PM (t) ∈ Z[t] has real coefficients and is invariant under the complex
conjugation. Thus, the sets

{
eiϕj | 1 ≤ j ≤ d

}
=

{
e−iϕj | 1 ≤ j ≤ d

}
coincide when

counted with multiplicities and PM (t) =
d∏

j=1

(1− qλe−iϕj t). That allows to express

PM

(
1

q2λt

)
=

ad
q2λd

PM (t)t−d.

Making use of |ad| = qλd and ad = sign(ad) |ad|, one concludes that

PM

(
1

q2λt

)
=
sign(ad)

qλd
PM (t)t−d. �
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