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BBOQHTCR NOHATWNC OPTOrOHANMU3YEMOro nNOJIYKOJbUA, OXBATHBAWOIICE Kak ‘-‘Ia.CTHbIﬁ
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Jordan Zashev. ON THE CONNECTION BETWEEN THE ABSTRACT RECURSION THEO-
RY AND THE METHOD OF SUCCESSIVE APPROXIMATIONS

We introduce the concept of orthogonalizable semiring which contains as a special case some
familiar objects of classical pure mathematics and, on the other hand, is fit for the purposes of
the algebraic recursion theory. A fundamental result of the last theory, called code evaluation
theorem, is proved for such semirings. Some corollaries are considered, especially for the ring of
bounded linear operators over an infinite dimensional Hilbert space.

There is a great deal of similarity between the principal problem of the alge-
braic recursion theory (that is the problem of fixed-point completion in the sense
of [2]), on the one hand, and some problems about the existence of solutions of
various kinds of systems of equations in the classical mathematics. Of course, in
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the algebraic recursion theory we have to do with least solutions of systems of in-
equalities, but this difference seems not to be so principal as another one, namely
that in the algebraic recursion theory the emphasis is put on the expressibility of
least solutions of those systems of inequalities by means of some basic operations,
among which the most important one is the so-called iteration, while the existence
problem is comparatively easy. On the other hand, the iteration is the least solu-
tion of one simple inequality of one unknown, which is clearly analogous to linear
equations of one unknown. In the algebraic recursion theory an arbitrary “nonlin-
ear” system of inequalities is reduced to one such inequality by a typical for the
recursion theory process involving coding, so that the first system is interpreted in
some sense “internally” as an object of the domain of solutions of the system. In
this reducing a similarity may be observed with the iteration method in classical
mathematics, but peculiaritics also occur, which makes the comparison of the two
methods not quite obvious. Such a peculiarity is the mentioned “internal” coding
of the iteration process by which it is presented through one inequality.

In this paper we are going to inquire a little bit deeper into this analogy. Our
special purpose is to consider corollaries of general results of algebraic recursion
theory applied to classical mathematical objects. To this end we introduce the
concept of orthogonalizable semiring, which is a kind of topological operative spaces
in the sense of [1]. This concept is morc suitable for our purposes, being closer
to or comprising as a special case familiar objects of classical pure mathematics,
for instance, the operator rings over infinite dimensional Hilbert spaces. On the
other hand, the main result of the present paper — the code evaluation theorem
in orthogonalizable semitings -— does not follow from the corresponding result for
operative spaces, which is ultimately due to the simpler algebraic structure of the
former ones.

1. OTHOGONALIZABLE SEMIRINGS

By a semiring we shall mean an additive (commutative) monoid R in which an
assoclative multiplication with an unit I, satisfying the usual distributive laws, is
given, such that 0 = 0 = Op for all ¢ € R, where 0 is the zero of the addition in K.
For all semirings, considered in the sequel, we shall suppose also that a topology
and a partial order “<” are given in them, such that the addition is continuous as
a function of two arguments and the following three conditions are fulfilled:

(i) if ¢ € R belongs to every neighborhood of ¥ € R, then ¥ < ¢;

(il) every sequence {p,}aep of elements of the given semiring R (where D is a
directed poset of indices), which has a limit, has also the greatest limit, 1.e. a limit
¢ of this sequence such that for every other limit ¢ of the same sequence we have
¥ <

(i]) if {pataep and {¥o}aep are two sequences of elements of R such that
Vo < Yo for all @ € D and {1s}aep has a limit, then {ps}aep also has a limit,
and for the greatest limits ¢ and ¢ of the last two sequences, respectively, we have
<Y | |

Note that the condition (i) implies that for every sequence {®4 }aep of elements
of R, which is a stationary one, i.e. for some ag € D and ¢ € R we have p, = ¢
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for all @ > ao, the element ¢ is the greatest limit of {¢q4 }oep.

Now let K be a semiring of this kind and let J be an arbitrary non-empty set
of indices. By a confinal in J we shall mean a set D of finite subsets of J such
that every finite subset of J is included in some element of D; every confinal ‘is
directed with respect to the partial order “C” in it. A series of the form 5 ©j 4

JEeJ
where p; € I for all j € J, will be called convergent with respect to a confinal D

in J iff the sequence {3 ¢;}aep of D-partial sums of that series has a limit in R
jE«

as a directed set indexed sequence. The greatest limit of the last sequence will be
called a sum of the series in question, corresponding to D). The series in question
will be called conventionally convergent iff there is a confinal D in J such that it
is convergent with respect to D. In the sequel the expressions of the form 3" ¢;
1€J
will be used to denote also a sum of the series denoted in the same way, and the
confinal D, to which this sum corresponds, will be clear from the context or it will
be arbltlary otherwise.

If all but a finite number of the members of a series ) ¢; in R are zeros, then
jed

the only sum of the last series is the algebraic sum of the non-zero members of it.
This follows from condition (i) since in this case the sequence of D-partla) sums of
that series is stationary for any confinal D.

A mapping f : R — R will be called additive iff for every series ) p; of

jed
elements of K and every confinal 1 in J such that the last series converges with
respect to D in R, the series ) f(yp;) also converges with respect to D, and for
jed

the corresponding sums we have the equality

S e =1 w).

JjeJ jed
An element ¢ € R will be called left (respectively, right) additive iff the mapping
[ R — R, defined by f(£) = @€ (respectively, f(£) = £p), is additive.

A semiring R, satisfying all the suppositions above, will be called an orthogo-
nalizable one (or, shortly, an orthoring) iff all elements of R are left additive and
there is an orthogonal quadruple in R, i.e. a quadruple (T, T-, Fy, F_) of elements
of R such that Ty and F, are right additive as elements of R and the following
equalities hold:

T.T.}.;T—I:F._F_P and T_F+:0:F_T+.
An orthogonal quadruple (74,7, Fy, F_) will be called complete iff
T.T-+F,F_=1.

More generally, a family (¢7(¢), 0~ ({) ek of pairs of elements of R will be called
an orthogonal system iff the following three conditions hold:

a) for all t € K the element ¢ (t) is right additive;

b) for all t € K we have ¢~ (t)p*(t) = I; and ,

¢c) for all t,s € K, for which t # s, we have ¢~ (t)p*(s) = 0.
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Infinite orthogonal systems exist into every non-trivial orthoring. Indeed, such
1s, for instance, the system (n N7 )nen, where N is the set of natural numbers and
for every n € N

nt = F!T; and n~ =T_F".

Example 1. Let M be an infiniteset, andlet Ty .M — M and Fy - M — M
be two injective functions such that 7, (M) N F, (M) = &. Denote by R the
set of all partial multivalued functions from M to M; the elements of R may be
identified with (arbitrary) binary relations in M. The set R is a semiring with
respect to the union of two relations as the addition operation and the composition
of multivalued functions as multiplication; the zero 0 and the unit I are the nowhere
. defined function and the identity mapping in M, respectively. This semiring is an
orthogonalizable one with respect to the inclusion relation “C” as partial order,
the Scott topology with respect to this partial order (which may be described as
follows: those sets Y C R are open, for every element ¢ of which there is a finite
+ C p such that all ¥ € R, containing ¢, belong to Y'), and the orthogonal quadruple
(I’+,T_’ Fy, F_), where T_ and F. are the partial mappings defined for z € R by

Ty if z =T, (y),
T-(2) = {undeﬁned if there is no such y,

and
Fo(z) = if 2 = Fy (y),
undeﬁned if there is no such y.

Example 2. Let V be the set of all infinite sequences (zg, z;,...) of real
numbers z; with the product topology. V is a real vector space and let L be the
ring of linear operators ¢ : V — 1/ with the topology induced by the product one
in VY. Denote by R the ring which differs from L only in the order of writing the
multiplication: ¢v¥ in R means ¢ in L. Take the identity “=" as partial order
“<” in R. Then R is an orthogonalizable ring (i.e. an orthoring which is a ring
with respect to the algebraic operations in it); an orthogonal quadruple in R is, for
instance, the following one:

T+((:EO§ ;Ci, A ')) — (‘(EO} 2:23 x‘i! e ')7
F“{'((‘rOJ l’l, . )) - (:El} $3) x53 v )}
T_((ZL‘O, Ti,.. )) = (.Z'g, 0,.’81, O, . .);
F_{(zg,z1,...) = (0,20,0,2y,...).

Example 3. Let H be an infinite dimensional (real or complex) Hilbert space
and let R be the ring of bounded linear operators in H. Take the trivial partial
order, i.e. the identity “=”, for “<” in R. Then R is an orthogonalizable ring with
respect to any of the known operator topologies. For us, however, the weak operator
topology will be the most important one and, unless otherwise indicated, we shall
always have in view this topology in the context of this example. Orthogonal
quadruples in R may be found, for instance, as it follows: Let T4 and F be two
isometrical (preserving the scalar product) operators in R, the images Im7, and
ImF, of which are orthogonal to each other subspaces of H, and let T = T7

and F_ = F} be the corrcspondmg adjoint operators. Then (Ty,T-, Fy, F_)
is an orthogonal quadruple, which is a complete one iff the images of T} and
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F4 are orthogonal completions to each other. It will be convenient in the sequel
to call the orthogonal quadruples, arising in this way, isomelrical ones and the
positive components of such quadruples (i.e. 7} and F}) — semiunitary operators.
Accordingly, by an isometrical orthogonal system we mean an orthogonal system
(K*(5), K~ (j))jes such that the operators K*(j) are isometrical and K~ (j) is
the adjoint operator of K*(j) for all j € J. Here is a simple lemma about such
systems.

Lemma 1. Let (K*(5), K~(j))jes be an isometrical orthogonal system in R
and let D be a confinal in J. Then for any sequence of operators p; € R, j € J,
the following two conditions are equivalent:

(a) the sum of 3 K*(j)p;, corresponding to D, exists with respect to the

j€d
strong operator topology in R; and

(b) for all vectors x € H the sertes S ||p;z||* converges.

‘ j€J

Indeed, if {a) holds and S is the sum of the series in question, corresponding
to D, then using the isometricality of the operators K+ (j) we have :

Y o lesall? =YK (G)esell® = ||S2]* < oo.
j€J JEJ
Conversely, let we have (b). Then for all finite a C J

1> KT Gesll = D NETG)esall* =) Il

j€a j€a j€a

> lleszl?

j€J

Since the series

converges, using the completeness of the space H we conclude that the series
| Sz=Y K'(j)p;x
jed
converges in it as well; whence by the Banach-Steinhaus theorem we get (a).

Remark. We may avoid quoting the last theorem if we replace the condition
(b) by the following one:

(b') there is o positive real number C such that for all vectors x € H we have

2 leizll* < Cllell?,
jei

which may serve our purposes below as well.

2. THE CODE EVALUATION THEOREM

Let R be an orthoring. Suppose a semigroup ' with an unit e and a homomor-
phism x : G — R’ into the multiplicative semigroup R’ of right additive elements of
R are given. Let G(X) = G(Xo,...,Xn-1) be the semigroup of monomials of the

117



variables Xo, ..., Xn_1 with coefficients in G, i.e. the set of all formal expressions
of the form

(1) ¢ =9g0Y0g1 - Gm-1Ym-19m,

where go,...,gm € Gand Yy, ..., Y1 € {Xq,..., Xn_1}, with the obvious multi-
plication operation. The homomorphism x extends uniquely to a homomorphism
¥ : G(X) — RE" into the semigroup of all functions f : R® — R (with respect
to the usual multiplication operation (fg)(€) = f(€)g(€), € € R™) such that for
all i < n, ¥(X;) is the ¢-th projection R* — R, i.e. Y(Xi){&o,...&€no1) = & for all
(€o,-..,6n_1) € R™. By a coding for G(X) with respect to x we shall mean an
orthogonal system

(2) | (k% (@), k(@) e (3

in the orthoring R for which the following two conditions hold:
a) for all ¢ € G(X) both of the series

(3) >kt (g9)k (9)

gEG
and :
(4) o kT (gs)k™(s)
SEG(XNG

are conventionally convergent; and
b) there is an element v € R such that

Tk*(9) = x(9)
for all g € G, and for all g € G(X)\ G
ch+(q) = 0.

The last condition b) can be replaced by the conventional convergence of the

series
> x(9)k(9).
134
Indeed, if this series is conventionally convergent, then we may take any sum of 1t

for 7 and the equalities in b) will follow from the definition of orthogonal system.
Conversely, if 7 satisfies b), then the last series coincides with

> kT (g)k ™ (9),
9€G

which is conventionally convergent by a) since 7 is left additive. The element T will
be called a starting element of the coding in question.
To every coding (2) we naturally assign two idempotent elements »" and »" of
R defined as the sums of the series
Y kN gkT(g) and Y k¥(s)k7(s),

9€G s€G(XNG

respectively, the existence of which is supposed in a). The element » = %’ + »” is
also idempotent and the codings (2), for which » = I, will be called complete. It
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follows from the above that for any starting element 7 of a coding (2) the equality

(5) re=1x =Y _ x(g)k (g)
geG
holds (where the last sum corresponds to the confinal supposed in condition a) for
the case ¢ = €); and for complete codings the starting element is unique.
In the sequel we shall usually have the homomorphism y fixed and we shall
write g for x(q).
Let G[Xq, ..., Xn-1] = G[X] be the set of all formal series of the form

P(X) = Wp(X),
pEM
where M C G(X), and for all p € M the element A, € R belongs to the center of
the orthoring R, i.e. commutes with all elements of R. Here in the set M a confinal
is supposed to be given, so that to the last series we assign a value

P& =) M)
: peM
for every n-tuple &€ = (&, ...,&u—1) € R™ for which the Jast sum, corresponding to
that confinal, exists in R. Consider a formal system of inequalities of the form
(6) P(X)< X;, i<n,
where ’ N L
PX) =Y Aipp(X)
PEMs
is a formal series in G[X] for all i < n. By a solution of the system (6) we mean

an n-tuple & € R" such that the values P,(£) exist and satisfy the inequalities

TN

P;(¢) <& in Rforalli < n.
An element p € R will be called a governing element of the system (6) with
respect to the coding (2) iff the equalities

(7) pkt(g) =0

and

®) pkT(tXig) = D Aipkt(tp)x(9)
PEM,

are satisfied for all ¢ € G, t € G(X) and i < n. Here the right hand side of
the last equality has to be understood as the sum corresponding to the confinal in
M;, which is supposed in the definition of formal series, and thus the existence of
the last sum is supposed in the definition of governing element. A necessary and
sufficient condition for the existence of governing element for (6) with respect to
(2) is the existence of the sum in (8) and the conventional convergence of the series

(9) S (S ekt @)k ().

i<n,teG(X), geG PEM.

Indeed, if the sum in (8) exists and (9) is conventionally convergent, then any sum
p of it satisfies (7) and (8). Conversely, if p is a governing element, then (9) is
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conventionally convergent, because it coincides with the series obtained from (4)
by putting ¢ = e and multiplying memberwise from left by p. We see as well that
the governing element p satisfies the equalities

(10) pr=px'= S (30 dpktn)x(e)) k (tXug),
@(n,t&t’}(j{-),g&G peM,;

where the external sum corresponds to the confinal supposed in the condition a)
for ¢ = e, and for complete codings p i1s unique.

Let p be a governing element for the system (6) with respect to the coding (2)
with a starting element 7. Then the inequality
(11) Tr+ {px < €,
which is a linear one with respect to &, will be called iterational inequality for (6).
For any two elements ¢, ¥ € R, by iferation of ¢ starting from ¢ we shall mean an

element ¥ € K such that
| Y+ Jp <Y

and for all o, & € R we have
ap +Ep <& = ad <¢.

Theorem 1. Let p be a governing element for the system (6) with respect to
a coding (2) for G(X) with « starting elemenl 7. If w 1s an ileration of px starting
from Tx, then the n-tuple -

wkT(X) = (wkt(Xo),...,wkT(Xn_1))
is the least solution of (6).in the set
E={{€R"| Z 7(&)k™ (q) is conventionally convergent },
qeG(X)
and for all g € G(X) it satisfies the equality
| H(wk* (X)) = wk*(q).
Conversely, if there is a solution of (6) in E, then the iterational inequality (11)

has a solution with respect to € in K.

Proof. Since by the Suppositions of the theorem w is the least solution of {11),
it should satisfy the equality 7# 4+ wpx = w, whence by a multiplication from right
we get

(12) x(g) = Tk {(g) = Txk (g) = Wk (9)
for all g € G, and
- (13) Y Apwk® (gp)x(g) = wpk™ (¢ Xig) = wk¥ (¢ Xig)
pEM;

for all g € G, ¢ € G(X) and i < n. Hence we get also that for all such g and ¢

(14) wk™(0)x(g) = wk™ (99).
Indeed, if ¢ € G, then by (12) we have

- wkt(gx(e) = x(a)x(9) = x(gg) = wk™(g9),
and if ¢ = ¢ X; ¢\, then using (13) we obtain
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wkr(q)x(g) = Y Apwk(a1ip)x(91)x(9)

PE:@I:'
= Y Apwk(1p)x(919) = wkT (g1 X g19) = wkT (gg).
pPEM,
We shall show that for all ¢,s € G(X)
(15) wk* gk (5) < wh (g5).

By condition a) in the definition of coding it follows that there are elements ( € R
such that for all s € G(X) the equality

CkH(s) = wh* (g5)
holds; such is, for instance, the element
C=wd kK ggk~(9)+w D kT (gs)k™(s).
geG s€EG(XNG
Taking an arbitrary such element ¢ and using (5), (10), (13) and (14), we have
Wk (g)T+ Cpx = wk™ ()72 + > ( > )prk*(fp)x(g)) k™ (tXig)

i<n,teG(X) geG PEM:

=wk'(q) Z x(g)k~(9) + Z < Z )ﬂika+(flf!})X(!I)) k™ (tXqg)

4e€G i<n,t€(}’(-f},g€(; peEM,
=Y wktaok () + D, wkT(atXighkT(tXig) = (',
9€G i<n,teG(X), g€G

where the last two sums correspond to the confinals D' and D", respectively, with
respect to which the series (3) and (4) are supposed to converge in condition a) for
the case ¢ = e. Since, however, the element (’ still satisfies ('k*(s) = wk™(gs) for
all monomials s, the above calculations hold for ¢’ as well and prove the equality

wkt(@Q)ra+px =,
whence by the definition of iteration it follows that
wkt(qw < ¢

and multiplying from right by &% (s), we obtain (15). Using (12), (14), (15) and a
simple induction on the degree of the monomial ¢ € G(X), we get the inequality

(16) Gwk* (X)) < wk*(q),

‘where wk(X) € R is (wk*(Xp),...,wkT(Xn_1)). Thence by the help of (13)
and conditions (ii) and (iii) in Section 1 it follows that wk*(X) is a solution of (6):
Piwkt (X)) = Y dpPwh™ (X)) < ) dpwk*(p) < wk(X;).

peEM, PEM,;
Moreover, by (16) the series
Y dwkt X))k (g)

g€ G(X)
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1s memberwise less or equal to

Y, wkt(g)k(q);
JEG(X)

and the last series converges with respect to the confinal {aUb|a e D' &b € D"},
as 1t follows in an obvious way from the convergence of the sums in the definitions of
®" and x” with respect to D’ and D", respectively, using the condition of continuity
of the addition +. Therefore by the same conditions (ii) and (iii) it follows that
wk*t(X) € E. To show that this solution is the least one in E, suppose that the
n-tuple £ = (o, ...,€n-1) € E is a solution of (6) in £, and let v be the element

qu(g)k“(gw Y. d@©k (9),
T 9€G A € G(X NG

where the last two sums correspond to the confinals D’ and D", respectively. The
existence of the second one of those sums [ollows from that for the sum in the
definition of the idempotent »'' by a memberwise multiplication from left by an
arbitrary sum ¢ of the series

ST GOk (a);
g€ G(X)

and the existence of the last sum is the condition € € . Then, using the supposition
that the elements y(g) are right additive, we have

TH+ VPN = TH + Z ( Z Aiﬂ“(@)k’(ﬁ)) ()

i<n,teG(X), 9€G PEM,

=t 3 (3 M lOREX) k(1 Xig)

i<n, LECG(X),g€G PEM;

=5 xlg)k(9) + Yo HOROx(@k (tXig)

J€G i<n,1€G(X), g€G
<Y xok 9+ Y, WDk (tXig) = v,
g€G i<n, teG(X), g€G

Hence by the definition of iteration w < v and

wkt (X)) < vkt (X)) = X:(§) = &,
which means that wk* (X) is the least solution of (6) in £. In the same time we have
shown that if (6) has a solution in E, then there 1s v € R such that 7%+ vpx < v.
Finally, taking wk™(X) for € and multiplying the inequality w < v from right by
k% (q), we obtain the reverse inequality of (16).

An important special case is that of orthorings in which the order “<” is just
the equality “=". In this case the system (6) and the inequality (11) become a
formal system of equations '

(17) Pi(X)=X;, i<n,
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and a linear equation (which we call iterational)
(18) Tr+Epr = £,

respectively. In this case from Theorem 1 (or rather by a trivial modification of its
proof} we obtain the following

Corollary 1. Let in the orthoring R ¢ < % be equivalent to ¢ = 3 for all
¢, ¥ € R and the conditions of Theorem 1 hold. If the equation

Epx=¢
has no non-zero solutions with respect to &, then the tterational equation (18) has
a solution w € R with respect to € iff the system (17) has a solution E(&g, ..., €n-1)
in the set E wn Theorem 1, and in the last case this solution of (17) ts unique and
is given by & = wkt(X;), i < n, and for all ¢ € G(X) it salisfies

H(wkt (X)) = wk* (g).

3. EXAMPLES AND APPLICATIONS

Example 1 (continued). In this example iterations exist always, i.e. for
every two elements ¢, € R there is an iteration of ¢ starting from ¢; and the
conditions of Theorem 1 hold for every finite system of the form (6) (i.e. such that
the sets M; are finite) with respect to arbitrary G and y. Usually, a multiplicative
subsemigroup of R, produced by a subset 3 C 2, is taken for (7, and the identical
embedding — for x. In this casc the members of the least solutions of finite systems-
of the form (6) are called recursive in B elements of R. The example is actually
well-known in the recursion theory and treats the first order recursion theory of
multivalued functions in possibly the most general domain; Theorem 1 implies
easily all basic results of the last theory for such functions.

Example 2 (continued). Define for any natural number n
nt = FTy and m™ =T_F"

It is not hard to see that all series of the form
oG
D g,
m=0

where ¢, € R for all natural m, are convergent in this example and have an unique
sum. Then every orthogonal system of the form (2} is, obviously, a coding, provided
all its members (k*(q), k~(q)) have the form (m*,m™) for a suitable natural m.
In this way, for every finite semigroup G one can easily construct codings, using
suitable numerations, and let us call such codings numerical. Therefore for numeri-
cal codings the set F in Theorem 1 will be the whole orthoring R; and by Corollary
1 with the trivial semigroup, consisting only of the unit ¢ for G, we obtain the
following proposition:

Suppose the left hand sides of the system (17) are polinomials with real coeffi-
cients, and let p be the sum of the series (9) with respect to a numerical coding (2).
If the equation

Ep=¢
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has an unique solution § = 0 in R, then the system (17) has a solution in R iff
the iterational equation Tx + Ep = £ has a solution w with respect to £, and in the
last case this solution of (17) is unique and is given by & = wk*(X;), i < n.

Example 3 (continued). Let G be the trivial semigroup {e} and let take
an 1sometrical orthogonal quadruple (T4.,7_, Fy, F_). The semigroup G(X) of
monomials of one variable X consists of powers X", especially X° is the unit e,
and we have the following coding for G(X):

Et(X™) =nt = FRTy, &7 (X")=mn~ =T_F".

The element T = T_ is a starting element for this coding. The series

(19) = i EH(X™E(X™) = f: mtm~
m=0 m=0

converges in the strong operator topology, because the operators m*, m™ are
orthogonal projections upon pairwise orthogonal subspaces of H. The same holds
for the series (4), because it may be obtained from (19) by a multiplication from
left by a suitable element of the form F§ and from right by F_ (all elements are
right additive in this example). In this case G[X] is the set of all formal power
series

(20) P(X)=) X"
' n=0
with scalar coefficients A,. As a corollary, we have the following

Proposition 1. Let the sum f(Fy) of the series

o

(21) | f(2) =) anz"

n=0

(where a,, are complex numbers) extst in the sensc of weak operator topology and
let the scalar unit 1 not belong to the spectrum of the operator f(Fy)F_x. Then
there ts an unique operator £ € R such that ||€|] < 1, f(€) exists in the same sense

and f(€) = €.

Indeed, if the value P(F,) of (20) exists, then it may be seen immediately

that the operator p = }’5(F+)F,. x 18 a governing element with respect to the above
coding for the system of one equation

(22) P(X)=X.
And since 1 does not belong to the spectrum of p, the last element has an itera-

tion starting from any element of R. Applying Corollary 1, we conclude that the
‘operator w1t where w is the unique solution of the iterational equation

T+ Epx=¢§
with respect to £, is the unique solution of (22) in the set

o0
E={€R] Z{”‘n"‘ converges in the weak operator topology}.

n=0
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By Theorem 1 it follows also that (w1)* = wn™ for all natural n. Using the last
equality, we see that the operator w1t belongs to the set

o0
E'={¢eR| Z nt(£*)" converges in the strong operator topology},

because
OO

En"*((wl* Zn"“(wn = Zn'{’n“w*.

n=0 n=0
Since E' C F, the operator wl? is the unique solution of (22) in E’. On the other
hand, for every invertible operator U € R we have U™1E'U C E’, as it follows
casily from Lemma 1. Hence we conclude that U/~'w1tU € E’ for any invertible
operaior U/, but since U~ 'wl*U is also bound to be a solution of (22), by the
uniqueness of the last solution in E’ it follows that U~ lwl*lU = wl? ie. wl?t
commutes with all invertible operators and therefore w1t = ¢f for a scalar ¢. Since

OO
cl € E',ie. 5 ¢"nt converges in the strong operator topology, by Lemma 1 the
n=0

o0
series > |c|*" converges and therefore |¢| < 1, whence |[w1t]| < L.
n=0 .
Applying Corollary 1 to other codings, we obtain other propositions of that
kind. Consider, for instance, the following one.

Proposition 2. Let ! be a natural number and for (21) we have the imequality
o0
(41> T anl” < 1.
n=0

Then the function f has an unique fized point £g in the ball
e Rl <+ 173,

which 1s of the form &y = ¢l for a switable scalar c.

Indeed, consider the semigroup G consisting of [ + 1 elements eg, ..., ¢; with
the following multiplication law: ¢;e; = Cmax(i,j ) and let x : G — {I} be t;he trivial
homomorphism. Suppose

. ( + 1., F+(60), F_(e()), Ce F+(8I)3 F—(ei'))
is an isometrical orthogonal system in R, consisting of { 4+ 2 pairs of operators. To
each monomial
(23) | g=goX¢1 .. .gn-1Xgn
in G(X) we assign the operator W= (q) = F_(go)...F-(gn) and define W+(q) =
(W=(q))", kt(q) = Wt(¢)T+ and k= (¢) = T-W~(q). Using Lemma 1, it is easy
to show that the orthogonal system (k*(q), k7 (¢))sec(x) is a coding for G(X)
with respect to y. Indeed, condition b) in the definition of coding is fulfilled with
r=T.5 F_(e;). By Lemma 1 the series

i<l
Z kt(s)k™ (gs),

SEG(XNG
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which is adjoint to (4), converges in the strong operator topology iff for all x € H °

converges the series
>0 Ik (gs)zl?,
sEG{XNG

which, since the operators k*(q) are isometrical, is the same as
> kT (go)k (gs)all?,

SEG(XNG

and the sum of the last series is obviously not greater than I||z]|2. Thus we see that

(4) converges in the weak operator topology, i.e. condition a) in the definition of
coding holds. A monomial of the form (23) will be called regular iff g = ¢; and
et € {91,.-.,9n}. Denote by M the set of all regular monomials in G(X) and let
for every regular monomial p(X) of degree n define A, = {~"a,,. Since the number

of regular monomials of degree n is (™, the value :‘5(6) of the formal series
P(X)= ) Ap(X)
pEM

with respect Lo y is just the sum f(€) of (21) for the operator € in the sense of the
weak operator topology. But the system

(W*(p), W™ (p))pem

is an orthogonal one, whence by Lemma | and the inequality, assumed in Proposi-
tion 2, we conclude that the series V

Y= Z Ap W+ (p)
pPEM »
converges in the strong operator topology; and for the sum ¥ of this series we have
[l = 1l
pEM
because the vectors W (p)z, p € M, are pairwise orthogonal for all z € H. Now

define
p=w(TyT-+ %)y Y F-(WF-(g),

gEG heG
where x is the projection
(24) x= Y kM(gk (q).
geG(X)

We shall show that p i1s a governing element for the equation P(X) = X with
respect to the coding in question. The equality (7) is obvious for this p, and to see
(8), we have to consider two cases for the monomial ¢ € G(X): |

Case 1) g=h € G. Then '

pk* (X g) = pFy(9)Fe ()T = (T3 T- + 0Ty = 9T}

= ST MWEHETE = Y LWHEDTL = Y Akt (ep),
peM pEM peEM

126



because p = hp for any regular monomial p.
Case 2) ¢ = qoXh for some q9 € G(X) and h € (5. Then, as in the first
case,

Pk (X g) = pFe(g) Fr (MW (go)Ty = (T4 T- + )W (q0)Ty
= Y NWHOW ()T = Y MWH )W (q0)Ty = Y Akt (gp).
peEM peEM peM

So pis indeed a governing element. On the other hand, since the operator 74 T_ + x
15 an orthogonal projection, we have

ol < AT + 0l 30 0 e E @) = o+ 02l

‘ g€G heG
o & foe) .
R DR (R VD WD S P M L (S DR S s A
peM n=0 peM,degp=n n=0

and by the assumptions of the Proposition 2 ||p|| < 1. Therefore the iterational
equation has an unique solution w and by Corollary 1 the operator wkt(X) is
the unique solution of P(X) = X in the set E of all operators £ € R for which
5= q(€)k~(q) is conventionally convergent in R, ie. in the weak operator
9€G(X)
topology. We see as above that this set E contains the set £’ of those opera-
tors £ for which the adjoint of the last series converges in the strong operator
topology. Using again Theorem 1 and the strong convergence of the series in (24),
we conclude that wk*(X) € £'. By Lemma 1 the set £/ coincides with the set of
all operators € for which the series :

ST @) |

geG(X)

converges for all vectors z. Hence it follows that U1E'lJ C £’ for every invertible
operator U and therefore wk™ (X)) commutes with every such operator, which shows
that wk*(X) = ¢! for-a suitable scalar ¢. By the convergence of the last series with

¢l for € it follows that S (I + 1)'*t!|¢|* also converges, whence [c| < (I + 1)71/2.
t=0

The last characterization of the set £’ shows also that it contains the ball {{ € R |
ll€]l < (14 1)71/2}, whence we get all the conclusions of Proposition 2.

An n-dimensional variant of the last proposition holds as well. Its proof differs
from the above one only in trivial details and we shall give here its formulation only.
For that purpose we use the following notations: for every n-tuple w = (ig,...,in-1)

of natural numbers and every n-dimensional vector z = (zo,...,2n-1) (20, ...,
. o i ine : :
zn—) being complex numbers) define z% = z°z)' ... 2”7}, [w|=do+ - -+ i,-1 and

(w)' = th S énwl?.
Proposition 2'. Let for a system of n series of the form

fi(z) = Z iwz”, 1< mn,
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we have the inequality

S S (1)) (w)lfas? < 1.

1<n weN"
Then the system of equations

filo, ... 6n1) =&, i<m,

has an unique solution in operators (€g,...,.En—1) € R" for which

Dl < @+ 7!
t<n
and this solution 1s of the form (col, ..., cn-1l), where cg, ..., cn_y are scalars.

Some other propositions of this kind can be obtained by using suitable infinite
semigroups for G.

Finally, let us note thai the method used in the present paper is applicable
in various situations. For instance, it holds quite well, promising interesting appli-
cations, for orthorings with an additional binary operation having the properties
of tensor product. The last orthorings are for the combinatory spaces [2] approx-
imately the same what the orthorings in the present paper are for the operative
spaces [1]. It is a more complicated question whether the code evaluation theorem
holds under not very restrictive suppositions for orthorings with wvolution. Here
the technique of iterative extensions in the algebraic recursion theory may provide
the necessary tool. Perhaps the further investigations will throw more light over
this situation.
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