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Alexandra Soskova. AN EXTERNAL APPROCACH TO ABSTRACT DATA TYPES I: COM-
PUTABILITY ON ABSTRACT DATA TYPE

A characterization of the effective abstract data types from the recursion theoretical point of
view is presented. The main tool is a notion of computability on many-sorted abstract structures.
This notion has certain maximal properties under natural conditions.

The relationships between certain special properties of the class of the computable functions
in an abstract structure and the existence of some special enumerations of it are considered.

1. INTRODUCTION

An abstract data type (ADT) is usually considered as a class of many-sorted
first order structures closed with respect to isomorphism {1, 2, 4, 6]. Using only
this property, we are going to discuss the following problems:

* This work is partially supported by the Ministry of Science and Higher Education, Contract
No MM 43/91. '
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e Decfine the class of computable functions on an ADT.

e Characterize those ADT which are effective.

It is natural to insist that the notion of effective computability on an ADT
agrees with the classical notion of computability on the natural numbers. In other
words, over all structures on the natural numbers in our class the computable
functions should be among the relatively partial recursive functions. We call this
property effectiveness.

Considering the ADT as a class of structures, the second condition is that our
notion of computability should be invariant with respect to isomorphisms, i.e. the
class of computable functions of a given structure is preserved under isomorphisms.

Our third assumption concerns the use of the sorts during the computation.
We consider two kinds of sorts — “effectively enumerable” and “general” ones.
During the computation of a function # we allow a search trough the data of the
effectively enumerable sorts while for the general sorts a search is not allowed. This
idea is described by the so-called substructure property of the computability, defined
in the next section.

In the first part of the paper we present a notion of computability having the
above properties. From the normal form of the computable functions on an ADT,
given in Section 4, it will be clear that the so defined functions are effective in the
intuitive sense. Moreover, each computability having the above three properties is
weaker than our notion.

Having an-appropriate notion of computability on an ADT, in the second part
of the paper we shall define the so-called effective data types with respect to this
computability. It will be proven that a data type is effective with respect to all
programming languages iff it admits an effective enumeration.

9. PRELIMINARIES

Let a many-sorted signature ¥ = (S,E,F, P, p) with equality be fixed. Here
S = {1,...,m} is the set of sorts; E C S is the set of the effectively enumerable
sorts; F = {fy,..., fa} is the set of functional symbols; P = {T7,...,7;} is the set
of predicate symbols; and p is a mapping which assigns to each f; of F a type p(fi)
over S of the form (s1,...,4,,5), where s1,...,8,, are the sorts of the arguments
and s is the sort of the result, and it assigns to each 7 of P a type p(7}) over
S of the form (sy,...,ss;) for some sy,..., sy, of S. The equality for each sort is
supposed. The only difference from the usual definition is that we include the set
[E of the effectively enumerable sorts as a part of X.

Let A = (A1, Ag,..., Apm; 61,02,...,0,; £1,59,...,E%) be a many-sorted
structure of signature X, where for all s € § the initial set A; of sort s is dénumer-
able and non empty; 6,,03,...,0, are the initial functions, 8;: A;, x ... x A;, —A;;
¥1,Xy,..., Xy are the initial predicates, X; : A;, x ... X Asbj—\{(), 1} (0 for true,
1 for false). If §: A;, x ... x A;,—A, for some s1,...,5,,5 € S, then we shall
call the function 8 of type (si,...,sq,s) correctly defined. By Fy we shall de-
note the set of all correctly defined partial functions on A, i.e. of a fixed type
on 2. : '
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Let A be a class of many-sorted structures of signature L.

Computability on A we shall call every mapping C on A such that if e A,
then C() C Fa, 1.e. C(A) is a set of correctly defined functions on 2.

Denote by N the set of all natural numbers. If the structure 2 is on N, i.e.
Ay = Ay == A, = N, then a function & of Fq is called partial recursive in U
iff there exists an enumeration operator [' such that if the graph of 8 is Gy, then
Gy =1(6,,02,...,0,, B3,2,,...,5) [9].

2.1. Definition. A computability C is called effective if whenever 2l € A and
2 is a structure on N, then all elements of C(%1) are partial recursive in 2.

Let % = (Ah...,Am; 61,09,...,0,; 21?22,...323‘,) and B = (B1,...,Bm;
©1, 92, -y Pn; O1,02,...,0k) be many-sorted structures of signature ¥. Consider
an one-to-one mapping «; from B, onto A, for all s of §.

The m-tuple (a1, ..., &) is called E-isomorphism from B to A iff the following
conditions hold:

(i) aS(SO‘é(xlt CTa)) 61?(0‘81(:81): ‘ "’asai(xai))
for all z; € Bs,, ..., Za, € Bs, ;

(it) oj(z1, . aey) = Bjag, (1), .-, aq, (2s))) forall 21 € By, ... 2, € Bs, .

2.2. Definition. A computability C is called invariant if whenever 2 and B
belong to A, {o1,...,a.m,) i1s a L-isomorphism from B to U and 6 € C(AU), 8 is of
type (51,...,5q,5), then there exists a function ¢ € C(B) of the same type as §
such that for all &y € B;,,...,z, € B,,

(%) as(p(zy, ..., zq)) = 0o, (1), ..., 05, (2a))
The structure B is called an eztension of U iff the following conditions hold:

(i) A; € Bs forall s € S, but A, = B, for all s € E;
(ii) f}i(tl, -»«;ta,) ~ 9:?.5(251,” .,ia,«) for allt, € As“«--,ta;- € Asai;
(iii} Ej(tl, . ,,i(,j) o O”j(il, .. .,tbj) for allt; € A\, caly € Asbj .

By 2 C B we denote the fact that the many-sorted structure 9B is an extension
of A.

Let !QLI:AI U...UA4, .

2.3. Definition. A computability C' has a substructure property if whenever
2 and B are elements of A, A C B and 6 € C(A), then there exists a function
¢ € C(B) of the same type as § such that for all ¢;,... ¢, of |2

(*x) S(t;,...,ta)zgo(tl}...,ia).

To explain the last property assume that § € C(%). Now the above condition
follows from the assumption that in the course of the computation of 4 if an addi-
tional information is needed, then it consists only of elements belonging to some of
the effectively enumerable sorts.
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Let C; and C, be two computabilities on A. C; is said to be weaker than Cy
on A (Cy Ca Co) iff C1(A) C Cao(AU) for all A of A.

In the next section we shall present a concept of computability satisfying these
properties and such that if the class A is rich enough, then each computa’mhty,
which has the above properties, 1s weaker than ours.

3. A MAXIMAL CONCEPT OF COMPUTABILITY
ON MANY-SORTED STRUCTURES

Let 2 = (4; 8; ¥) be a many-sorted structure of signature X.

Combining the assumptions from the previous section, we come to the following
technical notion. Suppose that 2 is denumerable and A, is infinite for each s € [E.

For each sort s consider an one-to-one mapping «; from a subset of N onto
A,. Let B = (N; %; 7) be a partial many-sorted structure of sxgnature 3 on the

natural numbers.
3.1. Definition. The tuple {a1,...,amn; B) is called an enumeration of A
f the following conditions hold: .
(i) if £; € dom(as,), ..., T4, € dom(as, ) and p;(z1,. .., 2,,) Is defined,
then @;(z1,...,zq4,) € dom(ay);
(1) if z, € dom(axs, ), ..., Zq, € dom(es, ),
then a’s(fpz(wla'- sy Lay ))*-0(@51(3:1) 7a30;($ai));
(iii) if 21 € dom(as,), - .., zs; € dom(as, J,
then o;(z1,. .., 2s;) ~ E;(a,, (z1), . Qg (zs,));

(iv) for all effectively enumerable sorts s € E : dom(as) = N.

In fact, {a1, @9, ..., am) is a L-isomorphism from the structure (dom(e;), ...,
dom(a,,); ©; @) to AU.
Let (a1, @g,...,an, B) be an enumeration of 2.

3.2. Definition. A function @ is admissible in (a1, ay, ..., an, B) if there ex-
ists a function ¢ over V, partial recursive in B, such that if z; € dom(es,),..., 2z, €
dom(a;, ), then:

(i) M p(z1,...,24) 1s defined, then ¢(z1,...,z,) € dom{ay);
(i) asle(zy,. .., 2a)) > Blas, (z1),. .., a5, (z4))

3.3. Definition. 0§ is computable in A iff § is admissible in every enumeration
of .

The class of all computable functions in % we shall denote by C*(%1).
From the above definitions and the Normal Form Theorem in Section 4 the
next proposition follows directly.

3.4. Proposition. The computability C* on A is effective, invariant and has
the substructure property. n
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Moreover, we have the following theorem.

The class A 1s closed under isomorphisms if whenever 2 € A and (a1, ..., an)
1s a L-isomorphism from B to U, then B € A.

The class A is closed with respect to extensions if whenever A € A and U C B,
then B € A.

3.5. Theorem. Let A be a class closed under éso%norphisms and with respect
to extensions. Every computability C over A which is effective, invariant and has
the substructure property is weaker than C* on A (C Ca €*).

Proof Let C be a computability on A with the desired properties, 21 € A
and ¢ € C(2). Consider an enumeration {a1,ag,...,am, B) on A, where B =
(:?V; 7, 7). Let B = (dom(ay),...,dom(am); @, ). So {(o1,az,...,am) is a
S-isomorphism from B’ to U. Hence, by the invariant property of C, there exists
a function ¢’ € C(B’) such that (%) is true. And B’ C B. By the substructure
property there exists ¢ € C(*B) such that (**) holds. But B is a structure on the
natural numbers and by the effectiveness of C ¢ is partial recursive in B. So 0 is
admissible in {a1, ay, ..., am, BY, and hence § € C*(A). n

- 4. NORMAL FORM THEOREM

The presented approach to the notion of computability is called “external”. It
was used first by Lacombe in [5]. The equivalence between Lacombe’s notion of
“V-admissibility” and search computability on total structures with equality was
considered by Moschovakis in [7, 8]. This approach over arbitrary structures (single-
sorted) was extended by Soskov in [11] and further external characterizations of
other well-known concepts of abstract computability as prime computability [8],
computability by means of effective definitional schemes [3, 10] and definability by
logic programs were presented in [12, 14, [5]. The idea to consider the behavior of
a computability on a class of structures and the concepts of maximal computabili-
ties among these ones satisfying some natural conditions, were introduced in [13).
Our concept of maximal computability on many-sorted structures combines two
maximal concepts — of search computability of Moschovakis (over the effectively
enumerable sorts) and Friedman’s computability (over the general ones).

While the external approach leads usually to maximal concepts of computabil-
ity, it is necessary to show that the computable functions are “effective” in the
intuitive sense. So we need a normal form of the computable functions on A. From
this form it will be clear that these functions are computable by means of some
reasonable algorithms. .

Suppose that an infinite list of variables of sort s, for each sort s of S, is fixed.

Terms of given sort in X are defined as usual.

4.1. Definition. Let II be a finite conjunction of atomic formulae and negated
atomic formulae, 7 — a term of sort s, and Y,...,Y; — variables with sorts of E.
The expression of the form 3Y; .. .Y, (Il D 7) is called an s-conditional expression.

Let @ = 3Y; ... 3Y3(I1 D 1) be an s-conditional expression with free variables
among X1,...,X, and ty,...,1, € {¥U]. The value Qu(Xi/t1,..., Xu/t,) of @ is
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the set

{ra(Y1/p1, - Yo /po, X1/51, ..., Xa/5a) :
| Oo(Yi/p1, . Ya/po, Xifth, ... Xo/ta) =20,
for some pi,...,ps with sorts as Y3,...,Y;}.

4.2. Proposition. If (&, B) is an enumeration of A, 7(Xy,...,X,) is a
term of sort s, (X4, ..., Xa) ts an atomic formula and zy € dom(as,),..., 2, €
dom(e;, ), then:

() as(re(X1/z1, ..., Xa/2a)) = Ta(X1 /05, (21), ..., Xa/as, (2a));
(i1) IIg(Xl/zcl, ooy Xafxg) =~ To( Xy [as, (1), ... ,’Xa/asa(g:a}). n

4.3. Definition. A function # is said to be definable on 2 iff for some re-
cursively enumerable set {@V},ev of s-conditional expressions with free variables
among Z1,...,%r, X1,...,X, and for some fixed elements q,, ..., g, of |A| the fol-
lowing equivalence is true:

9<t1g...,ia) ~1 MBU(U eVkte Q%(Zl/qi,...,Zy/qy,X}/tl,...,JX{;/iQ)).

4.4. Theorem (Normal Form Theorem). The function § is computable in A iff
0 1s definable on .

Proof. The fact that every definable function on 2 1s admissible in all enumer-
ations of 2 follows from the last Proposition 4.2.

To prove the other direction, we will actually prove the contrapositive. Thus
we suppose that 6 is admissible in 2, but it is not definable on 2l. We use this fact
to construct an enumeration (@, B) of A such that # is not admissible in (@, B).
The basic idea of the construction is to ensure that the pullback of 8 (by @) is
not partial recursive in B by diagonalizing over all possible partial recursive in B
functions. \ ‘ V

For ease of exposition we will suppose that all functions and predicates of the
signature ¥ are unary and 6 : A,,— A, is of type (s4,s,). The general case is a
trivial rewriting of the argument below. If (&, B) is an enumeration of 2, where
B=(N; o1,¢2,...,¢n; 01,02,...,0%), denote by

(B) ={{i,z,e) : (1<i<n & gi(z)=e)V(n+1<i<n+k& g;n(z) =)}

It is clear that a function ¢ is partial recursive in {¢1, 02, ..., ¥n;01,02,...,0%}
iff  is partial recursive in (B).

The enumeration (@&, B) we shall construct by stages.

On each stage ! we find a finite approximation (called finite part) A; of (&, B),
so that on even stages we assure that range(a;) = A, for every sort s € S and
dom(a,) = N for s € [E (effectively enumerable sorts).

On odd stages { = 2n 4+ 1, if I',, is the n-th enumeration operator, then for
every enumeration (@, B) 2 Ay there exists z € dom(a,,) such that one of the
following conditions is not fulfilled:
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(A) Vy((2,y) € Ta((B)) = y € dom(a,));

(B) Vit € B(ars, (z)) = Fylas, () = £ &(z,y) € Ta((B)))).

First let us fix some notations.

4.5. Definition. A finite part A; is called each tuple A= (;54, ?I, 7, 7),
where:

(1) 6! is one-to-one partial mapping N—A, and dom(§!) is finite for each

s ES; :
(2) H! is a finite subset of N, so that dom(é6!) N H! = @ for each s € S, but
H! = for s € E;

(3) ¢l : H; —=H! Udom(8!), where p(fi) = (si,s) for 1 <i < m;

(4) o} : Hy ,—{0,1}, where p(T;) = (s;) for 1 <j < k.

Given A; and A, — finite parts, denote by A; C A, the fact that 8L < 69,
H CHIfors€Sand ¢ <of, i=1...n, aj« go';?, j=1...k. Here by p < v
we mean that if ¢(z) is defined, then ¥(z) is also defined and ¢(z) ~ ¥(z).

4.6. Definition. If A; is a finite part and (&, B) is an enumeration, then
A C (@, B) iff:

(1) 8! <o, for s€S;

(2) dom(a,) N H! = @ for each s € §;

B) ¢l <pifor1<igmy

(4)0;-§_crj for 1 < j<k.

Construction:

Stage ] = 0. H® =0 and 62, ¢?, o’? are totally undefined.

Stage | = 2n, n > 0. For each sort s consider the first =, ¢ dom(é!) U H! and
t, ¢ range(8'). If there is no such t;, do nothing. Otherwise, let §!*!(z,) = ¢, and
ARt = g T F.

Stage ! = 2n+ 1. Let A; = (33} '}"f{, 7, 7), where dom(8!) = {w},. ,wgs}
and range(6}) = {t5,..., 1} }.

Let T, be the n-th enumeration operator. So, if R C N, then

z€Th(R) <> v({v,2) e Wn & E, C R),

where W, is the recursively enumerable set with code n and F, is the finite set

with code v.
Let z € N and z ¢ H!,. Then

‘v’y((m,y) € Pn(R) — E’U((f{},x, y) € Wn & E‘v g R))
~ Denote by Un z = {{v,y) : (v,z,y) € W, }.
The main tool is the construction of a definable function & : A;,—A,_, based

on I, using the following translation. By ¢ we denote the list of all elements of
range(8!)U. . Urange(é! ). For each sort s consider an one-to-one mapping var, from
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N onto the set of all variables of sort s. Let var,,(z) = X and W = {VVl, o, Wel
be the corresponding variables to the elements of the set dom(8!)U ... Udom(é! ).
Let ¢, be a new constant of the sort s,.

4.7. Lemma. Lelp € A,,,t € A;,. There cuists an effective way, given
v,y € N, lo define an s,-conditional expression QY (X, W) such that.

(1) ift e Qg”y}(X/p,W/f), then there exists a finite part A 2 Ay such that
for every enumeration (&, B) DA B, C(B) & o,,(z) =p & a, (y) =1;

2) ift ¢ Q‘v’y) X/p,W/T), then one of the following is true:
2
(a) there exists A D Ay such that for every (@, B) D A
(B C(B) & a5, () = p = y ¢ dom(ay,)), or
(b) for every (&, B) D A (Ey, C({B) & ay,(z) = p = a,,(y) £1).

Proof. Let v,y € N be fixed. Consider the finite set £, with the code v.

4.8. Definition. The finite set F, is called correct if the following conditions
hold: ~

(1) each element u of £, is of the form u = (4,2,¢) and 1 < ¢ < n or
(n+1<i<k+nandee{01}); -

(2)if (i,z,e1) € E, and (i,2,¢3) € Ey, then ¢, = ¢9;

(3) if (¢,2,€) € By, 1 <1< n, z € dom(8! )}, where p(f;) = (s, ), and pi(z) i
defined, then ¢!(z2) =~ ¢; |

(4) if (j,z,€) € By, n+ 1< j<n+k, zedom(b]), where p(Tj_,) = (s5),
and o} _.(z) is defined, then o} _(2) ~¢.

If £, is not correct, then put Q"% = (X # X D¢;,).
Let £, is correct. Denote by

{z: 3 e((i,z,e) € EL,&(i<n&p(fi)=(s,s1))V(n<i& p(Ti_n) = (s)}
Wz 3, 0({(i,z1,2) € By, & i <n & p(fi) = (s1,8)}.

N if s € E,
Dy =< dom(6)u{z} fs=s4& 54 ¢E,
dom(é!) otherwise.

Let K = M, N D;,. Suppose that for each s of S the set K¢ 1s defined. Then

KM ={z:3i,2({(i,21,2) €E, & 2¢ KPU-- UKI &i<n
& p(fi) = (si,s) & 2, € K] )}

Since the set E, is finite, there exists an r so that KT+ = §,

Let Ky = KU ---UKT and if 2 € K, define |z] = ¢. For each element z of
K, we define a term 7% by induction on |z|.

Let |z| = 0, then 7% = varg(z). Let {z] = ¢+ 1, {1,21,2) € E, for some z;, so
that |21| = p < ¢+ 1. Then 7% = f;(v*).

Some of the elements of F, we Sha,ll call appropriate. Namely, v = (i, 2, z1)
from FE), i1s appropriate if:

I

M;
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(1)i <nand p(fi) = (s,51), 2€ K,, z; € K, ;
(2) n < i and p(Ti_n) = (s), z € K.

So we are ready to define the desired conditional expression Q¥ (X, W). If
for some s € S H. N K, # 0, then we define Q¥ = (X # X D ¢,,) as in
the case where F, is not correct. We keep in mind that the initial functions of an
enumeration on U should be closed under the domain of the enumeration (Deﬁmtmn
3.1 (1))

Let forallse€§ H" N K = . Then we check if y € A;_. If not, we put again

Othermse for each approprxa,te element u = (i,z,e) € £, we find the corre-
sponding formula [I¥ under the following rule:

(1) if i < n, then I" is fi(7?) = 7;

(2) if n < ¢, then TI* is T;_,(7%) for ¢ = 0 and I* is =Ti_,(7%) for e = 1.

Let uy, ..., u, be all appropriate elements of E,. Denote by I the conjunction
m“r & - & M%<« & V, where

f .
,;;%_;fg‘ vars(zi) # vars(z;) &ZEK(%Z\{:c} X # varg,(z) if z ¢ dom(6],);
"ts‘}‘e ’s

§ZZ s varg(z;) # vars(z;) & X = vars, (w) if £ = w € dom(8! ).
2iFz s
2.0, €6Ky

\

Let y1,...,vs be all elements of K, for those s € IE (effectively enumerable
sorts) not belonging to dom(é}) U ... U dom(é&},) U {z} and var,, (y1) = V1,...,
var;, (ys) = Ys. From the construction 1t follows that the variables of Il are among
X Wi, ... Ws, Y1,..., Y.

Define

QN (X, W) = 33/1 3Y(T D 7).

Let consider some properties of the constructed in this way conditional expres-
“sion Q%) From the above construction and Proposition 4.2 follows:

4.9. Proposition. Let (@, B) D Ay, as,(z) =p, By C (B) and o, (yi) = qi,
t=1,...,b. Then: ~
(1) E, s correct,
(2) K, C dom(as) and HIN Ky =0 for each s € §;
(3) Vz € Ky(as(z) = m3(X/p, W/T,Y1/q1,....Ys/q)) for s€S;
(4) Hm(X/p,W/f,Yj/ql,‘..,Yb/qb)z0. : o
We are ready to prove that Q%) satisfies the conditions of Lemma 4.7.

Case 1. Let t € Qg”y}(X/p,W/f). So E, is correct, H. N K, = § for each
sort s and y € K, . Thus there exist different elements ¢, ..., ¢ of {2} with sorts
51,...,8 from K, so that

Ou(X/p, W/EYi/a1,.. .. Ys/0s) =0, t = 13 (X/p, W/L Y /a1, . ... Ys/ ).
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Define a finite part A D A', where A = (X, H, §, 7), as follows: Let Asg () = p,
A, (y1) = g1, A, (ws) = ¢ and Ag(2) ~ 6!(z) for all other z, s € S. Let
Hy = H U (M, \ K,) for each sort s.

Define p;: !l < ; fori=1,...,n and aj:c;f; <o; forj=1,...,k, so that the
extensions are defined under the rule that for each element u € £,, which is not
appropriate:

if u=(i,21,22), 1t <n, then p;(21) ~ z3, and,

if u=1{j,z,¢), n < j, then o;_,(z) ~¢.

Let (&, B) 2 A. From the definition of A and Proposition 4.2 we have E, C
(°B), as,(r) = p, and since y € K, _, then from Proposition 4.9 it follows that
as (y) = t. So the condition (1) from Lemma 4.7 is satisfied.

Case 2. Let t ¢ QYV(X/p, W/I).

We have the following possibilities:

(a) E, is not correct. Then, since for every (@, B) O A; : £, € (¥B), the
condition (2)(b) from Lemma 4.7 is trivially satisfied.

(b) Let F, is correct:

(b.1) If HE N K # 0 for some s, then there is z € K, and z € H,. Therefore
for some i € {1...n},z; € K,,, ({,z1,2) € E,. If (@, B) D Ay, then it is not
possible that E, C {B), since H, Ndom(a,) = 0. Then (2)(b) is fulfilled because
of the same argument as in (a).

(b.2) Let H' N K, =@ for all s €S. Denote by Ctv¥} = 3y, ... 3y,(IN).

(b.2.1) CY¥ (X /p, W /T) 2 0. Then suppose that (&, B) D Ay, E, C (B) and
as,{2) = p. Let

{y1,.. . w} = (K,, U...UK,)\ (dom(8))U...Udom(6 Yu{z)),

$1,...,8 € E. From the definition of enumeration of 20 we have that a; (y;) = ¢
for i = 1,...,b. Then from Proposition 4.9: Cg”w()&’/p,Wﬁ) ~ 0, which is a
contradiction. So {2){b) holds trivially.

(b.2.2) Let C’éf’y)(X/p,W/Z) ~ 0:

(b.2.2) (i) y ¢ K,,. Then we construct a finite part A 2 A; in the same way
as in the Case 1, but with only one difference — we put y € H, . If (@, B) D A,
then we have again that £, C (8), o,,(z) = p, but since H, Ndom(a,,) = 0, then
y ¢ dom(a,,). Thus the condition (2)(a) from Lemma 4.7 is fulfilled.

(b.2.2) (i) Let y € K. Suppose that (@, B) D A; and E, C (B),a,,(z) = p.
Then by Proposition 4.9 it follows that -

y € dom(as,) and «, (y) € Qé};’y)(X/p,W/f).

So a, (y) # ¢, 1.e. the condition (2)(b) of Lemma 4.7 is true, ]

We return to the proof of Theorem 4.4. For each u € U, , denote by Q*(X, W)
the conditional expression found effectively in Lemma 4.7.

Let fix an z ¢ dom(6] ) U H! and dom(6!)) = {wi,...,w,}. Consider the
function € with the following definition: ‘
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t € £(p) e Jue Uno(t € Qu(X/p, W/T))
V3uy € Un o, (t € Qy (X/p, W /)

VEu,- € Un,wr(t € Q%"(,Y/p’W/z))

Then £ is definable and therefore £ # 6. Using this fact we ensure that one of the
conditions (A) or (B) is not satisfied. There are two possibilities:

(a) There exist p € A;, and t € A;_ such that £(p) ~ ¢, but (p) # 1.

Let p ¢ range(é!,). From £(p) ~ t it follows that for some u € Upn . we
have t € Q4%(X/pW/t). Let u = {(v,y). From Lemma 4.7 we know that there
exists a finite part A D A; such that for every enumeration (@, B) D A: £, C
(B) & as,(x) = p & as,(y) =t. Define Ay = A, Then if (@, B) D Ay, there
are r € dom(a,,) and y € dom(a,, ) such that a, (y) =1, (z,y) € I'n((B)), but
0(as,(z)) £ t. So the condition (B) is not valid.

If p= 6! (w), then for some u € U, ,, we have t € Q%(X/p, W/t). Then using
Lemma 4.7 we prove that (B) is not valid analogously.

(b) Let &(p) i t, but 6(p) =t, p € Aw t € A;.. We shall consider the case
when p ¢ range(é!,).

Let have the followmg situation:

There exist v and y such that {v,y) € Un,x,Q(”W(X,W) = 3Y; ... 31 >
r¥), CW¥) = 3y, .. 3Y(ID), C’é:”’y)(X/p,Wﬁ) ~ (0 and y ¢ K,_. In this case we
choose Ajy; = A from the proof of Lemma 4.7, Case 2, (b.2.2) (i). We know that
if (@, B) D A1, then z € dom(ay,), £, C (B) and therefore (z,y) € ['a((B)),
but y ¢ dom(a,,), i.e. the condition (A) is not valid.

Otherwise,

Yu € U, (C3(X/p, W/T) ~ 0=y € K,,).

Put §/*1(z) = p and 6/¥!(2) =~ 6i(z) for all other z and s and Ay =
(EZH ,lif},‘gb”z,}?z). We shall prove that in this case the condition (B) is not valid.
Let (@ B) D Ajp1- So a,,(z) = p. Suppose that there exists y € dom(as,)
such that a, (y) =t and (z,y) € Tn({B)). Then for some v: (v,z,y) € Wy, ie.
{(v,y) € Un, and E, C (B). From Proposition 4.9 we have that F, is correct,
H'NK, =0 for each s € S and Céf‘y)(X/p:W/E) ~ (. Hence y € K,,. Since
t ¢ ng’y}(X/p,W/f), from the proof of Lemma 4.7 it follows that the condition
(2)(b) is valid, i.e. a4 (y) #t, which is a contradiction.

The case When pE range(éz ) is considered similarly.

End of construction.

Consider an enumeration (a1, as,...,am, B), where B = (N; ¢1,...,¢n;
o1,...,0k), defined as follows:

= U éi for each s € §,
1=0
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. o0 o0
go;‘:Ugoi for 1 <i<n, cr;-‘:UUE for1 <j<k,
=0 1=0

From the construction it is clear that range(a;) = A, for all sorts, c:iom(as) =
N for every s € E and dom(a,)NH! =@ forscSand € N.

bet (0e,(2)) (a0,
0;i(crs,(2)) if x € dom(a,,),

pi(x) =~ {gp:(x) otherwise,
and Syan () itz € dom(a)
‘ _ jasjiﬁ iHxr & Omas‘ji
oj(z) =~ {g';‘ (z) otherwise.

Suppose that the function 8 is admissible in (@&, B). Then for some n, if I', is
. the enumeration operator with number n, for each z € dom(a;,) we have:

(A) Vy((z,y) € Tn((B)) = y € dom(as,));

(B) Vi(t € 0(as,(2)) <= Tyla,, (y) 2 t & (z,y) € T ((B)))).

Let | = 2n + 1. Then there exists z € dom(6!*") such that for every enumera-
tion (@, B) O A4 the condition (A) or (B) is not valid. Hence, § is not admissible
in (@, B). : =

4.10. Corollary. If the structure U is single-sorted, then:

(i) if the only sort is effectively enumerable, then C*(R) is the class of search
computable funciions of Moschovakis on U,

(i1) otherwise C*(A) is the class of computable functions of Friedman. =

In [17, 18] several notions of computability on ADT were considered. A gen-
eralized variant of Church-Turing thesis for deterministic and non-deterministic
computation is announced. It is easy to see that their notion for deterministic
computability — star computability, coincides with our in case that all sorts are
not effectively enumerable, i.e. E= 0. If E = S, then our computability coincides
with the projective star-computability.

Remark. All results could be generalized for ADT without equality, con-
sidering another algebraic transformations — special homomorphisms instead of
isomorphisms [16].
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