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Ha ocnome npeoSpasosanua Kpamma-Kpeiina nocrpoen npocroi anropu¢m, KoTophIit
CBOAMT 3a/layy O Pa3JIOKECHNAX N0 NMPOU3BEACHNUAM PelleHnii ABYX PaANaNbHLIX ypaBHeHUH -
llpeaunrepa, rae y OMHOrO M3 HUX CHEKTP UUCTO HENPEPHLIBHMIA, & Y ApPyroro ecTb U OHO
cobCcTBEeHOE UNCNO K TpocTellieMy, Korna. y oboux ypaBHernit CHEKTP YMCTO HEnpepPHLIBHLIIA.

Evgeni Khristov, Jordan Mishev. ON AN APPLICATION OF THE CRUM-KREIN TRANS-
FORMATIONS )

Using the Crum-Krein transformations, a simple algorithm is constructed, which reduces the
problem of expansion in products of solutions of two radial Schradinger equations when one of
them has purely continuous spectrum and the other one has in addition one descreet eigenvalue
to the simplest case when the both equations have purely continuous spectra.

0. INTRODUCTION

In this paper it is shown how one can modify the method of transformation
of expansiens in products of solutions of two Schrodinger equations on semi-axis
proposed in [4] to the case of different spectra. For brevity we consider in detail

* This work is partially supported under contract MM 428 /94 by the Ministry of Education
and Science. i
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the case when one of the expansion formulas corresponds to the case when the both
Schrodinger equations have purely continuous spectrum and the second expansion
formula corresponds to the case when one of the Schrodinger equation has purely
continuous spectrum and the second one has one discrete eigenvalue. The genera}
case differs from this one only by some technical calculations similar to that jp
[1, 4] and we discuss it briefly in the end of this paper. The notations follow those
in [2, 4).

A. In this section ‘we recall some results which are basic in our constructions,
The next theorem is well known.

Theorem 0.1 [1]. Consider the equation
(0‘1) ¥+ (A —v(z))y=0, a<z<y, I:E%
and let z(z) be its solution for A= )y, 2(x) # d, a <z <b. Then the function

W(z(z), y(z, )

(0.2) yi(z,A) = )
satisfies the equation
(0.3) ¥+ A —un@)n =0, v(z)=1(z) - 2 i 5 In 2(z).

© The transformation inverse to (0.2) has the form

_ W(n(z),n(z, X)) -
y(z,A) = Go- () 21(z) = m,

where z1(z) is the solution of equation (0.3) for A = X, W(f,9) = fg' — f'yg.

The transformations of products of solutions of two equations of the type (0.1)
are based on the following

Theorem 0.2. Let us consider the two equations
d2
(0.4) , d_ﬁy(n) + (k2= o™ (@)™ =0, a<z<b n=1,2
and let construct the equations

() | 2 () (m) (") _ o (n ?
7+ P =0 ) =00 2 )

where z(“)(:c) satisfy the conditions of Theorem 0.1. Then we have the following
relations:

W(Z(), ¥ (2, 0) = (o = )= (Z()Yi(z, V),

W(Za(z), Y2, ) = (o = V™ (Z1(2)¥ (=, X)),
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where
Y(z,2) =y (2, )Pz, A), Z(z) = :V(2)2D(a),

Yi(z,A) = y(ll)(;c, ,\)yiz)(;c, A), Zi(z)= zgl)(x)zgz)(x).

The proof is a direct consequence of Theorem 0.1 and the well-known identity

1 d .
N ndz I W™ (), 2" (z, ),

n=1,2

(0.5) WY (z,A), Z(z,n) =

which follows directly from (0.4) with k2 = A, p.
B. Now let us consider the boundary value problems

d2
(0.6) my(") + (k2= o™ (2))y™ =0, 0<z < 00, n=1,2,

(0.7) ~ y™(0,k) =0,

where the real-valued potentials (™) € X1, i.e.
Tl = [+ 2@l ds <o
0

Let denote by go(")(:c, k) and f(")(z, k), respectively, the regular and the Jost’s
solutions of (0.6) defined by the conditions

o™(0,k) =0, ©™'(0,k) =1,
lim f™)(z, k)exp(—ikz) =1, Imk >0,
R ge el
and let denote by

FDk) = £, k) = W™, ™)
the Jost’s functions of the boundary value problem (0.6)-(0.7). We put

o(v\™) = {knj = iknj: Tnj >0, Fkn;)=0,7=1,2,.,N,}
for the set of zeros of f)(k) in the upper-half plane Imk > 0 and put
c=0,Uoy, o' =01Noy, o =a\o"
Recall that the square A, ; = Icfh j determines the discreet spectra of the problem

(0.6)-(0.7). We suppose for simplicity that f(*)(0) # 0, n = 1,2. Denote by
#0(v(")) the number of elements. of o(v(™) and let

QN, M) = {(vV, vy (™ e Xy, #a(v(l)) =N, #o(v®) = M}.
Denote by .
®(z,k) = ¢V (z, k)pP (2, k), F(a, k)= fO(z, k) [z, k)
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the products of regular solutions and the Jost’s solutions of (0.6), respectively, ang
let

F(k) = FO (k) FO (k)
be the product of Jost’s functions of the boundary problem (0.6)-(0.7).
Introduce the system of functions

{®) : ®(a,k), k €(0,00)U0; &;(z)=d(z,kj), kj € 0",

and
{F}: F(z,k), k€ (0,00)Uc; Fj(zx)=F(z,k;), k; € o”.
Next, putting
F(k) = fi(k)f2(k),
we construct the system {F} in the following way: if k € (0,00), let us put

F(z, k) = —%k‘lm{F(z, EYF~1(k)};

if kn ; € o', then let put
Foj(2) = an jF (2, kns);  an; = 4hkn;F 7 (kn ),
and to each k; € o' attach the pair of functions '
Fin(z) = b (F(z, k) +di F(z, k7)), Fj2(2) = b F (2, k),
where b; = 8k; F'~1(k;), dj = k7 — F(k;)(3F(k;))~".

. The next two theorems are particular cases of the general expansion formulas
listed in Theorem 4.1 bellow.

Theorem 0.3 [2]. Let (v(1), v(?)) € Q(0,0), then for any absolutely continuous
function f(z) € L}(0,00) we have the ezpansions

(08) fz)=— / Pz, k)(f, ®'(k)) dk,
(0.9) f(z) = / &'(z, k)(f, F(k)) dk.
0 .

Moreover, if ’
f@yety=1ret': [ f@ds=o0),
0
then

(0.10) f(z) = /ﬁ"(:c, k)(f, ®(k)) dk. -
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Now let us consider together with (0.6)-(0.7) the problem

d n n n
(0.11) et o (B2 = oM (@)yP =0, 0<z <00, n=1,2,

(0.12) y5(0, k) = 0.

Theorem 0.4 [2]. Let (vg ), 022)) € Q(1,0), then for.any absolutely continuous
function h(z) € L'(0,00) we have the ezpansions

(0.13) ] 22, B)(h, @y(k)) dk — F(3(z, ky 1) (h, ®(k1 1)),
0 .

(0.14) h(z) = / oz, k)(f, Fz(k))dlc &, (xz, k1,1)(h, F(z)).

Moreover, if h(z) € L}, then

(0.15) h(z) =/Fé(x,k)(f,¢z(k))dk+F(2)( z)(h, @2(k1,1)),

where the systems of functions {Fy(z,k)} and {®2(x,k)} are defined as above.

We need also the following assertion, which is a direct consequence of the
relation (0.5).

Theorem 0.5 {2]. Let (vgl),vgz)) € Q(1,0). Then for the systems {Fa(z, k)}
and {®2(z, k)} the following biorthogonality relations hold:

(®a(k11), F) = ~(@y(k11), F2) =1, iy € o(vV),
(0.16) (Fa(k), ®)(k11)) =0, k€ (0,00),
(F, @(k)) = —(@a2(k), X)) = 0.

C. Let a; > 0 and k; = ir;, 71 > 0. In [3] the next theorem is proved.

Theorem 0.6. Let (v(1),v) € Q(0,0) and let o) (z, k1) be the regular
solution of (0.12) for n = 1. Then for the potentials

d2
(0.17) - vgl)(l‘) :v(l)(fc)—2mlnl(l)(al,kl§x): ng)(ﬂf) = v(Z)(l,)’
where \
(0.18) 1INy, kysz) =1+ / [pD(s, k1)) ds,
0
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we have (vgl),v22)) € 2(1,0). The correspondmg eigenfunction of (0.11)-(0.12) for
n=11s

oV (x, k1) = oD(z, k) (I (ay, k15 2)) 7Y, ”9051)”23 =a.
Conversely, let (vgl),v;)) € 1,0) end go( )(a:,lcl) be the eigenfunction of the
problem (0.11)~(0.12) for n = 1 such that (@S (|72 = 0y. If

‘ d?
(0.19) v(z) = gl)(z)-2d—w—21nlgl)(al,k1;x),
(0.20) v (z) = o{P(z),

. o
where Igl)(al, ki;e) = '/[gogl)(s,lcl)]2 ds, then (v(¥) v(?) € Q(0,0) and the reg-

T
ular solution of (0.6) for n =1 is given by the formula
e Dz, k1) = ¢ (2, k) (15 (r, ki)

In Sections 1 and 2 we construct operators connecting the functions F(z, k),

®(z, k) with the systems {F,}, {®,}, where the potentials v(*)(z) and vg")(x) are
related as in Theorem 0.6. The main steps of the transformation from the ex-
‘pansions, listed in Theorem 0.3, to the expansions of Theorem 0.4 are exposed in
Section 3.

1. OPERATORS S(® AND $(9

Let us denote by ygn)(z) = gog")(z,kl) the regular solution of (0.11), where
k1 = k1,1 1s the eigenvalue of the problem (0.11)-(0.12) for n = 1. Recall that the
transformation [1, 3]

Wy (2), 3" (2, k))

' (n)(. By —
(1L.1) Y (z,k) = , k# kb,
(K} — k)5 (2) -

gives the equation

(1.2) . 2y(1") (k2 = V(@) =0, 0< z < oo,

where

n n d n

(13) o{(2) = v (2) - 255 Iy, (a),
. oo

and for any a > 0 we have v(")(z)———Q— dz + /z M) dz < oo

1 2:2 1 .

a

Next, following Theorem 0.6, let us denote zgl)(:c) = Igl)(al, kl;z)(gpgl)(z,kl))‘l,
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zgz)(z’) = (Lpgz)(.l', k1))~! and transform the solutions of Eq. (1.2) as follows:

W (@), 517z, k)
7"z
In this way we obtain Eq. (0.6), where the potentials v(")(z) are connected

with the potentials vg")(a:) via formulas (0.19), (0.20). Equality (0.19) is obtained
because of Theorem 0.3 (see [4]), the relatlon (0.20) expresses the fact that for
n = 2 the transformation (1.4) is inverse to the transformation (1.1).

Let us denote Z(z) = zll)(z)z(z)(z) Yo(z) = yzl)(x) 2)(a:) = ®y(x, k1). The
following asymptotics hold (see, e. g. [3]):

(1.4) y ™z k) =

k% k.

-211¢

Zl(x)~a:'2, r—0; Zi(x)~ const.e , T — 00,

(15)

Ya(z) ~ 2%, £ —0; Ya(z) ~ const., z — oo,
which could be differentiated with respect to z. In particular, we have
(1.6) Yy (z) ~ 2z, £ — 0; z|Yy(z)| € L1(A4,00), 4 > 0.

Lemma 1.1. Let the potentials v(")(z) and vgn)(x) in (0.6) and (0.11), re-
spectively, be connected by formulas (0.19), (0.20). Then the following relations
hold:

(1) W (), 012, 8) = (6 = K7 2(21(2)2(z, ),
(18) W0l o) = (- k?)%(yz(xmx‘, b),
(19) W), (k) = o g (A@F (),
(1.10) W(Yz(z), Fo(z, k) = d (Yz(.’L‘)F](l‘ k)),
(1.11) F(k) = k+k1Fz(k)

Here ®1(z, k)= go(l)(m,k)<p(12)(m,k), Fi(z, k) = 1(1)( k)f(z)(z,lc), where go(ln)(x,lc)
is the regular solution and ff")(z,k) is the Jost’s solution of Egs. (1.2) with po-
tentials defined by (1.3). The functions ®(z, k), F(z, k) and ®(z, k), Fa(z, k) are
defined in a similar way using Egs. (0.6) and (0.11). Finally, F(k) and Fa(k) are
the products of the Jost’s functions of the boundary problems (0.6), (0.7) and (0.11),
(0.12), respectively.

The proof is a direct consequence of Theorem 0.2, having in mind the following
representations:

W@, e @ k) g, g 2 V080 @ k)

(n) _
SO (l’, k) - n n
#M(z) (k2 ~ k)35 (z)
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W (™ (), £z, k)
(ky — k)™ (x)

1 z(") T (1) T
fl)(x,k):z(kl—{-k) W( 1 ((l)))fQ ( :k))
¥ '(z)
iW (P (), £7(z, k)

b

fO (k) =

)

(e, k) = — (k1 — k)
The relation (1.11) follows from the equalities (see Theorem 0.3 [4])
k—
W) = e fO®), AW = FO)

Now, following [1], let introduce the operators

Asf = £(a) +227(2) [ Z(5)5(5) s,

o0

Aaf = f0) - 227 @) [ 21(5)S()d.
Using the function Ya(z), let us also construct the operators

r

(112) - P1 = 1) - 297 @) [ 91 ds,

$OF = f(z) + 2¥,(2)) / Ya(s)f(s)d

Recall [4] that Ay, A; € £(L1,L1), £(Loo, Loo), where Ly = L1(0,00), Loo =
Lo (0,00); here, as usual, £(X,Y) denotes the space of the linear bounded operators
defined in X with image in Y.

From the estimates (1.5), (1.6) it follows that

SO 89 € L(Leo, Loo), S € £(L1, L1).

Lemma 1.2. The condition
feLi(Yy)={f(z): f€eL,(fYy) =0}

1s necessary and sufficient for the relations

Saf =8P f =857 f = f(2) + 25 \(x) / Y3(s)f(s)ds € L(Ly(Y3), L1).

The proof is easily obtained by (1.5), (1.6) (see, also, Lemma 1.1 [4]).
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Note that if f' € Ly, Lo, we have

(1.13) DAsf=ADf, DSPr=80pf p= :%
Following the proof ‘of Theorem-1.1 [1], we obtain
Theorem 1.1. Let us denote
S© = A,s, §© = 4,5
Then the following representations hold: .
(1.14) ®(z, k) = SOy (z, k), ¥(z,k) = SO (x, k), ke (0,00),
(1.15) F(z, k) =SOF(z,k), F'(z,k)=SOFi(z, k), ke (0,00).

Proof. From (1.13) it follows that it is sufficient to prove only the first formulas
n (1.14) and (1.15). Integrating equalities (1.7) and (1.9) from z to oo, we obtain

k+k1
k—k

Integrating equalities (1.8) and (1.10) from 0 to z, we obtain
®y(z, k) = (k2 — k2SO, (z, k),
Fy(k)
(k — k?)Ya(x)
In this way we get (1.14) and the equality

F(z, k) = k+:ls(°)F( k)+ 2("’) Y, (),

O(z, k) = (k] — £°)A1D1 (2, k), F(z,k) =

A1 Fi(z, k).

Fi(z, k) = + S Fy(a, k).

- which together with (1.11) and the obvious equahty Im {(k?—k?)"'A,Y; }(z)} =0
give (1.15). The theorem is proved.

2. OPERATORS T(*) AND T(°)

Let introduce the operators

B:if = f(z) - 2Z1(a:)/(Z1—1(s))'f(s)ds
: 0

Bif = f(:cv) + 2Z{(z)/Zf1(s)f(s) ds.

In [1] we have shown that Bl,Bl € L(Ly, Ly), [,(LOO,L )and if f € L1, Loo, then
B1Df = DB4f.
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The connection between the operators Bl,ﬁl and A],A] is given by the
following

Lemma 2.1 {1]. For any f € L1, Loy and h € Ly, L1 the following relations
hold:
(Alf:h):(frBlh)a (Alf,h):(fxBlh)

Moreover, in the spaces Ly, Lo, we have By = A;l,fll = A;l.

Note also the equalities

]ozi]f(:c) dz = — 7f(:c) dz, 7]§1f(r)dz = —-7f(:c) dz, fe L.

From here it follows that if f € Ll then Ay f, By f € L.
We introduce the operators

T(2°°)f = f(z) + 2Y,(z) /(Yz_l(s))'f(s) ds,

[o0]
L)1 = f(e) - 2¥3(x) / Yy (s)f(s) ds.
From the estimates (1.5), (1.6) follows
Lemma 2.2. The operator T(2°°) € L(Ly, Ly), L(Leo, L) and ’i‘(2°°) €
L(L1,Ly). :
Next let us mention that by changing the order of integration it is easy to prove

Lemma 2.3. The following equalities hold:
(21) (é(ZO)h)f):(h’T(ZOO)f)7 he LI)L001 fELOO;Lla

(22) (80, F) = (L TF), b€ Lo, fe Ly,

i. . the adjoint operator to T(zoo) € L(Loo,Loo), L(L1,L1) is the operator 5(20) €
L(Ly, Ll),E(Loo', Los) and the adjoint operator to 'i‘(zoo) € L(Ly, Ly) ts the operator
8 € L(Loo, Loo)-

Remark 2.1. Lemma 2.2 allows the following more precise formulation:
T5°) € L(Ln, 1y(¥9)), £L(Leo, Loo(¥3)),
TS € £(Ly, Li(Y2)).
In fact, from (1.5), (1.6) it follows that Y2 € Leo,Yy € L1, Loo. Further, since

S(ZO)YZ =0, 5(20)1/2' =0, replacing h in (2.1), (2.2) by Y; and Y3, respectively, we
obtain

(2.3) (Y, TS ) =0, f €L, Les, (Yo, TF) =0, f € Ly,

494



which we had to prove.
Now let us introduce the protective operators on the subspaces Ll(Yg)
L1(00)(Ys) as follows:

(Y2)h € LI(Y.'Z), he L1, P(Yé)h € L1(°o)(Y2'), h S Ll(oo)~

From the biorthogonality relations (see Theorem 0.5) we have the representa._
tions

(2.4) P1(eo)(Ys)h = h(z) + FR(2)(h,YS), h € Li(oo),
(2.5) P(Yo)h = h(z) + F{Y (2)(h,Y2), he€ L.
From the asymptotics (1.5), (1.6) we get

1
(2.6) (Y2, Y3) = 5 lim ¥3(2) = Co 7,
hence the following representations hold:
(2.7) P(Y2)h = h(z) — CoYy(z)(R,Y2), h € Ly,
(2.8) P1(co)(Yo)h = h(z) — CoYa(z)(h,Y3), h € Li(co)-

Note that from (1.12) it follows

/ SO f(z)dz = — / f(z)dz + 2Ce(f, Ya),
) .

0

where Co, = lim Y, *(z). Hence S f € L} if and only if f € LN L}(Yy). Not,

o0 o0
also that from (2.5) follows / P(Y2)h(z)dz = / h(z)dz, h € L. In this way,
0 0

we get

Corollary 2.1. Leth € L} and P(Y2)h be defined by (2.5). Then §(zo)P(Y2)h N
L.
In addition to Lemma 2.3, the connection between the operators S(2 ), S(o)

T(zoo) , T(2°°) gives the following

Theorem 2.1. (i) The general solution of the equation

(2.9) SOh(z) = f(z), [ € Loo,
in the space Lo is '
(2.10) h(z) = TS f(2) + CoYa(z)(h, V).

In particular, the unique solution of the equation

Szg(l’):f(l'); fEL1<oo),
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in the subspace Li(oo)(Yy) is

(2.11) | 9(x) = 5 f(=).

(i) The genera')l solution of the equation

$37h(z) = f(2), feL
in the space Ly is
h(z) = T f(2) + CoY3(2)(h, Y2).
In particular, the unique solution of the equation
§@(z) = f(2), fe Ly,
in the subspace Ly(o)(Y2) is

g(z) = TS f(z).

Proof. From Lemma 2.1 {4] it follows that the general solution of (2.9) is given
by the formula
h(z) = T§ f(z) + CYa(2),
where the constant C is determined using (2.3), (2.6). This gives (2.10). Next
note that from (2.8) it follows that (2.10) could be rewritten in the form P(Yy)h =

T(oo)f Now, in order to obtain (2.11), it remains to mention that 1fg € Li(o)(Y3),
then Pl(oo)(Yz )g = g. The theorem is proved.

»

Remark 2.2. Having in mind the definitions of the projectors Py()(Y5) and
P(Y2), one can say that the solution of equation SaP1(00)(Y3)h = f, f € Ly(c0),

in L1(60)(Y7) is Pi(oo)(Y2)h = T(zoo)f and the solution of equation S;P(Y3)h = f,
f €Ly, in Li(Ya) is P1(Yo)h = TS 5.

3. TRANSFORMATIONS OF THE EXPANSION FORMULAS

First we shall show how one can obtain Theorem 0.3 from Theorem 0.4.

Theorem 3.1. Let by the potentials vg"? in equations (0.11) are construct-
ed the potentials v(")(z) (0.19)-(0.20). Then if we have the ezpansion formulas
of Theorem 0.4, the expansion formulas of Theorem 0.3 are true if the functions
®(z, k) and F(z,k) are constructed as in Theorem 1.1."

Proof. From the definition (2.4) of the operator P3(Y7) it follows that the
expansion (0.13) can be written in the form

o0

(3.1) g(z) = P1(Y;)h(z) = ~/F2(z,k)(h,<l>’2(lc))dk.

0
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Now let us apply to the both sides of this equality the operator S = A1S,. If we
remark that from (0.16) it follows Fy(z, k) € Leo(Y3) and the transformation (1.15)
can be wrltcen in the form F(z, k) = SFy(z, k), we obtain

(3.2) SP(Y))h(z) = ~ / F(z, k)(h, (k) dk.
0

Here and further on we suppose that the convergence of the integral in the right-
hand side of (3.1) is absolute with respect to k and uniform with respect to z
(see, e.g.(2]). In particular, since S8 € L(Lo, Loo), we can apply the operator
S under the sign of the integration. Now let construct by f € L; the function

h=T)f = T(2°°)B1f and insert it in (3.2). Let notice that from (2.3) follows
h € Li(Yy), hence (3.2) gives
o]
ST f(z) = ~ / (2, K)(TC £, @5(k)) dk.
0

Here we have also used the obvious fact that for any h € L;(Yy) we have P(Y;)h =
h. Further, from the equality T(°)* = §(%) and the representation (1.14) we get

(T £, ®5(k)) = (£,5P@(k)) = (£, ' (k).

Finally, in order to obtain (‘0.8), it remains to mention that ST(®)f = f.
Now we shall show how one can obtain the expansion (0.10) from (0.15). Hav-
ing in mind the definition (2.5) of the operator P(Y3), let rewrite (0.15) in the

form
[>]

P(Yz)h(z):/ i, k)(h, Bo()) dk, ke L.

[¢]

Applying to the both sides of this equation the operator §O = A, 5(20) and taking
into account (1.15), we get

(3.3) | §(°)P(Y2)h(:c):/F’(z,k)(h,%(k))dl_c, helLl.
J .

Further, let ‘us construct through f € L} the function h = T() f e L. Note that
the last inclusion follows from the equality

00 oo

[ 11z iz = - [1@ds, feLn
0 0

Inserting A in (3.3), we obtain

(3.4) SOP(Y,)T(®) f(z) = / Fi(z, k) (T f, By (k) dk.
0
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In the left-hand side of (3.4) we have f(z) since P(Y2)T(%) f = T() f and ST() f
= f. In order to obtain (0.10), it remains to notice that from {1.14) we get
(TU)f, (k) = (£, 5D®2(k)) = (1, @ (k).
Here we have also used the fact that according to Corollary 2.1 the left-hand side
of (3.4) is in L} for any f € L}.
Ina s1rn11ar way, taking into account the representation (2.7) of P(Y>) and the
equation S(®Y] = 0, one could obtain (0.9) from (0.14). The theorem is proved.

The transition from Theorem 0.3 to Theorem 0.4 is given by the following

Theorem 3.2. Let by the equations (0.11) the system of functions {®,} and
{F2} be constructed. Consider together with (0.11) the equations (0.6), where the
~ potentials ™) are connected with vg ) by the formulas (0.17)~(0.18), and the func-
tions ®(z, k) and F(z, k) are ezpressed by means of {®,} and {F,} as in Theorem
1.1. Then the ezpansion formulas of Theorem 0.4 are a consequence of the expan-
sion formulas of Theorem 0.3.

Proaof. First we shall show how one can obtain (0.13) from (0.8). Let us set in
(0.8) f = SP(Y;)h, h € Ly, where the operator P(Y7) is defined by (2.4). We have
the expansion

P(Y;)h(z) = -/ﬁ’(m,k)(SP(Yz')h,Q’(k)) dk,

which in view of Theorem 1.1 can be written in the form
oo

(3.5) SP(Y))h(z) = / S Falz, k)(SP(Y})h, SO} (k)) dk.
Q

From S§(©)* = T() and Lemma 2.4 it follows that

(3.6) T(®ISP(Y))h = P(Y))h, h€ Ly, Lo,

and

(SP(Y;)h, $©04(k)) = (P(¥;)h, @5(k)).
These equations together with the representation (2.4) and biorthogonality relations
of Theorem 0.5 give

(3.7) (SP(Y;)h, SO@(k)) = (h, @(k)
Let us apply the operator T(°°) to the both sides of (3.5). Having in mind (3.6)
and (3.7), we get

P(Y))h(z) = / Fylz, k)(h, ®4(k)) dk.
Note that Fy(z, k) € Loo(Ys) and f Fo(z, k)(h, ®4(k)) dk € L1(Yy) (see the proof

0
n {2]). This, together with (2.4), gives (0.13). In a similar way one could obtain
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(0.15) from (0.10) starting from the definition (2.6) of the operator P(¥3). We shall
omit here the details of the proof.
Next we shall show how one can obtain (0.14) from (0.9). Let us set in (0.9)

f(z) = SOP(Y)h(z), he L,

where P(Y;) is defined by (2.7). As above, taking into account the biorthogonality
relations from Theorem 0.5, we get

(SOP(Yy)h, F(k)) = (h, Fa(k)).

From here it follows

SOPIINE) = 59 [ 846z ) o) a|,
(4]

where we suppose that
fz)= / ®(z, k)(k, Fa(k)) dk € Ly.
i
The relation f € L1 could be proved as in [6]. Applying Theorem 2.1, we have
PY(z) = - [ 8he, Kb, Fx() dk + Covi(e)(F, ¥o)
0

This, together with (2.7), leads to the expansion

o0
(3.8) h(z) = ~ / ,(z, k)(h, Fa(k)) dk + C(h)Y3(2),

0
where we denote C(h) = Co(h Yy) + Co(f, Yz2). Taking the scalar product of (3.8)
with Fy(z, k) and using again the biorthogonality relations from Theorem 0.5, we
obtain that

C(h) = —(h, FY).

The theorem is proved.

4. TRANSFORMATION OF THE EXPANSION FORMULAS
IN THE GENERAL CASE

Let consider two boundary value problems (0.6)"(0-7), where ‘the potentials
(v, v()) € (N, M). The main result of {2] is the following

Theorem 4.1. Let (v, v(?) € Q(N, M), then for any absolutely continuous
function f(z) € Ly the following expansion formulas hold:
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0/ B)(f, @' (k) d

=Y, Fui@(£, ¥ (ke ) = AT (@) (S, ®(k;)) + Fa(2)(f, ' (k;))},

o

f@) =~ [ ¥ (. k)(f, F(k)) dk

IO IR MED Y {@(wk)(fﬂl)w(wk)(f, Fi2)},
and if f(z) € L}, then

oo

f@) = [ Fle k), 20 db

0

D F @ ke ) + Y AF (@) B (k) + Ff o(2)(f, B(k;))}.

Let take a number ky = ir, 7y > 0, lky| > max|k, ;|. Making the transfor-
-4

mations similar to those in Theorem 0.6, we obtain new potentials (vgl),vg2)) €
Q(N + 1, M). The analog of Theorem 1.1 here is the next

Lemma 4.1. The following re;vresentatz‘ons hold:
(4.1) ®(z, k) = SOdy(e, k), @'(z,k) = SO (2, k), k € (0,00) U0,

(4.2) b(z, k) = SO®y(z, k;), (2, k;) = SOz, k;), k; € o,
(4.3) F(z,k) = SOF (e, k), F'(z,k)=SOF)(z k), k€ (0, 00),

(44)  Faj(x) =SOFNa), Fyi(2) =8OR (2), kaj €,

(45)  Fim(e) =SOFD (@), Fl(2)=80F% (2), kjeo”,m=1,2.

Proof. One could obtain (4.1)-(4.3) following the proof of Theorem 1.1. In
order to obtain (4.4), (4.5), one could take into account in addition the relations

2 knj+ k1

2) _ k+k1 (2) _ 2k
b = (k—k1>b dt d+k2_k2, k; €,

where the constants ay ;, b; and dj, which determine the functions Foj(z), Fj1(2)
and Fj 5(z), are defined as in (0.8).

Using this lemma and following the constructions of Section 3, it is not diffi-
cult to transform the expansion formulas given in Theorem 4.1 to the expansions
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corresponding to the case (v g ) (2)) € Q(N +1, M), where the potentials vg , vgz)
are expressed in terms of v(1), v(2) as in (0.17).

Remark 4.1. In [4] we have constructed the transformations QM,N) «
Q(M £1,N+1). The restriction ¢/ = & could be avoided, because from the easily

verifiable relation.
2
(2) kn ;i + ko

follow the representations
Foy@) = AFD@), T, j(2) = AFS)(@),

where the operators A, A are defined as in [4].

In‘this way, combmmg the transformations obtained here and in [4], we get a
simple procedure which reduces the problem of expansions in products of solutions
of two equations with (v v(3)) € Q(M, N) to the simplest one (v(1) v(?) €
2(0,0). In more details the similar constructions for the Schrodinger equations

with potentials vl(n)(z) =11+ Dz~ %+ v(”)(x), vWWeX;n=1,21=12...,1is
considered in [5].
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