годишник на софийския университет _"св. климент охридски_"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Tom 104

 $\begin{array}{c} \text{ANNUAL OF SOFIA UNIVERSITY }, \text{ST. KLIMENT OHRIDSKI''} \end{array}$

FACULTY OF MATHEMATICS AND INFORMATICS Volume 104

ON A DIFFERENTIAL INEQUALITY

ROSSEN NIKOLOV

We show that the existing methods for estimating the distance of a two-dimensional normed space with modulus of smoothness of power type 2 to the Euclidean space generated by the John sphere of the former, are not exact. To this end, we construct a class of simple counterexamples in the plane.

Keywords: Banach spaces geometry, moduli of convexity and smoothness, Banach–Mazur distance.

2000 Math. Subject Classification: 46B03, 46B20.

1. INTRODUCTION

The moduli of convexity and smoothness of a Banach space X :

$$
\delta_X(\varepsilon) := \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| = \|y\| = 1, \|x - y\| = \varepsilon \right\}, \quad 0 \le \varepsilon \le 2,
$$

and

$$
\rho_X(\tau) := \sup \left\{ \frac{\|x + \tau y\| + \|x - \tau y\| - 2}{2} : \|x\| = \|y\| = 1 \right\}, \quad \tau \ge 0,
$$

respectively, are fundamental concepts in Banach space theory. The duality between them is given by Lindenstrauss formula, see e.g. [6, p. 61]

$$
\rho_{X^*}(\tau) = \sup \left\{ \frac{\tau \varepsilon}{2} - \delta_X(\varepsilon) : 0 \le \varepsilon \le 2 \right\}.
$$

According to the Nordlander Theorem $[7]$, a Hilbert space H is in a sense the most convex and the most smooth among Banach spaces, that is, for any Banach space X

$$
\delta_X(\varepsilon) \le \delta_H(\varepsilon) = 1 - \sqrt{1 - \varepsilon^2/4} = \varepsilon^2/8 + \mathcal{O}(\varepsilon^4)
$$

and

$$
\rho_X(\tau) \ge \rho_H(\tau) = \sqrt{1 + \tau^2} - 1 = \tau^2/2 + \mathcal{O}(\tau^4).
$$

The Taylor expansion is written down not only for sake of greater clarity, but also because the asymptotic behaviors at 0 play an important role.

For technical reasons, further we concentrate on the asymptotic behavior at 0 of the modulus of smoothness. The results concerning the modulus of convexity can be derived through the Lindenstrauss formula.

Let $a \geq 0$ and let \mathcal{X}_a be the class of all Banach spaces X such that

$$
\rho_X(\tau) = \frac{1 + a}{2}\tau^2 + o(\tau^2).
$$

Several authors independently showed that \mathcal{X}_0 contains only Hilbert spaces [5, 9, 8].

So, it stands to reason that for small $a > 0$ the spaces in \mathcal{X}_a might be close to a Hilbert space in some sense. This is indeed so and the sense is made precise below.

Recall that the Banach-Mazur distance between two isomorphic Banach spaces Y and Z is given by

$$
d(Y, Z) = \inf\{\|T\|.\|T^{-1}\| : T : Y \to Z \text{ arbitrary isomorphism}\}.
$$

Now, for a Banach space X one defines

$$
d_2(X) := \inf \{ d(Y, l_2^{(2)}) : Y \subset X, \dim Y = 2 \},\
$$

where $l_2^{(2)}$ denotes the two-dimensional Hilbert space, or, in other words, the Euclidean plane.

Obviously, $d_2(X)$ measures how far from an ellipse the two-dimensional sections of the sphere of X are. The famous Jordan-von Neumann Theorem [3] reads $d_2(X) = 1$ if and only if X is a Hilbert space. The measure $d_2(X)$ is very useful for estimating the type and cotype of X .

The standard way of estimating $d_2(X)$ is through the use of the John Sphere, [4]. In the pioneering work [4] John showed that $d_2(X) \leq \sqrt{2}$ for any X.

Elaborating on this idea, let Y be a two-dimensional space. It is clear that there is an ellipse, say \mathcal{E} , of maximal volume contained in the unit ball of Y. Define

$$
j(Y) := \max_{x \in \mathcal{E}} \|x\|^{-1}.
$$
 (1)

Then, of course,

$$
d_2(X) \le \sup\{j(Y): Y \subset X, \dim Y = 2\}.
$$

Let for $a \geq 0$

$$
g(a) := \sup\{j(Y): Y \in \mathcal{X}_a, \dim Y = 2\}.
$$

Then

$$
d_2(X) \le g(a), \quad \forall a \ge 0, \ \forall X \in \mathcal{X}_a.
$$

From the above considerations we know that $g(0) = 1$. Rakov [8] estimated $j(Y)$ for $Y \in \mathcal{X}_a$, his estimate as $a \to 0$ reads

$$
g(a) \le 1 + k\sqrt{a}
$$

with some constant k which is not important here. An asymptotically sharp estimate was given in $[1, 2]$:

$$
g(a) \le 1 + \frac{a}{\sqrt{2} + (1 + \sqrt{2})a}.\tag{2}
$$

From the method of [1, 2] it is not clear if (2) is exact. In this work we show that it is not.

We will explain briefly the method of [1, 2].

Let Y be a two-dimensional space in \mathcal{X}_a for some $a > 0$. We may assume that Y is realized in such a way in \mathbb{R}^2 that the unit circle $x_1^2 + x_2^2 = 1$ of \mathbb{R}^2 is the John sphere of X. Denote the standard basis of \mathbb{R}^2 by $e_1 = (1,0)$ and $e_2 = (0,1)$. Define

 $r(\sigma) := \|e_1 \cos \sigma + e_2 \sin \sigma\|.$

Then in this polar annotation the unit sphere S_Y of Y is

$$
S_Y = \left\{ \frac{1}{r(\sigma)} (\cos \sigma, \sin \sigma) : \ \sigma \in [-\pi, \pi] \right\}.
$$

If $x, y \in S_Y$, $x = r^{-1}(\theta)(e_1 \cos \theta + e_2 \sin \theta)$, $y = r^{-1}(\varphi)(e_1 \cos \varphi + e_2 \sin \varphi)$, then Lemma 3.2 from [1] states that if $r''(\theta)$ exists, then

$$
\lim_{\tau \to 0} \frac{\|x + \tau y\| + \|x - \tau y\| - 2}{\tau^2} = \frac{\sin^2(\theta - \varphi)}{r^2(\varphi)} r(\theta)(r(\theta) + r''(\theta)).
$$

Since $Y \in \mathcal{X}_a$ we have that for almost all $\theta \in [0, 2\pi]$

$$
\sup_{\varphi \in [0,2\pi]} \frac{\sin^2(\theta - \varphi)}{r^2(\varphi)} r(\theta)(r(\theta) + r''(\theta)) \le 1 + a. \tag{3}
$$

From John Theorem it follows that on each arc of the unit circle of length $\pi/2$ there is a contact point, that is such that $r = 1$. Therefore, without loss of generality, there is $\alpha \in (0, \pi/2]$ such that

$$
r(0) = r(\alpha) = 1,\tag{4}
$$

 $j(Y) = \max_{\theta \in [0,\alpha]}$ 1 $r(\theta)$. (5)

So, we may consider the system (3) , (4) and try to estimate $j(Y)$.

However, with φ in (3) the problem is non-local and probably very difficult. In order to handle it [1, 2] substitute $\varphi = \theta + \pi/2$ and use $r(\varphi) \leq 1$ to derive from (3)

$$
r(\theta)(r(\theta) + r''(\theta)) \le 1 + a \quad \text{for almost all } \theta \in [0, 2\pi].
$$
 (6)

Then the system (6), (4) is used to estimate $j(Y)$ through (5).

We will demonstrate that for a close to zero the outlined approach can never produce the exact value of sup $j(Y)$ for $Y \in \mathcal{X}_a$, denoted above as $g(a)$.

For sake of clarity, for $a \geq 0$ denote by G_a the class of all π -periodic functions $r = r(\theta), 0 \leq \theta \leq \pi$, such that

- (i) $0 < r(\theta) \le 1$, $r(0) = r(\pi/2) = 1$;
- (ii) $r'(\theta)$ is absolutely continuous and $0 \le r(\theta)(r(\theta) + r''(\theta)) \le 1 + a$ almost everywhere;
- (iii) the region B_r inside the curve

$$
S_r = \left\{ \frac{1}{r(\theta)} (\cos \theta, \sin \theta) : \ \sigma \in [-\pi, \pi] \right\}
$$

is convex.

(It is easy to check that (iii) follows from $r + r'' \ge 0$, which is contained in (ii), but we do not need this fact.)

Finally we introduce the class F_a of all π -periodic functions, which satisfy (i), (ii), (iii) and additionally

$$
(\mathrm{iv})
$$

$$
\sup_{\varphi,\theta} \frac{\sin^2(\varphi - \theta)}{r^2(\varphi)} r(\theta) (r(\theta) + r''(\theta)) = 1 + a.
$$

It is clear that $F_a \subset G_a$.

Theorem 1.1. *There exist an interval I and a class* $X_a (\mathbb{R}^2, ||.||_a) \in X_a$, $a \in I$ *of Banach spaces, such that for all* $a \in I$ *there are* $b = b(a) > a$ *which satisfy:*

$$
(i) \ r_b \in G_a, \ r_b \in F_b, \ r_b \notin F_a;
$$

$$
(ii) \qquad \qquad 1
$$

$$
\max_{\sigma} \frac{1}{r_a(\sigma)} = d_2(X_a) < \max_{\sigma} \frac{1}{r_b(\sigma)} = d_2(X_b),
$$

142 *Ann. Sofia Univ.*, *Fac. Math and Inf.*, 104, 2017, 139–153.

and

where $r_a(\sigma) = \|\cos \sigma e_1 + \sin \sigma e_2\|_a$, $r_b(\sigma) = \|\cos \sigma e_1 + \sin \sigma e_2\|_b$.

2. CONSTRUCTION OF A CLASS OF TWO-DIMENSIONAL SPACES

Pick $\lambda \in [0, 1]$ and set $\mu = 1 - \lambda$, $\nu = 2\mu^2 - \lambda^2 = \lambda^2 - 4\lambda + 2$. For $\theta_1, \theta_2 = \pm 1$ we denote with D_{θ_1, θ_2} the Euclidean disk of radius λ centered at $O_{\theta_1,\theta_2} = (\theta_1\mu, \theta_2\mu)$, i.e.

$$
D_{\theta_1, \theta_2} = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : (x_1 - \theta_1 \mu)^2 + (x_2 - \theta_2 \mu)^2 \le \lambda^2 \right\}.
$$

Also let

$$
C_{\theta_1, \theta_2} = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : (x_1 - \theta_1 \mu)^2 + (x_2 - \theta_2 \mu)^2 = \lambda^2 \right\}.
$$

and

$$
D = D_{1,1} \cup D_{1,-1} \cup D_{-1,1} \cup D_{-1,-1}, \quad B_{\lambda} = conv D
$$

We can say that B_{λ} is a rotund square (see Figure 1). Clearly B_1 is the unit (Euclidean) disk.

Ann. Sofia Univ., *Fac. Math and Inf.*, 104, 2017, 139–153. 143

It is easy to see that $B_0 = Q$ where Q is the unit square, i.e.

$$
Q = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1| \le 1, |x_2| \le 1\}.
$$

We set $Y_{\lambda} = (\mathbb{R}^2, ||.||_{\lambda})$, where $||.||_{\lambda}$ is the Minkowski functional of B_{λ} , i.e.

$$
||x||_{\lambda} = \inf \left\{ t > 0 : \frac{x}{t} \in B_{\lambda} \right\}.
$$

Since B_{λ} is symmetric with respect to the coordinate system, the line $x_1 =$ x_2 and the origin $O(0,0)$, we have that $(x_1, x_2), (\theta_1 x_1, \theta_2 x_2) \in B_\lambda, \theta_1, \theta_2 = \pm 1$ provided $(x_2, x_1) \in B_\lambda$. So

$$
||x_2e_1 + x_1e_2||_{\lambda} = ||\theta_1x_1e_1 + \theta_2x_2e_2||_{\lambda},
$$

where e_1, e_2 is the unit vector basis in \mathbb{R}^2 , $e_1 = (1, 0), e_2 = (0, 1)$.

This implies monotonicity of the basis, i.e. $||x_1e_1 + x_2e_2||_\lambda \le ||y_1e_1 + y_2e_2||_\lambda$ whenever $|x_1| \le |y_1|, |x_2| \le |y_2|$.

Let us mention that $d\left(Y_\lambda, l_2^{(2)}\right)$ is the radius of the circumcircle of B_λ centered at the origin. Thus

$$
d_2(Y_\lambda) = d\left(Y_\lambda, l_2^{(2)}\right) = R = \sqrt{2}\mu + \lambda = \sqrt{2} + \left(1 - \sqrt{2}\right)\lambda.
$$

In order to find the asymptotic behavior of $\rho_{Y_{\lambda}}(\tau)$ at O, we need an explicit formula for the norm of Y_λ . Fix $\lambda \in (0,1]$. Further we omit the index λ , i.e. we write Y instead of Y_{λ} , ||...|| instead of $\|\cdot\|_{\lambda}$, B and S stand for the unit ball and the unit sphere of Y_{λ} . Let $x = (\rho \cos \sigma, \rho \sin \sigma)$ be the representation of $x \in \mathbb{R}^2$ in polar coordinates. We set $\sigma = \arg x$. Having in mind the symmetry of B, it is enough to find an explicit formula for $||x||$, $x = (x_1, x_2)$, when $0 \le x_1 \le x_2$, i.e. $\frac{\pi}{4} \le \arg x \le \frac{\pi}{2}$. Denote by $z(\mu, 1)$ the unique common point of the circle

$$
C_{1,1} = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 - \mu)^2 + (x_2 - \mu)^2 = \lambda^2\}
$$

and the straight line $l = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 1\}.$

Set $\gamma = \arg z$. Obviously $\frac{\pi}{4} < \gamma \leq \frac{\pi}{2}$ and $||x|| = x_2$ for all points x with $\arg x \in [\gamma, \frac{\pi}{2}]$. If $x \in [\frac{\pi}{2} - \gamma, \gamma]$, then the vector $x/||x||$ belongs to the circle $C_{1,1}$. Setting $f(x_1, x_2) = ||x|| = ||(x_1, x_2)||$, we obtain

$$
\left(\frac{x_1}{f} - \mu\right)^2 + \left(\frac{x_2}{f} - \mu\right)^2 = \lambda^2.
$$

Calculating the roots of the above equation we get :

$$
f(x_1, x_2) = \begin{cases} \frac{1}{\nu} \left(\mu(x_1 + x_2) - \sqrt{\lambda^2(x_1^2 + x_2^2) - \mu^2(x_1 - x_2)^2} \right), & \lambda \neq 2 - \sqrt{2} \\ \frac{1}{2\mu} \left(x_1 + x_2 - \frac{2x_1 x_2}{x_1 + x_2} \right), & \lambda = 2 - \sqrt{2}. \end{cases}
$$

So :

$$
||x|| = \begin{cases} x_1 & \text{if } 0 \le \arg x \le \frac{\pi}{2} - \gamma \\ f(x_1, x_2) & \text{if } \frac{\pi}{2} - \gamma \le \arg x \le \gamma \\ x_2 & \text{if } \gamma \le \arg x \le \frac{\pi}{2}. \end{cases}
$$

We mention here that the function f is defined not only on the sector $\left\{x\in\mathbb{R}^2: \frac{\pi}{2}-\gamma\leq \arg x\leq \gamma\right\}.$ Actually f is defined on the set

$$
E = \left\{ x \in \mathbb{R}^2 : \lambda^2 (x_1^2 + x_2^2) \ge \mu^2 (x_1 - x_2)^2 \right\} \supset \left\{ x \in \mathbb{R}^2 : \frac{\pi}{2} - \gamma \le \arg x \le \gamma \right\}.
$$

It is easy to see that $E \supset \{x \in \mathbb{R}^2 : 0 \le \arg x \le \frac{\pi}{2}\}$ for $\lambda \ge 1/2$, while

$$
E = \left\{ x \in \mathbb{R}^2 : k_1 \le \frac{x_2}{x_1} \le k_2 \right\},\
$$

where $k_1 < k_2$ are the roots of

$$
(\mu^2 - \lambda^2) k^2 - 2\mu^2 k + (\mu^2 - \lambda^2) = 0 \text{ for } 0 < \lambda < 1/2.
$$

Fact 2.1. For all $x \in E$ we have:

- *(i)* $f(x) \ge ||x||$ *for* $x \in E \cap \{x : 0 \le \arg x \le \frac{\pi}{2}\}\$
- (*ii*) If $x(x_1, x_2) \in S \cap \{x : \frac{\pi}{2} \gamma \leq \arg x \leq \gamma\}$, then

$$
f''_{11}(x_1, x_2) = \frac{\lambda^2 x_2^2}{g(x_1, x_2)}; \quad f''_{12}(x_1, x_2) = -\frac{\lambda^2 x_1 x_2}{g(x_1, x_2)}; f''_{22}(x_1, x_2) = \frac{\lambda^2 x_1^2}{g(x_1, x_2)},
$$

where $g(x_1, x_2) = (\mu(x_1 + x_2) - \nu)^3$.

Proof. We prove only (i). Since $f(x_1, x_2)$ is homogeneous, i.e. $f(kx_1, kx_2)$ $kf(x_1, x_2)$ for all $k > 0$, it suffices to check (i) only for $x \in S$.

If $x \in \{u \in \mathbb{R}^2 : \frac{\pi}{2} - \gamma \le \arg u \le \gamma\}$, then $f(x) = 1 = ||x||$.

If $x \in E \cap \{u \in \mathbb{R}^2 : \gamma \le \arg u \le \frac{\pi}{2}\},\$ then $x_2 = 1$. From $\left(\frac{x_1}{f}, \frac{x_2}{f}\right) \in C_{1,1}$ it follows $\frac{1}{f} < 1$, i.e. $f(x) = f(x_1, x_2) > 1 = ||x||$.

Set

$$
\Delta_2(x, y, \tau) = \frac{1}{2} (||x + \tau y|| + ||x - \tau y|| - 2||x||).
$$

Evidently,

$$
\rho_Y(\tau) = \sup \{ \Delta_2(x, y, \tau) : x, y \in S \}.
$$

Due to the symmetry of S :

$$
\rho_Y(\tau) = \sup \left\{ \Delta_2(x, y, \tau) : x, y \in S, \arg x \in [\frac{\pi}{4}, \frac{\pi}{2}] \right\}.
$$

Fact 2.2. Let $x, y \in S$, $\arg x \in [\gamma, \frac{\pi}{2}], |\tau| \leq \frac{\mu}{2}$. Then

$$
\Delta_2(x, y, \tau) \le \Delta_2(z, y, \tau).
$$

Proof. Since $||y|| = 1$, we get $|y_1| \leq 1$. So $|\tau y_1| \leq \frac{\mu}{2}$. Since $\arg x \in [\gamma, \frac{\pi}{2}]$, we have $0 \le x_1 \le \mu$ and $x_2 = 1$, $|x_1 \pm \tau y_1| \le \mu \pm \tau y_1$. The monotonicity of the basis implies:

$$
||x \pm \tau y|| = ||(x_1 \pm \tau y_1)e_1 + (1 \pm \tau y_2)e_2||
$$

\n
$$
\le ||(\mu \pm \tau y_1)e_1 + (1 \pm \tau y_2)e_2|| = ||z \pm \tau y||.
$$

˜

Corollary 2.3. *If* $|\tau| \leq \frac{\mu}{2}$ *, then*

$$
\rho_Y(\tau) = \sup \{ \Delta_2(x, y, \tau) : x \in A, y \in S \},\
$$

where A is the arc{ $x \in S$, $\frac{\pi}{4} \le \arg x \le \gamma$ }.

Proposition 2.4. *The following estimate holds:*

$$
\overline{\lim_{\tau \to 0}} \frac{\rho_Y(\tau)}{\tau^2} \le \frac{\lambda^2}{2} \sup \left\{ \left| \begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right|^2 \frac{1}{g(x_1, x_2)} : x \in A, y \in S \right\}.
$$

Proof. Pick a convex compact set $F \subset E$ such that its interior contains the arc A. Choose $\tau_F \in (0, \frac{\mu}{2})$ in such a way that $x \pm \tau y \in F$ whenever $x \in A$, $y \in S$, $|\tau| \leq \tau_F$.

Set

$$
\Delta_2 f(x, y, \tau) = \frac{1}{2} (f(x + \tau y) + f(x - \tau y) - 2f(x)).
$$

From Fact 2.1(i) we have

$$
f(x \pm \tau y) \ge ||x \pm \tau y||
$$
, $x \in A$, $y \in S$, $|\tau| \le \tau_F$.

Since $f(x) = ||x||$ for $x \in A$ we get

$$
\Delta_2(x, y, \tau) \le \Delta_2 f(x, y, \tau)
$$

whenever $x \in A$, $y \in S$, $|\tau| \leq \tau_F$. Using that, we get for $\tau \in (0, \tau_F]$

$$
\rho_Y(\tau) \le \sup \left\{ \Delta_2 f(x, y, \tau) : x \in A, y \in S \right\}.
$$

Take $x \in A$, $y \in S$. Applying Taylor's formula to $\varphi(\tau) = f(x + \tau y) - f(x)$ and $\psi(\tau) = f(x - \tau y) - f(x)$, we can find $\theta_1 = \theta_1(x, y, \tau)$, $\theta_2 = \theta_2(x, y, \tau) \in (0, 1)$ in such a way that

$$
\frac{\Delta_2 f(x, y, \tau)}{\tau^2} = \frac{1}{4} \left\{ \left(f''_{11}(x + \theta_1 \tau y) y_1^2 + 2 f''_{12}(x + \theta_1 \tau y) y_1 y_2 + f''_{22}(x + \theta_1 \tau y) y_2^2 \right) \right\} \n+ \frac{1}{4} \left\{ \left(f''_{11}(x + \theta_2 \tau y) y_1^2 + 2 f''_{12}(x + \theta_2 \tau y) y_1 y_2 + f''_{22}(x + \theta_2 \tau y) y_2^2 \right) \right\}.
$$

Having in mind that the second derivatives are uniformly continuous on F , we get :

$$
\overline{\lim}_{\tau \to 0} \frac{\rho_Y(\tau)}{\tau^2} \le \frac{1}{2} \left\{ \left(f''_{11}(x) y_1^2 + 2 f''_{12}(x) y_1 y_2 + f''_{22}(x) y_2^2 : x \in A, y \in S \right) \right\}
$$

To finish the proof, it is enough to use Fact 2.1 (ii).

$$
\qquad \qquad \Box
$$

Lemma 2.5. *Let* $x = (x_1, x_2) \in A$ *. Then*

$$
\sup_{(y_1, y_2) \in S} \left| \begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right|^2 = \left(\mu(x_1 + x_2) + \lambda \sqrt{x_1^2 + x_2^2} \right)^2.
$$

Proof. The determinant represents the oriented area of the parallelogram, defined by the vectors x and y. Therefore, for a fixed x, the left-hand side achieves its greatest value when the distance from the point (y_1, y_2) to the support of the vector x is maximal. This is satisfied for some $\bar{y} \in C_{1,-1} \cap S$ or $\bar{y} \in C_{-1,1} \cap S$. Without loss of generality we assume that $\bar{y} \in C_{1,-1} : (s - \mu)^2 + (t + \mu)^2 = \lambda^2$. The tangent to $C_{1,-1}$ at the point (\bar{y}_1, \bar{y}_2) is parallel to the support of x, i.e. the normal to $C_{1,-1}$ is orthogonal to x. Therefore the scalar product $\langle v, x \rangle = 0$, where $v = (\bar{y}_1 - \mu, \bar{y}_2 + \mu)$. We get for \bar{y}_1, \bar{y}_2 the system:

$$
\begin{vmatrix} x_1(\bar{y}_1 - \mu) + x_2(\bar{y}_2 + \mu) = 0 \\ (\bar{y}_1 - \mu)^2 + (\bar{y}_2 + \mu)^2 = \lambda^2 \end{vmatrix}
$$

with solution:

$$
\begin{cases} \bar{y}_1 = \mu + \frac{\lambda x_2}{\sqrt{x_1^2 + x_2^2}} \\ \bar{y}_2 = -\mu - \frac{\lambda x_1}{\sqrt{x_1^2 + x_2^2}} \end{cases}
$$

Hence,

$$
\begin{vmatrix} x_1 & x_2 \ \bar{y}_1 & \bar{y}_2 \end{vmatrix} = x_1 \bar{y}_2 - x_2 \bar{y}_1 = -\mu(x_1 + x_2) - \lambda \sqrt{x_1^2 + x_2^2}.
$$

Proposition 2.6. *Let* $0 < \lambda < 2 - \sqrt{2}$ *. Then*

$$
\overline{\lim_{\tau \to 0}} \, \frac{\rho_Y(\tau)}{\tau^2} \le \frac{1}{2} h(\lambda),
$$

where

$$
h(\lambda) = \frac{1}{\lambda} \left(\lambda^2 - 3\lambda + 2 + \lambda \sqrt{\lambda^2 - 2\lambda + 2} \right)^2.
$$

Proof. From Proposition 2.4 and Lemma 2.5 it follows

$$
\overline{\lim_{\tau \to 0}} \frac{\rho_Y(\tau)}{\tau^2} \le \frac{\lambda^2}{2} \sup \left\{ \frac{\left(\mu(x_1 + x_2) + \lambda \sqrt{x_1^2 + x_2^2}\right)^2}{g(x_1, x_2)} : (x_1, x_2) \in A \right\},\
$$

where $g(x_1, x_2) = (\mu(x_1 + x_2) - \nu)^3$ is defined in Fact 2.1. For brevity, we denote

$$
M(x_1, x_2) = \frac{\left(\mu(x_1 + x_2) + \lambda\sqrt{x_1^2 + x_2^2}\right)^2}{g(x_1, x_2)}.
$$

On the arc A we have :

$$
x_1^2 + x_2^2 - 2\mu(x_1 + x_2) + 2\mu^2 = \lambda^2,
$$

i.e.

$$
x_1^2 + x_2^2 = 2\mu(x_1 + x_2) - (2\mu^2 - \lambda^2) = 2\mu(x_1 + x_2) - \nu.
$$

Set $\sqrt{x_1^2 + x_2^2} = t$, then $\mu(x_1 + x_2) = \frac{t^2 + \nu}{2}$, and after substituting we get

$$
M(x_1, x_2) = \frac{\left(\frac{t^2 + \nu}{2} + \lambda t\right)^2}{\left(\frac{t^2 + \nu}{2} - \nu\right)^3} = \frac{2\left(t^2 + 2\lambda t + \nu\right)^2}{\left(t^2 - \nu\right)^3}.
$$

We need to examine the function

$$
m(t) = \frac{(t^2 + 2\lambda t + \nu)^2}{(t^2 - \nu)^3}.
$$

By the cosine formula we get

$$
\sqrt{1+\mu^2} \le t \le \sqrt{2}\mu + \lambda = \sqrt{2} + (1-\sqrt{2})\lambda.
$$

The left-hand side expression represents the distance from the origin $O(0,0)$ to $z(\mu, 1)$, while the right-hand side expression is the distance to the middle of arc A. From

$$
t^2 \ge 1 + \mu^2 = \lambda^2 - 2\lambda + 2 > \lambda^2 - 4\lambda + 2 = \nu
$$

it is clear that $m(t)$ is defined in this interval. Calculating m' and simplifying, we obtain:

$$
m'(t) = -\frac{2\left(t^2 + 2\lambda t + \nu\right)\left(t^3 + 4\lambda t^2 + 5\nu t + 2\lambda \nu\right)}{\left(t^2 - \nu\right)^4}.
$$

We now show that $m' < 0$ for $0 < \lambda < 2 - \sqrt{2}$, i.e. m is decreasing in the interval $I = \left[\sqrt{1 + \mu^2}, \sqrt{2} + (1 - \sqrt{2})\lambda\right]$. Obviously $I \subset [1, \sqrt{2}]$. The quadratic polynomial $u(t) = t^2 + 2\lambda t + \nu$ is increasing in $[-\lambda, \infty]$, whence

$$
u(t) > u(1) = 1 + 2\lambda + \lambda^2 - 4\lambda + 2 = \lambda^2 - 2\lambda + 3 \ge 2 > 0.
$$

Obviously $\nu = \lambda^2 - 4\lambda + 2 > 0$. It follows that the coefficients of $v(t) = t^3 + 4\lambda t^2 +$ $5\nu t + 2\lambda \nu$ are positive, which implies $v(t) > 0$ when $t \in I$. Finally, in order to find the greatest value of M we use :

$$
1 + \mu^2 + \nu = 1 + (1 - \lambda)^2 + 2(1 - \lambda)^2 - \lambda^2 = 2\lambda^2 - 6\lambda + 4,
$$

$$
1 + \mu^2 - \nu = 1 + (1 - \lambda)^2 - 2(1 - \lambda)^2 + \lambda^2 = 2\lambda,
$$

i.e.

$$
M(\mu, 1) = 2m\left(\sqrt{1 + \mu^2}\right) = \frac{2\left(1 + \mu^2 + 2\lambda\sqrt{1 + \mu^2} + \nu\right)^2}{\left(1 + \mu^2 - \nu\right)^3} = \frac{1}{\lambda^3} \left(\lambda^2 - 3\lambda + 2 + \lambda\sqrt{\lambda^2 - 2\lambda + 2}\right)^2.
$$

The above and the remark at the beginning complete the proof. $\hfill \Box$

Theorem 2.7. For $0 < \lambda < 2 - \sqrt{2}$ we have

$$
\lim_{\tau \to 0} \frac{\rho_Y(\tau)}{\tau^2} = \frac{1}{2}h(\lambda).
$$

Proof. According to Proposition 2.6, the function m is continuous and decreasing in the interval $\left[\sqrt{1+\mu^2}, \sqrt{2} + \left(1-\sqrt{2}\right)\lambda\right]$. Let

$$
\epsilon \in \left(0, m\left(\sqrt{1+\mu^2}\right) - m\left(\sqrt{2} + \left(1-\sqrt{2}\right)\lambda\right)\right).
$$

There exists

$$
z_{\epsilon}(x_1,x_2)\in A, \quad (x_1=x_1(\epsilon), x_2=x_2(\epsilon)),
$$

such that

$$
m\left(\sqrt{x_1^2 + x_2^2}\right) = m\left(\sqrt{1 + \mu^2}\right) - \epsilon.
$$

Whence

$$
M(z_{\epsilon}) = M(x_1, x_2) = 2m\left(\sqrt{1+\mu^2}\right) - 2\epsilon.
$$

Choose $\tau_{\epsilon} > 0$, such that

$$
\{(p,q): \max(|p-x_1|, |q-x_2|) \leq \tau_{\epsilon}\} \subset \left\{u \in \mathbb{R}^2 : \frac{\pi}{2} - \gamma \leq \arg u \leq \gamma\right\}.
$$

If $|\tau| < \tau_{\epsilon}$, then $\Delta_2(z_{\epsilon}, y, \tau) = \Delta_2 f(z_{\epsilon}, y, \tau)$ for all $y \in S$. By Lemma 2.5, similarly as in Proposition 2.4 we get :

$$
\underline{\lim}_{\tau \to 0} \frac{\rho_Y(\tau)}{\tau^2} \ge \lim_{\tau \to 0} \sup_{y \in S} \frac{\Delta_2(z_\epsilon, y, \tau)}{\tau^2} = \lim_{\tau \to 0} \sup_{y \in S} \frac{\Delta_2 f(z_\epsilon, y, \tau)}{\tau^2}
$$

$$
= \frac{\lambda^2}{2} M(x_1, x_2) = \frac{\lambda^2}{2} \left(2m \left(\sqrt{1 + \mu^2} \right) - 2\epsilon \right) = \frac{1}{2} h(\lambda) - \lambda^2 \epsilon,
$$

which combined with Proposition 2.6 concludes the proof. \Box

Remark 2.8. Let us point out that for arbitrary small τ ,

$$
\rho_Y(\tau) = \sup \left\{ \frac{\|x + \tau y\| + \|x - \tau y\| - 2}{2}, \quad x \in A, \ y \in S \right\}
$$

is not attained at the point $z(\mu, 1)$. Indeed, for $\tau \in (0, \tau_{\epsilon})$ there holds either

$$
\frac{\pi}{2} - \gamma \le \arg(z + \tau y) \le \gamma, \quad \gamma \le \arg(z - \tau y) \le \frac{\pi}{2}
$$

$$
\frac{\pi}{2} - \gamma \le \arg(z - \tau y) \le \gamma, \quad \gamma \le \arg(z + \tau y) \le \frac{\pi}{2}.
$$

or

$$
\frac{\pi}{2} - \gamma \le \arg(z - \tau y) \le \gamma, \quad \gamma \le \arg(z + \tau y) \le \frac{\pi}{2}
$$

Similarly as in Proposition 2.4, we have

$$
\Delta_2(z, y, \tau) = \frac{\tau^2}{4} \left[\left(f''_{11}(z + \theta \tau y) y_1^2 + 2 f''_{12}(z + \theta \tau y) y_1 y_2 + f''_{22}(z + \theta \tau y) y_2^2 \right) \right],
$$

where $\theta = \theta(y, \tau) \in (0, 1)$. Thus

$$
\lim_{\tau \to 0} \sup \left\{ \frac{\|z + \tau y\| + \|z - \tau y\| - 2}{2\tau^2}, \ y \in S \right\} = \frac{1}{4} h(\lambda).
$$

This is because $r''(\sigma)$ does not exists at $\sigma = \gamma (r(\sigma))$ is defined in the Introduction.

3. PROOF OF THE MAIN THEOREM

We start by establishing

Fact 3.1. *The function*

$$
h(\lambda) = \frac{1}{\lambda} \left(\lambda^2 - 3\lambda + 2 + \lambda \sqrt{\lambda^2 - 2\lambda + 2} \right)^2
$$

is decreasing in (0, 1]*.*

Proof. It is sufficient to check that

$$
\tilde{h}(\lambda) = \lambda^2 - 3\lambda + 2 + \lambda\sqrt{\lambda^2 - 2\lambda + 2}
$$

is decreasing. The derivative

$$
\tilde{h}'(\lambda) = \frac{(2\lambda - 3)\sqrt{\lambda^2 - 2\lambda + 2} + 2\lambda^2 - 3\lambda + 2}{\sqrt{\lambda^2 - 2\lambda + 2}}
$$

is negative if

$$
(2\lambda - 3)\sqrt{\lambda^2 - 2\lambda + 2} + 2\lambda^2 - 3\lambda + 2 < 0, \quad \lambda \in (0, 1).
$$

The latter is equivalent to the inequality

$$
\sqrt{\lambda^2 - 2\lambda + 2} \left[\sqrt{\lambda^2 - 2\lambda + 2} + 2\lambda - 3 \right] + \lambda(\lambda - 1) < 0, \qquad \lambda \in (0, 1),
$$

which is true because both summands are negative for $\lambda \in (0, 1)$.

Lemma 3.2. *Let* $0 < \lambda < 1$, $\|\cdot\|_{\lambda}$ *correspond to the space* Y_{λ} *and*

$$
r_{\lambda}(\theta) = \|\cos \theta e_1 + \sin \theta e_2\|_{\lambda}
$$

be the function which describes the sphere of "rotund square". Then

$$
s(\lambda) = \sup_{\theta} r_{\lambda}(\theta) (r_{\lambda}(\theta) + r''_{\lambda}(\theta)) \le \frac{1}{\lambda^2 - 2\lambda + 2} (1 + a(Y_{\lambda})) < 1 + a(Y_{\lambda}),
$$

where we have set

$$
1 + a(Y_{\lambda}) = 2 \lim_{\rho \to 0} \frac{\rho_{Y_{\lambda}}(\tau)}{\tau^2} = h(\lambda).
$$

Above, we assumed that $\theta \neq \gamma = \arg z$ *. Also,* θ *does not correspond to any other common point of the circle and the straight line, because for such points* $r''(\theta)$ *does not exist.*

Proof. If $x = \frac{1}{r_\lambda(\theta)}(\cos \theta, \sin \theta)$ belongs to a segment of S_λ , then $r_\lambda(\theta) + r''_\lambda(\theta) = 0$. Let $x \in A$ (see Corollary 2.3) and $x \neq z(\mu, 1)$. From

$$
\sup_{\theta,\varphi} \frac{\sin^2(\theta - \varphi)}{r_{\lambda}^2(\varphi)} r_{\lambda}(\theta) (r_{\lambda}(\theta) + r_{\lambda}''(\theta)) = 1 + a(Y_{\lambda}),
$$

by substituting $\varphi = \theta - \frac{\pi}{2}$ we get

$$
\frac{1}{r_{\lambda}^{2}(\varphi)}r_{\lambda}(\theta)\left(r_{\lambda}(\theta)+r''_{\lambda}(\theta)\right)\leq 1+a\left(Y_{\lambda}\right).
$$

Hence,

$$
r_{\lambda}(\theta)\left(r_{\lambda}(\theta)+r''_{\lambda}(\theta)\right)\leq r_{\lambda}^{2}(\varphi)\left(1+a\left(Y_{\lambda}\right)\right)<\frac{1}{\lambda^{2}-2\lambda+2}\left(1+a\left(Y_{\lambda}\right)\right).
$$

Above we have used the inequality

$$
r_{\lambda}(\varphi) < \frac{1}{\|z\|_2}
$$
, where $\|z\|_2 = \sqrt{1 + \mu^2} = \sqrt{\lambda^2 - 2\lambda + 2}$.

Proof of Theorem 1.1

At the beginning we note that $d_2(Y_\lambda) = \sqrt{2} + (1 - \sqrt{2}) \lambda$ is a decreasing function of λ . From Lemma 3.2,

$$
s(\lambda) = \sup_{\theta} r_{\lambda}(\theta) (r_{\lambda}(\theta) + r''_{\lambda}(\theta)) \le \frac{1}{\lambda^2 - 2\lambda + 2} h(\lambda) = \frac{1}{\lambda(\lambda^2 - 2\lambda + 2)} \tilde{h}^2(\lambda).
$$

We denote the right-hand side with $k(\lambda)$. As $\frac{1}{\lambda(\lambda^2-2\lambda+2)}$ is decreasing in $(0,1)$, $k(\lambda)$ decreases in this interval too, due to Fact 3.1.

Thus for all $\lambda \in (0, 2 - \sqrt{2})$ we have

$$
s(\lambda) \le k(\lambda) < h(\lambda) \tag{7}
$$

and

$$
\lim_{\lambda \to 0^+} k(\lambda) = \lim_{\lambda \to 0^+} h(\lambda) = \infty.
$$

Let $a \in I = (h(2-\sqrt{2})-1, \infty)$. There exists a unique $\lambda = \lambda(a) < 2 - \sqrt{2}$, such that $a = h(\lambda) - 1 = h(\lambda(a)) - 1$, i.e. $\lambda(a)$ is the inverse function of $a =$ h(λ)−1, considered in the interval $(0, 2-\sqrt{2})$. We define $X_a = Y_{\lambda(a)}$, which means $X_a = (\mathbb{R}^2, |||.|||_a)$, where $|||.|||_a = ||.||_{\lambda(a)}$. Respectively let

$$
\tilde{r}_a(\sigma) = |||\cos \sigma e_1 + \sin \sigma e_2|||_a = ||\cos \sigma e_1 + \sin \sigma e_2||_{\lambda(a)} = r_\lambda(\sigma).
$$

By definition it is clear that $X_a \in \mathcal{X}_a$ for all $a \in I$. Let $a \in I$ is fixed and $\lambda = \lambda(a)$ is as above. From (7) it follows that there exists a unique $\lambda_1 : 0 < \lambda_1 < \lambda$, for which $a = h(\lambda) - 1 = k(\lambda_1) - 1$. Let $b = h(\lambda_1) - 1$, i.e. $\lambda_1 = \lambda(b)$. Obviously $b > a$. For $r_{\lambda_1}(\sigma)$ we have:

$$
r_{\lambda_1}(\sigma)\left(r_{\lambda_1}(\sigma)+r''_{\lambda_1}(\sigma)\right)\leq s(\lambda_1)\leq k(\lambda_1)\leq h(\lambda)=1+a=1+a\left(Y_{\lambda}\right).
$$

But this is equivalent to $\tilde{r}_b(\sigma) = r_{\lambda_1}(\sigma) \in G_a$. Also it is clear that $\tilde{r}_b(\sigma) \in F_b$ whence $\tilde{r}_b(\sigma) \notin F_a$. From the note in the beginning

$$
\max_{\sigma} \frac{1}{\tilde{r}_a(\sigma)} = d_2(X_a) < d_2(X_b) = \max_{\sigma} \frac{1}{\tilde{r}_b(\sigma)}.
$$

In the wording of the theorem we write r_a and $||.||_a$, instead of \tilde{r}_a and $||.|||_a$. \square

4. REFERENCES

- [1] Ivanov, M., Troyanski, S.: Uniformly smooth renorming of Banach spaces with modulus of convexity of power type 2. *J. Funct. Anal.*, 237, 2006, 373–390.
- [2] Ivanov, M., Parales, A. J., Troyanski, S.: On the geometry of Banach spaces with modulus of convexity of power type 2. *Studia Mathematica*, 197, no. 1, 2010, 81–91.
- [3] Jordan, P., von Neumann, J.: On inner products in linear, metric spaces. *Ann. Math.*, 36, 1935, 719–723.
- [4] John, F.: Extremum problems with inequalities as subsidary conditions. In: *Studies and Essays Presented to R. Courant*, Interscience, 1948, 187–204.
- [5] Kirchev, K., Troyanski, S.: On some characterisations of spaces with scalar product. *C. R. Acad. Bulgare Sci.*, 28, 1975, 445–447.
- [6] Lindenstrauss, J., Tzafriri, L.: *Classical Banach Spaces. II: Function Spaces*, Springer, 1979.

- [7] Nordlander, G.: The modulus of convexity in normed linear spaces. *Ark. Mat.*, 4, 1960, 15–17.
- [8] Rakov, S.: Uniformly smooth renormings of uniformly convex Banach spaces. *J. Soviet Math.*, 31, 1985, 2713–2721.
- [9] Senechalle, D.: Euclidean and non-Euclidean norms in a plane. *Illinois J. Math.*, 15, 1971, 281–289.

Received on March 20, 2017

Rosen Nikolov

Faculty of Mathematics and Informatics "St. Kl. Ohridski" University of Sofia 5, J. Bourchier blvd., BG-1164 Sofia BULGARIA

E-mail: rumpo1959@abv.bg